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Here we use invariant theory to describe the Brauer—Severi scheme of the fibers
of trace rings of generic matrices with an algebraically closed base field of
characteristic zero when the trace ring is viewed as a sheaf of algebras over the
variety of matrix invariants. Using this approach, we first prove that the
Brauer—Severi scheme of a trace ring is isomorphic to Proj Q, for a graded ring Q
whose generators we describe in the first section. This description also has a
relevant interpretation over base fields of arbitrary characteristic. In the second
section of this paper we show that the Brauer—Severi scheme of the fiber of a trace
ring over a point that is not too degenerate will have smooth irreducible compo-
nents meeting transversally and describe these irreducible components as
Brauer—Severi schemes of certain algebras.  © 1996 Academic Press, Inc.

The Brauer—Severi variety has been useful in the study of central simple
algebras. For example, Amitsur proved that the function field of the
Brauer—Severi variety of a central simple algebra is a generic splitting field
for that algebra and that if two central simple algebras have isomorphic
Brauer—Severi varieties, their Brauer classes generate the same subgroup
of the Brauer group [1]. Ideally, one could extend the concept of the
Brauer—Severi variety to a more general context. One attempt to do so has
been the definition of a Brauer—Severi scheme given by van den Bergh in
[17]. Our present goal is to obtain a better understanding of the concepts
that van den Bergh introduces in [17] by using invariant theory to describe
some of these schemes. We will work over an algebraically closed base
field, k.

The first section of this paper parallels the results given in [17], but
these results are viewed from a slightly different perspective. We concen-
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trate on describing the Brauer—Severi scheme associated to n-dimensional
representations (n a positive integer) of a finitely generated free noncom-
mutative algebra over k, which we will denote by F, = k{%,..., %}
when we have m generators. What is new in this first section is a
description of graded k-algebras Q,, , such that the Brauer—Severi scheme
associated to the n-dimensional representations of F,, is isomorphic to
Proj(Q,, ).

In the second section, we start examining the local structure of the
Brauer—Severi scheme. Here we assume that k is an algebraically closed
field of characteristic zero and work with trace rings of generic matrices.
We then specialize the trace rings and consider the Brauer—Severi schemes
of these specializations. We call these specialized schemes local
Brauer—Severi schemes. Then we are able to use the results of the first
section as well as the Luna Slice Theorem [9, p. 97] to say something about
the @tale local structure of the local Brauer—Severi schemes associated to
Proj(Q,, ,). As the Luna Slice Theorem requires working over an alge-
braically closed field of characteristic zero, this section depends heavily on
this assumption for k. Our major result in this section is Theorem 2.7
which says that under most conditions, the local Brauer—Severi scheme
will have smooth irreducible components that meet transversally. Under
these conditions, these irreducible components are described as
Brauer—Severi schemes in their own right. In general, we give an upper
bound on how many irreducible components a local Brauer—Severi scheme
can have.

In the third section, we use an example to illustrate some of the
concepts developed in Section 2. In particular, we see that when m = 2
and n = 2 the local structure of the Brauer—Severi scheme can degenerate
from an irreducible, smooth conic in P?, to two projective lines intersect-
ing transversally, then to a nonreduced structure on a single projective
line. We show how this degeneration corresponds to the degeneration of
two-dimensional representations of F,.

We start by summarizing some of the definitions and results found in
[17]. Let R be a commutative Noetherian k-algebra and let 4 be an R
algebra that is not necessarily commutative. Let B, (A, R) denote the set
of pairs (¢, P) such that P is a left A-module that is projective of rank n
as an R-module and ¢: A — P is a surjective left 4A-module homomor-
phism. Two pairs (¢, P) and (¢, Q) in B,(A, R) are equivalent if there
exists an R-module isomorphism u: P — Q such that ue ¢ = . If such
an isomorphism exists, we write (¢, P) ~ (¢, Q).

Let Bsev,(A, R) denote the set of equivalence classes of ~ in B,(A, R).
If S is any commutative R-algebra, S — Bsev,(A &, S, S) defines a func-
tor from commutative R-algebras to sets which naturally extends to a
functor on R-schemes. By [17, Prop. 2], since this functor is a closed
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subfunctor of the Grassmann functor, it is representable by an R-scheme.
Therefore, we define the Brauer—Severi scheme of 4 over R of degree n
(denoted Bsev,(A4, R)) to be the R-scheme representing the functor S —
Bsev, (A &, S, 8).

In [17], van den Bergh provides us with an alternate characterization of
the T-points of Bsev,(A4, R) for any k-algebra 7. We find this characteriza-
tion more conducive to the application of invariant theory and so we
include this characterization below.

Let T be any k-algebra and let I/, 1" be locally free T-modules of rank
n. Let ¢ € Hom,(A4,End (V)), ¢' € Hom, (A4, End, (V") with ¢(R) C
T c End(V), ¢'(R) € T < End,(V"), and assume there exist v € } and
v’ € V' such that ¢(A)Tv = V and ¢'(A)Tv’' = V'. Then we say that the
triples (¢, v, V) and (¢',v’, V') are equivalent if there exists a k-module
isomorphism a: V' — V' such that a(v) = v’ and a o ¢p(a)e a ! = ¢'(a)
for all a € A.

LEMMA 0.1 [17, Lemma 3]. Let T be a k-algebra. Then the T-points of
Bsev,(A, R) are in one-to-one correspondence with equivalence classes of
triples (p,v,V) where V is a locally free T-module of rank n, ¢ €
Hom (A4, End (V) such that $(R) € T, and v € V is such that $(A)Tv
=V.

By [17, Prop. 5], if A4 is any k-algebra that can be generated by m
elements, then Bsev,(A4, k) can be embedded as a closed subscheme of
Bsev,(F,,, k) by fixing a surjection F, — A. Therefore, the study of
Bsev,(F,,, k) will help us develop a context in which to study other
Brauer—Severi schemes.

Fix m > 2and n > 2 and let V= k" with standard basis {e,, ..., e,} (so
e; is the vector with a jth component of 1 and all other components are
zero). As all projective k-modules of rank n are isomorphic to V, it follows
from Lemma 0.1 that the k-points of Bsev,(F,, k) are in one-to-one
correspondence with equivalence classes of pairs (¢, v) where ¢: F, —
M, (k) is a k-algebra homomorphism and v € V is such that ¢(F,)v = V.
We say a pair (¢,v) is Brauer stable if ¢(F,)v = V. Note that Brauer
stability is a property of equivalence classes in that if (¢,v) is Brauer
stable, then so is any pair that is equivalent to (¢, v).

To classify these equivalence classes of Brauer stable pairs, we turn
to invariant theory. Let X, , = M, (k) & --- & M, (k) be the affine mn®-
dimensional space of m-tuples of n X n matrices over k. Then we can
identify the representation ¢: F,, - M, (k) with the m-tuple (H(2)),
... 9(Z,) €X, ,. We define a GL,(k) action on X, , by letting ¢
be the representation corresponding to (gd(ZDg %, ..., gd(%,)g™ )
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for any ¢ € X 1 and any g € GL,(k). Then two Brauer stable pairs
(¢p,v), (g, w) e m.n XV are equivalent if and only if there exists a
g € GL,(k) such that (¢8, gv) = (¢, w).

Now we categorize Bsev,(F,,, k) as an appropriate GL,(k)-quotient.
One difficulty in creating such a quotient is that the orbits of the Brauer
stable points are not closed in X, , X V. Note that if (¢,v) is Brauer
stable, then the point (¢, 0) is not Brauer stable yet it is in the closure of
the GL, (k) orbit of (¢,v). Indeed, lim, AL, - (¢, v) = (p,0) for any
(¢,v) € X,, , ¥ V. Therefore if fek[X,, , X V]is a GL,(k)-invariant
(i.e., f is constant on GL,(k) orbits), f(¢,v) = f($,0) for any (¢,v) €
X,, . X V,since f is continuous in both the Zariski and analytic topolo-
gles Therefore, we get an isomorphism between k[ X,, ,]°%*), the subring
of GL,(k)-invariants in k[X,, ,], and k[X,, , X VICL®, the subring of
GL,(k)-invariants in k[X,, , X V] By a theorem of Nagatas (e.g., [11,
Theorem 3.4)]), these invariant rings are affine so we get an isomorphism of
varieties (X,, , X V)//GL, (k) = Spec(k[X,, , x V]°t®)) = Spec
(k[ X,, ,J°*) = X, .//GL,(k), the latter quotient being the variety of
invariants of m-tuples of n X n matrices.

In some sense, the above paragraph exemplifies the only difficulty in
forming an appropriate quotient of Brauer stable points. We can get
around this difficulty by projectivizing V' and considering a PGL,(k) =
GL,(k)/(k* -1,) action on the resulting Cartesian product. In particular,
if A is in the center of GL,(k), then A-(¢,v) = ($, A -v) for all (¢,v) €
X, , X V. Therefore, under the induced action of GL,(k), the center of
GL,(k) acts trivially on Y, , =X, , X P(VV) where we use P(}) to
denote the projective n — 1 space formed by V. So a PGL,(k) action is
well defined on Y,, ,. We will say that (¢, kv) € Y,, , is Brauer stable if
(p,v) €X, , X V |s Brauer stable. Let B,, , denote the set of Brauer
stable points in Y, ,. As before, Bsev,(F,,, k) |s the scheme of all PGL, (k)
orbits of Brauer stable pointsin Y, .

To form an appropriate PGL (k) quotient of Y, ,, we use the theory
developed in [6]. Let S, , = k[x<”|1 <ij<nlc< ! < m] be the affine
coordinate ring of X, , ‘and let k[V] kly, ..., ,] denote the affine
coordinate ring of V. Let X, = (S, Jly;,...,y,] be the affine coordi-
nate ring of X,, , X VV and grade 2, , according to the degrees of the y,’s.
Then we can write X, 0 X P(V) = PrOJ(E .. As the GL (k) action
induced on %, , preserves degree, a natural quotient variety to look at
would be Proj(X,, ,)?), where (X, ,)” denotes the subring of %,
generated by the semi-invariant functions of %, ,. In this context, we call
a function f e 3, , a semi-invariant if f is homogeneous and its zero set
iny, ,is PGL (k) stable. This is equivalent to saying that fe 2
semi-invarlant |f f is homogeneous and for all (¢,v) €X,, , X V
(8, gv) = Af(p,v) for all g € GL,(k) and for some A € k*. We will see
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that when k is a field of characteristic zero, Proj((X,, ,)) is a quotient of
Brauer stable points and is isomorphic to Bsev,(F,,k). In order to
generalize to nonzero characteristics, it is necessary to consider the Proj of
a subring of (%,, ).

We conclude our introduction with a formulation of Cramer’s Rule that
we will need later on. First, given a set of »n vectors v,,...,v, €V we
define their bracket, [v,, ..., v,], to be the determinant of the n X n matrix
whose ith column is v;. More explicitly, [vy,...,0,]1 = £, ¢ sgn(a)vy)

-+ vl where S, denotes the symmetric group on # letters and v{” is the
ith coordinate of v;. We state the following version of Cramer’s Rule in
terms of these brackets.

LEMMA 0.2.  Let{vy,...,v,} be a basis for V over k. Theny = L!_, a0, if
and only if [Ul,...,U]»_l,y — ajuj,uj+l,...,vn] =0foralll<j<n.

Proof. If y = Y] jau, then y — av; € span{vy, ..., 0, 1,041, ++, 0.}

Therefore [vy,...,0;_1,y — Qv},0j4,...,0,] =0foral 1 <j <n.

Conversely, assume that [vy,...,0;_4,y — a0}, 0j4q,...,0,] =0 for
all 1<j<n. Then y— au; €span{vy,...,0;_ 1, 0;4q,...,0,} for all
1<j<n Now, by a simple induction argument, y — X%  a; €
Nj_span{vy, ..., v, 4,044, ...,0,} = {0}. Therefore, our result is proven.

Q.E.D.

1. A CHARACTERIZATION OF Bsev,(F,,, k)

We have seen that the GL,(k)-action defined on X,, , = M, (k) ® --- &
M, (k) induces a PGL,(k)-action on X, , as the center of GL,(k) acts
trivially on X, . This induces a corresponding action on S, , = k[ X, ]
and we will denote the ring of PGL, (k) invariant functions under this
action by C =(S,, )’¢®. Let T, , denote the set of all PGL,(k)
equivariant polynomial functions f: X, , — M, (k) where PGL,(k) acts
on M,(k) via conjugation by a GL,(k) representative. The ring T, , is
called the trace ring of m generic n X n matrices.

We make the following observations about T, . First, it is easy to see

that C is the center of T, ,. Next, T, , contains the projection functions

X X, , > MJ(k) given by X,(A4,...,A4,) =A, By identifying
Mor (X, ,. M,(k)) with M,(S,, ,), we can view T, , as the subring of

invariants of the induced PGL,(k)-action on M,(S,, ). If P = [p;;le
M,(S,, ,) and g € GL,(k) is a representative of g € PGL,(k), the in-
duced action on M,(S,, ) is given by P% = g[g~*-p, ;1¢~*, where for any
1<i,j<n, g p;,; denotes the image of p, ; in S, , under the action of
g. Under this identification, X, is the element of M, (S,, ,) whose i, j entry

m,n
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is x("). We call X, the Ith generic n X n matrix and the k subalgebra
generated by the set { X1 < I < m} is the ring of m generic n X n matrices,
which we denote as G, ,,.

Now any homomorphism ¢: F, — M, (k) induces a unique homomor-
phism ¢: S, , — k given by sending x{) to the i, jth entry of d)(%). Note
that ker(¢) is the maximal ideal of S, , corresponding to ¢ € X,, .. Then
there exists a unique homomorphlsm M(o): M,(S,, ,) > M, (k) that
restricts to a homomorphism ¢: T,, , = M, (k) such that ¢>(X1) = (%)
for all /. This last statement implies that the map ¢ — ¢> is injective. For
ease of notation, we will then identify ¢ with its corresponding ¢ on T,, .

A more precise relationship between ¢ and ¢ is known when we restrict
k to be a field of characteristic zero. In this case, [13, Theorem 2.1] tells us
that T, , is actually generated as an algebra by C and the X;’s. It then
follows from [12] that T, , is a universal object in a subcategory of
algebras with trace. We will exploit this further a little later on.

DerFiniTioN 1.1, For any W,,..., W, €T, ,, define [W,....,W,]¢€
3, =k[X, , X V]to be the function

(W,... W] X, ., XV -k
(o, 0) = [d(W)0, ..., d(W,)v].
Note that for any W,,...,W, €T,

n.n the function [Wy,..., W] is a
homogeneous element of X, that is a semi-invariant. Indeed,

(Wi, W 195, gv) = det(g)[Wr, ... W,1(¢.v) (1)

forany g € GL,(k), (¢, v) € X,, , X V.

Also, the pair (¢, kv) is Brauer stable if and only if there exist
Wy,...,W,eT,, such that [W, ..., W, (¢, v) # 0. Indeed, if
(W, ...,W (¢, v) # 0, then {p(W)v,..., (W, )v} is a basis for V" over k,
so ¢(F,)v =1V. The converse is essentially the reverse of the above
argument. Therefore, Brauer stability is an open condition and so B
an open subvariety of Y,

m,n

LEMMA 1.2. Let (¢, ku) be a closed point in B,, ,,, the open subscheme of
Brauer stable points in Y, , = Proj(X,, ). Then the stabilizer of (¢, kv) is
trivial and the PGL,(k)-orbit of (&, kv) is closed in B,, .

and assume (d)g,kgv) = (¢, kv) for some

Proof. Let (¢, kv) €B,, ,
g € GL,(k). Then for any w €V, there exists an r € T, , such that
d(rv =w. So gw = gd(r)v = ¢(r)gv as ¢¢ = ¢. But gv = Av for some
AE K™, s0 gw = ¢dp(r)gv = Ap(r)v = Aw. Hence g = AL, and thus repre-
sents the trivial element in PGL,(k). Therefore PGL,(k) acts freely on
B

m,n*
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Since the PGL,(k)-stabilizer of all ((15 kv) € B,, ,, is trivial, the dimen-

sion of any PGL (k) orbit in B,, , is n* — 1. Therefore, by [11, Lemma
3.7], the PGL (k) orbit of any (¢ kv) € B, ,isclosedin B, ,. Q.E.D.

Since the orbits of the Brauer stable pomts have closed orbits in B, ,,
we have some hope that the orbits could be distinguishable by semi-in-
variant functions. The following theorem indicates that we only need the
semi-invariants of the form given in 1.1 to distinguish these orbits.

THEOREM 1.3.  Assume that (¢, kv) and (@', kw) are Brauer stable. Then
the following are equivalent:

A. (¢, kv) is equivalent to (', kw);

B. [W,....,W (¢, kv) =0 if and only if [W,...,W,(¢', kw) =0
forall W,,....W, €T, ..

Proof. Let (¢, kv) and (¢', kw) be Brauer stable points of Y, . Note
that (A) implies (B) follows directly from Eq. (1).

Next, we assume condition (B). As (¢, v) is Brauer stable, then there
exists H,,...,H, € T, such that {¢(H)v,..., $p(H v} is a basis of VV
and so [Hl, o H, ](¢ kv) # 0. By assumptlon this implies that
[H,,...,H (¢, w) # 0 and thus {¢'(H)w, ..., ¢'(H,)w} is also a basis
for V over k.

Let v, = ¢(H)v, w; = ¢'(H)Jw forall 1 <i <n,and let a: V- V be
the automorphism defined by a(v,) = w, for all 1 <i < n. Then we claim
that ¢ = ¢’ and a(v) = w.

First we show that for any r € T, , that a¢(r)a ' = ¢'(r). Given
refd, ,, forany 1 <j <n there exist ay,..., a, € k such that ¢(r)v; =
X! a;. So, by Lemma 0.2, [vy,...,0,_4, ¢(r)vj - aU, Uy, 0,1 =0
for all 1 <t <n. By assumption, this implies [wy,...,w,_;, ¢'(r)w, —
aw, W, 1., w,1=0 for all 1 <t <n. Thus, by Lemma 0.2, ¢’ (r)w
X! aw,. Also, ad:(r)a w; = ap(rv; = a(Z]_ epv;) = i LW There-
fore, forany r € T, ,, the transformatlons ¢'(r) and a¢(r)a* agree on
each of the basis elements, w;, and so are equal. In other words, ¢“ = ¢'.

To complete our proof of the above claim, it is sufficient to show that

av = w. If we write v = X', Bv;, then [vy, ..., v -V = Bivj, ]+1,...,Un]
= O0forall 1 <j < n. By assumption, [w;,...,w,_;,w — Bw, ]+1, coow, ]
=0foralll<j<n Sow=2%",Bw and av = ll,BaU X Bw;
= w. Therefore we have proven our claim and so it follows that a - (¢, kv)
= (o', kw). Q.E.D.

So the semi-invariants functions [W,,...,W,] are sufficient to sepa-
rate the PGL,(k)-orbits of Brauer stable points. Let Q denote the C-sub-
algebra of X, , generated by the [W,,...,W,]. As elements of %, ,, the
semi-invariant functions [W,, ..., W,] are homogeneous of degree n. As Q
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is generated by the [, ..., W,], any element of O that is homogeneous in
2, . will have a degree in X, , that is an integer multiple of n. To
simplify our later work, we define a grading on Q that eliminates this extra
factor of n. More specifically, we say an element of Q is homogeneous of
degree g if the element is homogeneous of degree ng in X

m,n*

THEOREM 1.4 [13, Theorem 12.1]. Let char(k) = 0. Then the ring of
SL,(k) invariant functions of %, , = k[X,, , X V] is the C-algebra gener-
ated by the functions (W, ..., W, where W,,..., W, T .. Hence
s, n)SLn(k) - 0. '

Note. The theorem we state here is a special case of the one stated in
[13]. The original statement gives the generators of the invariants of m
matrices, p vectors, and g covectors. Here, we are only interested in the
case when p =1and g = 0.

CoroLLARY 1.5. If char(k) = 0 then Q = (3, ,)°.

Proof. By definition of Q, itis clear that 0 c (X, )7 Let fe (5, )%
Then for any y €Y, , such that f(y) #0, we have g — f(gy)/f(y)
defining a homomorphism from SL, (k) to k*. Since SL, (k) has no
nontrivial characters, this map must be trivial. Therefore f(gy) = f(y) for
all yeY,, and for all g € SL, (k). Hence, f€ Q = (%, ,)5* where
0 =(3,, )% by Theorem 1.4.So Q = (X,, )7 as claimed. Q.E.D.

When k has positive characteristic it is unclear to me whether this
equality between Q and (ZX,, )7 still holds. But for the calculation of
Brauer—Severi schemes, this equality is not necessary.

In [15, Theorem 2.2], Saltman proves that the function field of the
Brauer—Severi variety associated to the central quotient ring of T, , is a
rational extension of k. In [17], van den Bergh gives another proof of
Saltman’s result by proving the equivalent statement that Bsev (F, , k) is
rational. Van den Bergh does this by showing that Bsev,(F,,, k) is covered
by a finite number of open affine sets, each open set being isomorphic to
an affine space of dimension (m — 1)n? + n [17]. Using the techniques of
Van den Bergh’s proof we are able to show that Bsev,(F,,, k) = Proj(Q)
where Q is graded as above.

We start by defining special sequences and their associated functions as
introduced in [17]. Let M be a sequence of ordered integer pairs («;, ;)
for 2 <j < n. We say that M is an m, n-special sequence if 1 < B. < m,
l<a;<jforal2<j<nandif j=+j" then (o, B) # (a;, B;). When
m and n are understood, we just say the sequence is special. Note that for
a given m and n, the set of (;m, n)-special sequences are finite as any such
sequence forms a subset of order n — 1 of the finite set {(«, 8) € N2|1 <
a<n 1l<B<m.
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Let M = {(«;, )} be a special sequence. Then we can inductively
define an assouated sequence of monomials (of the generic matrices X,)
H", ... HM €T, , by letting H{* =1 and H™ =X, H' for
2<j<n. Leth, [H(M) ,H™] e Q. Then h,, 'is a functlon of the
type given in Def|n|t|on 1.1, thus is homogeneous of degree one in Q.

Let U,, be the affine open subvariety Spec((Z,, ), ) Of Y, , =
Proj(%,, ,), where we use (X, ), , to denote the elements of degree
zero in the one element localization (Em W, Then Uy, is the subvariety
of B, , given by {(¢, kv)lh, (¢, kv) # 0). As h,, is a semi-invariant, |t |s
clear that U,, is a PGL,(k)-stable subvariety of B,, ,.- Note that U,
nonempty as hM(¢> ke;) # 0 if the a;th column of ¢>(X ) is e; for aII J.

The following lemma is stated in [17] without proof, so we include a
proof for the reader’s convenience. The proof of this lemma provides some
motivation for the nature of the definition of a special sequence.

LEMMA 1.6 [17, p. 336]. The set {U,,|M is (m, n)-special} forms a finite
affine open cover of B, .

Proof. From our above discussion it is clear that the set {U,,IM is
(m, n)-special} is a finite collection of open affine subsets of B, ,. So it
suffices to show that the U,, cover B,,

Let (¢, kv) € B,, ,,, then ¢(F,)v = V sov+0eV If (X)) € kv for
all 1 <! <m, then dim(¢(F,)v) =1, contradicting the condition of
Brauer stability. So there exists a 8, such that ¢(X; v & span{v}. Let
a, = 1. (Note that for any special sequence «, = 1 by definition.)

Now assume that for a given 3 <j < n that there exists an (m, j — 1)-
special sequence (ay, B,),...,(a;_,, B;_,) satisfying the following condi-
tion:

If H =1 and H;,=X;H, for all 1 <i<j—1, then the set
{qB(H o, ..., ¢(H,_ v} |s an independent subset of V.

If qb(X,)q’)(Hi)U € span{fv = ¢(H v, ¢p(H v, ..., ¢(I‘1]—_1)U} forall 1 <i
<j—1 and for all 1 <! < m, then ¢(F,)v C span
{¢(Hv, ..., ¢(H,;_})v}, contradicting the Brauer stability of (¢, kv).
Therefore, there exists a 1 <a;<j—1 and a 1< g; <m such that
¢(X3j)¢(Haj)v & span{¢p(Hv, ..., (H,_)v}. It then follows that
(o, B;) # (o, B;) for any i <j and so we have constructed an (m, j)-spe-
cial sequence such that {¢(Hv,..., ¢(H)v} is a linearly independent
subset of V, where H; = Xg H, . Therefore we can construct an (m, n)-
special sequence M such that {¢(H(M))u ., ¢(HM)p} is an indepen-
dent subset of I and thus a basis of V. So

0# [H(™, ..., HM™| (&, kv) = hy (o, kv) (2)
which implies (¢, kv) € U,,. Q.E.D.
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Consider the quotient variety for each M given by V), =
Spec((Z,, ,)in, ) = Spec((Z,, ,)n, ) " *). (Note that if fe
(2, )n,» [ 15 homogeneous of degree zero so f*'» = f for all A € k.
Therefore, the GL,(k)-action on % induces a PGL,(k) action on
(2,...)qn,- Furthermore, since PGL,(k) has no nontrivial characters, any
semi-invariant of (%, ), Must also be a PGL,(k) invariant.) Each of
these quotients is endowed with a quotient morphism m,: Uy, — V),
induced by the inclusion (2, ,)x, )" 7" = (3, ), Therefore, we
can glue these quotient morphisms together and form a PGL (k) quotient
of B which we will denote by BS

m,n? m,n*

THEOREM 1.7 [17, Theorem 6].  If M is a special sequence, then V), is an
affine space of dimension (m — Dn? + n. Furthermore, the set V1M is
special} is a finite open affine covering of Bsev,(F, , k), hence Bsev, (F,, k)
= BS,, .

CorOLLARY 1.8.  The k-scheme BS,, , is a smooth, rational quotient of a
free PGL,(k) action on B,, .

Proof. The rationality and smoothness of BS,, , follow directly from
Theorem 1.7 and the freeness of the PGL,(k) action follows from Lemma
1.2. Q.E.D.

Although we do not know in general (i.e., in non-zero characteristic)
whether Q and (3, ) are equal, we can show that O, , = (2, )4,
for every special sequence M. This allows us to show that Proj(Q) = BS,, ,
by embedding the V,, as open subvarieties of Proj(Q) and thus showing
equality locally. So let M be a special sequence and let

(O[M] = [HM, .. HM, X,H™ HY, ... HM]. (3)

Let T(M) = {t'IMIL <i, j<n, 1<l <m, (D) # (a, B)forany 2 <
r < n}. We can use the arguments on [17, p. 336] almost verbatim to prove
the following theorem, which in turn proves the claim in Theorem 1.7 that
the 1}, are affine spaces of the appropriate dimension. In the proof we
present here, we translate these arguments into the language we have
developed in this paper and include a little more detail when we thought it
might clarify the proof.

THEOREM 1.9. For any special sequence M, the set T(M) U {h,,} is an
algebraically independent subset of Q, hence k[V,,] = klth; |t € T(M)] =
Q((hM))'

Proof. Let M ={(«a;, B)}-, be a special sequence and let (¢, kv) €
U, Then 0 # h,(¢,v) = [d(HM), ..., p(HM)v] implies that
{p(HMN, ..., p(HM)v} forms a basis of V. Hence there exists a unique
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g € GL, (k) such that (¢$(HM))gv) = gp(HM v = ¢, forall 1 <j < n,
where e; denotes the jth standard basis element of V= k" given by zeros
in all components except for a 1 in the jth component. For a given
(¢,v) € Uy, let us denote this unique g € GL,(k) by g, . If (¢, kv) =
(¢, kw), then g, , = Ag, , for some nonzero A € k. Therefore, for every
element (¢, kv) € U,,, we can associate a unique g, ,, € PGL, (k).

Let Vy ={(¢, kv) € Uylg, 1, = 1} = {(¢, ko)l there exists a A € k™
such that ¢(H*)v = xe; for all j}. Then V, is defined as a closed
subscheme of U, by the radical of the ideal in (X, ), ) generated by
the set {x(%) -8 R<r<n 1<i<nu{yy - yohyla + - +a,
=n,a; >0 forall 1 <i<n, a; <n}). Hence V}, is the subvariety of U,
whose closed points are given by {(¢, kv)lkv = ke, and ¢(XB,)%, = ¢; for
all 2 <j < n}

Now define a morphism ¥: U,, — Vy, given by W(¢, kv) = (¢,,, ke,) =
Zy.1.(®, kv) where ¢,(X)) is the n X n matrix whose i, j entry is given by
tIMY ¢, 0)hy (¢, 0)7 . Note that (¢, ke,) € Vy; since tf, [M1(o, kv)
hy (¢, kv)~* is zero whenever i #j and is one when i = j. Therefore,
gbl,,(XBj)eaj =e¢; for all j.

So U,, =V}, X PGL,(k) where the isomorphism is given by the map
(¢, kv) = ((p,, ke,), g4 1.). Note this is a PGL, (k) equivariant map where
PGL,(k) acts on V;, X PGL,(k) by acting trivially on the first component
and both transitively and freely on the second component. Hence, V,, = V},.

We can embed V), into V""" *1 by

(b kv) = (S(Xp)er oo b(XD)eyoo S(X,)er. . d(X,)e,). (4)

Then Vj, is isomorphic to the affine subvariety of V™" given by
vy, U0 g 1)1 o, = €; Tor all j}. Therefore, 1y, is an affine space
whose affine coordinate ring is a polynomial ring in the coordinates given
by th,} for t € T(M). Hence, k[V,,] is a polynomial ring in the corre-
sponding functions. Since thy' € O,  forall t € T(M), we get k[V,,] c
Q((hM)) c ((Em'n)((hlw)‘)[)PGL”(k) = k[, 1.

Finally, since {th,, |t € T(M)} is algebraically independent in k[V},], it
follows that 7(M) U {h,} is algebraically independent in Q. As the
dimension of BS,, , is (m — 1)n® + n, the set T(M) U {h,,} is a maximal
algebraically independent set. Q.E.D.

Note that we have also shown in the proof of Theorem 1.9 the following
corollary.

CoROLLARY 1.10.  For any special sequence M, U,, is PGL,(k) isomor-
phic to V, X PGL, (k) where Vy, is an affine space of dimension (m — 1)n?
+ n and PGL,(k) acts on PGL,(k) X V,, by acting trivially on V,, and by
left translation on the PGL,(k) factor.
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Finally, we get the equality we claimed in our discussion preceding
Theorem 1.9.

CoroLLARY 1.11. Proj(Q) = BS,, , = Bsev,(F,,, k).

Proof.  First we note that since the set {U,,|M is special} forms an affine
open cover of B, ,, it follows that {}/,,|M is special} is an affine open
cover of Proj(Q). Then the corollary follows directly from Theorem 1.9, the
definition of BS,, , and Theorem 1.7. Q.E.D.

2. BRAUER-SEVERI SCHEMES OF SPECIALIZATIONS
OF TRACE RINGS

For the rest of this paper we will assume that k is a field of characteris-
tic zero. Under this restriction on k our results become more complete. As
mentioned earlier, in this case the trace ring T, , is generated by its center
C and the ring of m generic n X n matrices G,, , as a k algebra. Then
[12, Theorem 3] tells us that T,, , is a free object in .7, the category of
k-algebras with trace satisfying the nth Cayley—Hamilton identity. We
refer the reader to [12] for the formal definition of . If A is an object in
,, then any k-algebra homomorphism ¢: F,, — A induces a unique
trace-preserving algebra homomorphism ¢: T, ., — A such that ¢(%;) =
o(X,) forall 1 <i <m.

When working with T, ,, we will usually work in the category.7,. In this
category, there is a corresponding notion of a Brauer—Severi scheme (also
introduced in [17]). Let R be a commutative Noetherian k-algebra and let
A be an R algebra with trace function t: A — R. Let Bsev,(A, R,t) be
the set of trace isomorphism classes of triples (¢, p, P) where P is a
projective R-module of rank n, ¢: A —» End,(P) is a trace preserving
k-algebra homomorphism when End,(P) is equipped with the reduced
trace function, and p € P is such that ¢(A4)p = P. As above, the assign-
ment of commutative R-algebras to sets given by R’ — Bsev,(A &
R',R',t ® idg,) defines a functor on R-schemes that is representable by
an R-scheme, which we denote by Bsev,(A, R, ¢) (see [17]).

If ¢ € X, ,, then the unique trace-preserving homomorphism ¢: T J-
- M (k) mduced by the universal property of T,, , in .7, agrees with our
¢ T m.n = M, (k) that was induced from the homomorphism e S, .,k
corresponding to ¢ € X, , as defined in the discussion above Definition
1.1. As before, we will identify ¢, ¢, and $ Under this identification, [17,
Prop. 12] tells us that Bsev,(T, ,,C,tr) = Bsev,(F,, k) as k-schemes.
Therefore, our study of Bsev( m,k) yields results pertaining to what
seems to be the most natural definition of the Brauer—Severi scheme for
the trace ring of generic matrices.

n
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If we consider T, , as a sheaf over V,, , = Spec(C), we can discuss the
local structure of T, , by looking at its fibers over the closed points of
V. .- Let us denote the fiber of T, , at the closed point €V, , by T,.
Then T, can be described algebraically as (T, ,) & «(£), where k(¢)
denotes the residue field of C at & We can then discuss the local
Brauer—Severi scheme of T, , at ¢ given by Bsev, (T, k,tr). It follows
from the definition of these schemes that Bsev,(T,, k,tr) is the scheme
of equivalence classes of pairs (,v) where ¢: T, > M, (k) is a trace-
preserving algebra homomorphism and v € V' is such that ¢(T,)v =V
Here (i, v) is equivalent to (', w) if there exists a g € GL, (k) such that

gy(r)gt =y¢'(r)forall re T, and gv = w.

LEMMA 2.1, Let (£ €V, , and let m, be the maximal ideal of C defining
&. Then Bsev,(T,, k, tr) = PrOJ(Q/Qm ).

Proof.  From [17, Prop. 11], Bsev, (T, k, tr) = Bsev, (T, ,, C,tr) Xg,eccy
Spec(k(£)) = Proj(Q) Xspeec) Spec(x(£)) by Corollary 1.11. As Proj(Q)
Xspec(cy SPEC(k(&)) = Proj(Q & «(£¢)) and Q & k(&) = Q/Qm,, the
lemma follows. Q.E.D.

Let BS, be the closed subscheme of BS, , = Proj(Q) defined by the
homogeneous ideal m.Q and let B, be the intersection of B, ,, the open
subscheme of Y, , = Proj(X,, ,) of Brauer—stable points, and the closed
subscheme of Ym',, defined by the homogeneous ideal m,%, . If
Tyl Xp a2V, ./ /PGL,(k) is the canonical quotient morphism
of the PGL (k) actlon defined on X, , = Spec(S,, ,), then we observe
that B, = [7,'(¢£) X POV N B, , and BS,=B //PGL (k). Therefore
we can use the techniques of [8] and [9] to study wxl(g) then use these
results to study B, and BS,.

Note that any ¢ € X, , induces an F, -module structure on ' = k". We
will say that ¢ is a semi-simple representation if the induced module
structure on V' makes V' a semi- simple F,-module. Let V¢ denote the
F,,-module structure induced by ¢ € X, , on V. Let § €V, , be a closed
point. Then 7,'(¢) C X,, , contains a unique closed PGL .(k) orbit by
[11, Lemma 3.6] and this must be the orbit of a semisimple representation
by [3, 12.6]. It also follows from [3, Section 12] that the unique closed orbit
is the only orbit in 7;*(¢) containing a semisimple representation.

Let ¢ € my'(€) C X, , be a semisimple representation of F,, and let
H, be the PGL,(k)-stabilizer of ¢ in G = PGL, (k). Then H, is reductive
(e.g., [9, Proposition 2]) and H,, will act on the tangent space T,(X,, ,) =
X, .t X, at ¢ by simultaneous conjugation. Let N be a H,-stable

m,n

k-vector space complement of T,(G - ¢) in Ty(X,, ) = . (50 T, (X )
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= N, @ T,(G - ¢)). Then we can define an H,-action on G X N, given by
Hy X (G X N;) > G XN,
(h,(g.x)) = (gh™" h-x).

By applying the Luna Slice Theorem [9, p. 97] and [9, Remark 2, p. 98],
since X . is smooth we get an étale isomorphism

m,n

(5)

7€) = mM(me(9)) = [G X MM (my(O)]//H ()

where my: Ny — N,/ /H is the canonical quotient morphism. Therefore
we can determlne the structure of 73*(&) by looking at the (usually)
simpler scheme rer(wN (0)) and the stabilizer H.

As a corollary “to the Luna Slice Theorem, the variety V, , =

X, ./ /PGL,(k) can be stratified into locally closed, smooth, irreducible
subvarieties (see [8, Theorem 11.1.1(a)]). These strata can be classified and
given a partial ordering with respect to the representation types of the
&€V, , that they contain. We will say that a closed point { € I, is of
representatlon type p=(n,_ay,...,n,_a,) if there exists a sem|5|mple
representation ¢ € ;' (¢) such that V, has r distinct simple components
E; of dimension a; and multiplicity n,. Note that the representation type
of ¢ is well defined up to a re-ordering of the pairs n;_a; as et (€)
contains exactly one equivalence class of semisimple representations in
X, , (e, 7m3*(£) contains exactly one PGL,(k) orbit of semisimple
representations). Also, if ¢ € 73,*(&) is semisimple, then by [8, p. 157] its
PGL,(k)-stabilizer H is PGL,(k)-conjugate to

H, = [(GL,(k) ®1,) X -+ X (GL,(k) ® 1, )| /k*C PGL,(k). (7)

Note that we can therefore always choose a semisimple ¢ € 7*(¢) that
has stabilizer equal to H,,. If we let ;) ={£€V,, ,[£ has representa-
tion type p}, then the V|, define the locally closed strata mentioned
above.

If p and p’ are representation types of 1V, ,, then we will say that p'is
a refinement of p if there exists a g € PGL, (k) such that gH , g~* H,.
Then by [8, Theorem 11.1.1(b)], V{,, ccl(}V[ ) if and only if p is a
refinement of p’. Here we use cl( ) to denote the Zariski closure of the
indicated scheme. Therefore V,_,, is an open dense subvariety of V,, ,,

while ¥V, ;, is contained in the closure of every V

PropPOSITION 2.2, Let £ €V, . have representation type p and let ¢ €
m (&) be a semisimple representation chosen such that H, =H,. Let
H =H, and let N = N, be chosen as above. If wy: N > N//H is the
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canonical quotient morphism, then the reduced induced structure on
' (ary(0)) is isomorphic to H-Y where Y C N is a finite union of affine
k-subspaces of N and H - Y is the image of H X Y C H X N under the given
action H X N — N.

Proof. Let G,, denote the algebraic group Spec k[¢,¢7']. By the
Hilbert—-Mumford Theorem (see, for example, [14, Theorem 2.1]), given a
closed point y € N, y € my'(ary(0)) if and only if there exists a one
parameter subgroup (1-PSG) A: G,, — H such that lim,_ ,(A(z)-y) = 0.
By [7, Section 15], given a 1-PSG A, there exists a maximal torus T ¢ H
such that the image of A is contained in 7. So let us first look at a specific
maximal torus of H.

Let p=(n,_a,,...,n,_a,)and let

T(P)= [D”1®1“1X“.XD”r®lﬂr]/k><gH (8)

where D; is the set of invertible diagonal j X j matrices for any positive
integer j. Then T, ,, is a maximal torus of H . Let ny = Xi_, n; and let
(wy; -, w, ) denote the element of 7, given by the image of

diag(wy,...,w, ) ® 1, 0

0 diag(w, w,,) ®1,

(%)

o~ Mgt lrrr

in H,, where we use diag(w,,,,...,w;) to denote the (j —i) X (j — i)
diagonal matrix with the (&, h)-entry given by w, ., forany 1 < h < (j — ).

As H acts on an element of N by simultaneous conjugation of the
elements matrix components, we can decompose N into its weight spaces
relative to the weights of 7, ,,. Forany 1 <i, j < n,, let

N, ;= {x E Nl(wy;-iw,) x = ww tx - forall (wy; w,,) € T(p)}
(10)

and Ny ={x € Nlr-x=x forall r€ T, }. Then N=[&®,,;N,;]1® N,
(see, for example, [8, Section 11.2]).

Now let A: G,, - H, be a 1-PSG whose image is contained in T .
Then we can write A(t) = (A(2); -+ A, (1)) for every t € G,. As A must
be a group homomorphism, for each 1 <i < n,, we get A(¢) = t% for
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some g; € Z. So given any closed point y € N, we can write y uniquely as

y=yo+ Zyi,j (11)

i#]

where y, € Ny and y, ; € N, ; for all i # j. Then

MOy =30+ LAO(N) v,

i#]

=Yg t+ thiiqjyi,j' (12)

i#]

Therefore lim, _, , (A(#) -y) = 0 if and only if y, = 0 and y, ; = 0 whenever
q; < q;.

Choose a o €S, (where we use S, to denote the symmetric group on
n, letters) such that

9ot) Z 9ot = " Z oLy (13)
Then from our work above, lim, , ,A(¢) -y = 0 if and only if

ye & N, & N (14)

452> 4o Y(j) o) <o())
Soforany o €S, , let

Y,= @& N; ad Y= U Y. (15)
a()<ao(j) oES,,

Therefore, if A is a 1-PSG whose image is contained in 7 ,, and y € N is

a closed point such that lim, , jA(z) -y = 0, then y € Y.

Conversely, if y € Y is a closed point, then y € Y, for some o € S,
Define A, (1) = (177W; ;7o) e T, for all t € “k*. Then it follows
from the above paragraph that lim,_ ,A,(¢)-y = 0, hence the reduced
induced structure on Y defines a closed T, ,-stable subvariety of the
reduced induced variety of (7, (0)).

Now let A: G,, — H be an arbitrary 1-PSG. Then, as mentioned above,
the image of A is contained in some maximal torus T of H. Since H is
connected, 7 must be H-conjugate to 7, by [7, Corollary 21.3.A]. Let
h € H be such that T, ,, = hTh™*. Then h/\(t)h teT, foralreg,
Therefore, if y e N is a closed point having the property that Iim,_)ox\(t)y
=0, then lim,_, ;AXt)h~*hyh ! = 0 hence y € h~'Yh by our results for
1-PSG’s whose image is contained in 7, .

Conversely, if y € H-Y is a closed point, where H-Y is the image of
H X Y under the H-action H X N — N, then there exists an 7 € H such
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that h™'yheY. As h'yh €Y, there exists a o€ S, such that
lim, oA, (t)-(h~yh) = 0, so the 1-PSG given by \'(¢) = hA (H)h™* has
the property that lim,_, ,A'(¢) -y = 0. Therefore y is a closed point of the
reduced induced variety of my'(m,(0)), thus we get that the reduced
induced variety of y*(m,y(0)) is equal to the reduced induced variety
defined by H-Y. As Y is a finite union of affine k-subspaces of N, our
result follows. Q.E.D.

CoRrOLLARY 2.3. If H, is a torus (hence p=(1_a,,...,1_a,)), then
the reduced induced structure of my"(my(0)) is isomorphic to Y where Y, a
finite union of k-subspaces of N, was defined in Eq. (15).

Proof. In this proof we keep the notation used in the proof of Proposi-
tion 2.2. Since p=(1_a,,...,1_a,) it follows from (7) and (8) that
H=H, =T. Therefore every 1- PSG A of H has image contained in
T, ,,- Hence, by the treatment of this special case in the proof of Proposi-
tion 2.2, a closed point y € N is in my*(y(0)) if and only if y € Y where
Y is defined in (15). Q.E.D.

ProposITION 2.4. Let &€V, , have representation type p =
(ny_ay,....n,_a,) and let ny=Y;_,n, Then wy"&) has at most
ny!/(n,! -+ n,1) irreducible components.

Proof. Let £€V, , have representation type p as stated. Let ¢ €
mx (&) be semisimple with PGL, (k) stabilizer H = H_,. Define N = N,,,
T=T,, N, ;,Yand{Y,|lo €S, } as in the proof of Proposition 2.2. Since
H is connected and Y, isirreducible for any o € S, , we know H - Y, must
be an irreducible subvariety of H-Y.

Let K=S§, XS, X XS§,. Then we can identify K with a subgroup
of S, by Iettlng (crl, . a')(]) _1+ o(j —n,_;) whenever i > 1,
n;,_, <] <n;and (o, ..., q)(j) = 0'1(]') whenever j < n,. Let C,,(T) and
N, (T) denote respectively the centralizer and the normalizer of T in H.
We can also identify K with a subgroup of W(H,T) = N,(T)/C,(T) by

identifying (o, ..., g,) with the image of the matrix
h, ®1, 0
(16)
0 h, ®1

in H where we use /,, to denote the permutation matrlx corresponding to
o; in GL,(k) for all i. We claim that for any o, o’ € S, if oo’ €K,
then H- Y H-Y .
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Proof of Claim. Note that it is sufficient to show that if o '’ € K,
then Y, € H-Y,.. We then use a symmetric argumenttoshow Y . c H-Y,
and our claim follows.

Let r=0"'0' € KC W(H,T) and let h_ € N,(T) be a representative
of 7. Let T,=h,Th;*. Then h ‘N, h, cN 10, +1(j)- Indeed, for any

= (pyi - ipy) € T, p(h:'N, ]hf)p‘l h; pTNupT ‘h,
pT 1(l)p7 1(])h lN jh, where p = hTh; (p 1(1), o Da- 1(n0)). So
h "N; ih, © N1 -1, by the def|n|t|on of the N,

FlnaIIy,

h;lYa'hT: @ hT]Vi,jh;l

o()<o(j)

S & Noagy

o(<o()) (17)
- ® N,

o'(D<a'(j)
=Y,

SoY Ch,Y h._-. and our claim is proved.

To conclude the proof of the proposition, for each o€ S, , H-Y_ is
irreducible. By our claim, H-Y,, =H-Y, if o %0’ € K. Therefore, for
each irreducible component of H- Y, there is at least one left coset of K
in S, that can be associated to it. But the number of left K cosets in S,
is g =ny!/(n!-- n,1). So H-Y has at most ¢ irreducible components,
each of which is H-stable. Therefore it follows that Y’ = 7' (7(0)) has
at most ¢ irreducible components. As G = PGL,(k) is also irreducible,
G X Y’ has at most g irreducible components, so (G X Y')/ /H also has
at most ¢ irreducible components. Using the isomorphism (6), we get that
¢ (€) also must have at most g irreducible components. Q.E.D.

CoroOLLARY 25. Let (€ V, , be of representation type p =
(ny_ay,...,n,_a,) andlet ny = X;_, n,. Then BS; has at most ny!/(n,! -+
n,Y) irreducible components.

Proof. From Proposition 2.4, m3'(¢) has at most ¢ = ny!/(ny! -+ n,Y)
irreducible components. Therefore 73'(¢) X P(V) must have at most ¢
irreducible components. By definition, B, , is the dense open subscheme
of Brauer-stable points in Y, , =X, , X P() and B, = [m'(£) X
PVl N B, ,, therefore B, must have at most g irreducible components.
Hence BS, = B,/ /PGL,(k) also has at most g irreducible components.

Q.E.D.

LEmmA 2.6. If £ €V, , is of representation type p = (1_ay,...,1_a,)
then wy*(€) is reduced. Furthermore, if ¢ € wy'(€) is semisimple with
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PGL,(k)-stabilizer H = H_,, and N is an H-stable complement of T,(G - ¢)
inT, (X ) (Where G = PGL (K)), then wy*(my(0)) is also reduced where
Ty N - N / /H is the canomcal quotient morphism.

Proof. Let ¢ € my'(£) be semisimple with stabilizer H = H,, (as
defined in (7)) and N = N, be an H-stable complement of T,(G - ¢) in
T,(X, ). Letmy: N - N//H be the canonical quotient morphism. Note
that the existence of the étale isomorphism (6) tells us that it is sufficient
to show that 75 (7 (0)) is reduced. Indeed, if 75*(7,(0)) is reduced, then
G X myt(my(0) is reduced, which in turn gives us that [G X
myt(ary(0)]/ /H is a reduced étale covering of 73'(&), therefore w*(¢)
must be reduced.

By (7), when ¢ has representation type p, H is a torus (hence n, = r)
and by [8, p. 159] N is H-isomorphic to

k-1,

N =M/(k)® oM, (k)® 0 . (18)

k-1,

where there are m — 1 copies of M, (k) in the above sum and H acts on
N’ via simultaneous conjugation by H. Here we use 1, to denote the a X a
identity matrix, k -1, ={cl,lc € k}. Let my: N > N’ //H be the
canonical quotient morphism.

As k[N'//H] = k[N']", let us describe k[ N'] as a polynomial ring and
compute the H-invariants. Forany 1 <i,j<nandl <l <m — 1, let z“}
denote the coordinate function on N’ corresponding to the (i, j)th entry of
the /th summand in N'. Also, for any 1 < g <, let z; be the coordinate
function corresponding to projection onto the mth summand of N’ fol-
lowed by projection onto the coefficient of the l block diagonal entry.
Then

(VT = (40,58 <im0 112 p=r] (19

is a polynomial ring in (m — 1)n? + r variables.

Now we can partition the set {1,. n} into subsets P, = {1,...,ay},
P,={0+a),....a,},..., —{(1+2W 1a,),...,a,). Then if ieP,
and j € P, forsome 1 <w, w’ <r, the induced H—action on k[N'] (e.g.,
[11, pg. 45) gives that (hy; - /,) - 20 = iy th,, 2) for any 1 < 1 < (m —
Dand 1 <w <. Furthermore h- ZB =2zp for all » € H and for all B.
Therefore we see that a monomial z{» - z{!(z5)% - (25 )% is in

K[N']" if and only if t = 0 or there exists a & S, such that i, € P, &
Jun €P, forall 1 <s<rsandal 1<w<r. Then the set of all such
monomlals union {1,} forms a k-basis of k[ N']? as a k-vector space. Also



BRAUER—SEVERI SCHEMES 871

the set of all non-constant H-invariant monomials form a k-basis for the
maximal ideal M defining m,.(0). Therefore k[ N']M is the ideal of k[ N']
that defines ' (ary.(0)). Then we claim that k[ N']M is equal to its own
radical, hence 7y} (7,.(0)) is reduced. This implies that 75" (7,(0)) is also
reduced.

Proof of Claim. Let p = X! _, m, where the set {m,,..., m,} is a set of
linearly independent monomials. Assume p? € k[ N']M for some positive
integer g. We will show that p € kK[ N']M using induction on ¢.

First let us assume p is a monomial in k[ N']. If z} is a factor of p for
any 1 </ <r, then p € k[N'IM. Therefore we can assume no zj is a
factor of p. Then no z; can be a factor of p? As p? € k[N'IM, there
exists a minimal monomial factor f of p? such that f € M. Then if we
write f=z{") - z{!2 there would exist a € S, such that i, € P, =
Jes) € Py for al 1<s<d and all 1 <w <r. If the triples
(iy, 1 ll), ..., Gy, jgn 1) are all distinct, then f must be a factor of p hence
p € kIN'IM. So assume that there exist 1 < s < s’ < d such that (i, j,, /,)
= (i, j1,). As f is a minimal invariant factor of p? 7 must be a cycle
in S, So there exists a 1 <c <(d — 1) such that 7°(s) =s'. Then
zilzilw) ezl do) | s @ proper factor of f that is H-invariant,
hence contradicts the minimality of f. Therefore the triples (i, j,, [,) must
be distinct, hence p € k[N']1M

Now assume that for any k- independent set of monomials {u,, ..., u,_,}
that (X% u,)? € kIN'IM implies (X, * u,) € k[N'IM for any posmve
integer ¢q. Let p=Y/_,m, be a sum of ¢ independent monomials
{my,...,m,}. If we assign an order to the variables zflj , We can order the
set of monomlals in k[ N'] lexigraphically with respect to the powers of the
variables z(") . Therefore, if we write p = T,_, m,, with m; <m, < -
< m, (with respect to the lexigraphic orderlng) then p? = m{ + p_ where
p, is a sum of independent monomials that are greater than m{ with
respect to our lexigraphical ordering. Since we have a k-basis of monomi—
als for k[ N'IM, then p? € k[ N'IM if and only if when p? is written as a
sum of independent monomials, each monomial in that sum is also in
k[N'IM. As m, is minimal in p, m{ must be the minimal monomial in the
expression for p?. Therefore m{ € k[N'IM which we already proved
implies that m, € k[ N'IM. Therefore p? = u -m, + (X!,_, m,)? for some
u € k[N'],so (X,_, m,)? € k[ N'IM. Hence, by our induction hypothesis,
X!,_,m,) € k[N'IM. This gives us that p € k[N'IM and our claim is
proved, which in turn proves our lemma. Q.E.D.

THEOREM 2.7. Let €€V, , be a closed point of representation type
p=Q_a,...,1_a,). Then BS, has exactly r! smooth irreducible compo-
nents that meet transversally. Furthermore, the dimensions of the irreducible
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components are equal and of dimension

n—r+(m-1)) aa,. (20)

i<j

Proof. Let £€V, . be of the given representation type and choose
¢ € mx'(£) to be semisimple with PGL,(k)-stabilizer H = H , (as de-
fined in (7). Let N be an H-stable (vector space) complement of 7,(G - ¢)
in T,(X,, ,) where G = PGL,(k) and let wy: N - N/ /H be the canoni-
cal quotient morphism. Then, by Lemma 2.6, 7y'(7,(0)) and 7;'(¢) are
both reduced. So, by Corollary 2.3, my*(my(0)) = Y where Y is the finite
union of k-subspaces of N defined in (15).

As Y is the union of r! subspaces of N (no one of which is contained in
any other), Y has r! smooth irreducible components that intersect
transversally. As G = PGL, (k) is connected, G X Y also has r! smooth
irreducible components that intersect transversally. Then since H is con-
nected and acts freely on G X Y, the quotient [G X Y]//H also has r!
irreducible components, but it is not immediately clear that these compo-
nents are either smooth or intersect transversally.

Now by [9, pp. 86-87], for example, [G X Y1/ /H is a principal fiber
bundle (in the sense of [16]) with base G/ /H and fiber type Y. Therefore,
there exists an open &tale covering {¢;: U, —» G/ /H} such that U, X; ,,
(G X Y]//H) = U. X Y. (Note that the condition [16, (NR")] implies that
the covering is both flat and unramified, hence étale.) As G is connected,
G/ /H must be smooth and irreducible, hence all the U, are necessarily
smooth and irreducible. Also, since all the ¢;’s are étale, we can use the
base change property (e.g., [10, Proposition 1.3.3]) to conclude that the
induced morphisms

~

U =U X, m([GXY]//H) =U XY > [GXY]//H (21)
are also étale for every i and form an étale open cover of [G X Y]/ /H.
Note that the irreducible components of U, = U, X Y are smooth and
intersect transversally. If an irreducible component of [G X Y]/ /H is not
smooth, there would exist an U, with a non-smooth irreducible component.
Therefore the irreducible components of [G X Y1//H must be smooth.
Similarly, if the irreducible components of [G X Y]//H did not inter-
sect transversally, there would exist a U, whose irreducible components
would not intersect transversally. Therefore the irreducible components of
[G X Y]//H must intersect transversally as well.

Now by the isomorphism (6), [G X Y1/ /H is G-isomorphic to 73 '(§),
therefore 7' (€) has exactly r! smooth irreducible components that meet
transversally. This will also hold for 73'(&) X P(J). As the scheme of
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Brauer-stable points B,, , is an open subscheme of ¥, , =[X,, , X P(}V)]
(by our discussion preceding Lemma 12) and B, = B, , N [7'(§) X
P(V)], we can conclude that B, will have r! smooth irreducible compo-
nents that meet transversally if no irreducible component of 7;'(¢) X
P(V) is contained in the complement of B,. Since ¢ has representation
type (1_ay,...,1_a,), for every element of ¢ € 7,}(&) there exists at
least one element kv € P(1) such that (¢, kv) is Brauer-stable. Therefore
each irreducible component of 7,!(&) X P(V) has a nontrivial intersec-
tion with B,.

Note in the above paragraph that the irreducible components of Y are
affine k-spaces of dimension (m — DY, _; a;a;, so that the irreducible
components of (G X Y)//H are of dimension dim,(G/H) + (m —
DY, aa;=n*>—r+(m—1DX,_;aa;since H is atorus of rank r — 1.
So it foIIows that the irreducible components of B all have dimension
dim(B,) = n’ —r+n—1+(m—1)Zl<]aa

Given that B, is reduced, we conclude that BS, = B,/ /PGL,(k) is also
reduced. Since {VMIM is special} forms a finite affine open cover of BS,,
by Theorem 1.7, the set {V,, N BS,|M is special} forms a finite affine open
cover of BS;. Also, V,, = V}, € Uy, where I}, is a linear subvariety of U,
that is an étale slice for the PGL,(k) action on U,, by Corollary 1.10.
Therefore BS, NV, = B, N V. Since B, is G-saturated, B, N Uy =
[B; N V1 X PGL,(k), by Corollary 1.10. So if the irreducible components
of BS, N V), do not meet transversally, then neither will the irreducible
components of B, N I, and this implies that the irreducible components
of B, N U, would not intersect transversally. Hence the irreducible com-
ponents of BS, N IV, must meet transversally.

Since PGL,(k) is connected, every irreducible component of B, is
PGL,(k)-stable. Also, every PGL,(k) orbit of B, is closed (by Lemma 1.2)
so there is a one-to-one correspondence between the irreducible compo-
nents of B, and BS,. Hence BS, has exactly r! irreducible components.

Let Z be an irreducible component of B, and let =: B, , —» BS,, , =
B, ,//PGL,(k) be the canonical quotient morphism. Then 7(Z) is the
corresponding irreducible component of BS,. Since PGL, (k) is connected,
Z must be PGL,(k)-stable. Then for any special sequence M, U,, = V}, X
PGL,(k) by Corollary 1.10 and so Z N U,, = (Z N V};) X PGL,(k). As Z
is smooth, so must be Z N V},. But Z N V,, = «(Z) N V,. So, w(Z) is
smooth on each affine open subset 1, of BS,, , and therefore 7(Z) must
be smooth. Also, as dim,(Z) =n* —r+n — 1+ (m — DX, _,a,a; we

get dim (m(Z) =n®* —r+n—-1-m* =D+ (m - DL, ;aa =n—

r+(m—-DX%,_;aa, Q.E.D.
If £V, , isaclosed point of representation type p = (1_ay,...,1_a,)

for some positive integers ay, ..., a,, then the irreducible components of
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Bsev,(T,, k, tr) can be described as Brauer—Severi schemes in their own
right. We show this by first constructing the corresponding algebra with
trace and then showing an isomorphism between the Brauer—Severi scheme
of this algebra with an irreducible component of Bsev, (T, k, tr).

Fix a closed point ¢ € V,, , of representation type p and let ¢ € 7' (&)
be semisimple with stabilizer H = H ,,. Let N be an H-stable vector
space complement of T,(G - ¢) in T,(X,, ). Finally, let my: N > N//H
be the canonical quotlent morphlsm Then by Corollary 2.3 and Lemma
26, Y = my'(my(0) where Y = U, . Y, is defined in (15). Therefore
the isomorphism given in (6) tells us 7'(&) =[G x U,Y,1//H=

U, [G XY, 1//H, since H is a torus which tells us that each Y, is
H-stable. Also, for each o€ S,, it follows that [G X Y, ]//H is an
irreducible component of (G X Y)//H, hence defines an irreducible
component Z, of m;1(¢).

Let P, be the prime ideal of S, , defining Z . Then the canonical
surjection 7,: S, , —> S, =S, ,/P, induces a surjection M, (7, ):
M,(S,, ) —> M[(S,). Let T, , denote the image of T, , under M,(7,).
Note that since P, N C = m,, where m, is the maximal ideal of C
corresponding to &, the center of T, , is C/m, = k.

COROLLARY 2.8. Using the notation of the above discussion, each irre-
ducible component of Bsev,(T;, k, tr) is isomorphic to Bsev, (T ,, k,tr) for
some o € §,.

Proof. Let Z be an irreducible component of Bsev, (T, k, tr). By Lemma
1.2 every G-orbitin B, is closed in B,, ,. Since G is connected, there is a
one-to-one correspondence between the |rredu0|ble components of B, and

BS, = Bsev, (T, k,tr). As B, =[m'(£) X P(V)]N B by our above
discussion, we get a G-isomorphlsm

B§ = US [(ZU X H:D(V)) N Bm,n] (22)
where the (Z,) X P(V)) N B,, , are distinct irreducible components of
Bg.lé_e; o € S, be the permutation such that (Z,) x P(V)) N B,, , =

v (Z

Consider T, . For ¢: T, . — M, (k) let $= ¢o7,. Then & T T,
M, (k) corresponds to the representation Yy S, , = k defined by x(l)- -
E(Xl)m. where we use $(X,) to denote the (i, j)th entry of d)(X,) for
l<i,j<nandl </ <m. Then it follows that ¢, is a representation in
Z, = Spec(S,,). So Bsev,(T; ,, k,tr) is the set of G—orbits of Brauer-stable
pairs (¢, kv) € Z_ X IP(V) Therefore

Bsev, (T, ,. k. tr) = [(Z, x P(V)) N8B, ,|//G=Z (23)
as desired. Q.E.D.

m,n’
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3. AN EXAMPLE

In this section we develop some intuition about Brauer—Severi schemes
of the trace ring both globally and locally by computing these schemes for
the m = 2, n = 2 case when the characteristic of k is zero. In other words,
we will concentrate on two-dimensional representations of F, = k{%,, %,}
on a k vector space V. For convenience, let X and Y denote the first and
second generic matrices of T, ,.

Our first goal is to calculate BS, , = Bsev,(T, ,,C, ,, tr). We know that
BS, , is covered by affine subvarieties corresponding to special sequences.
In this case, there are only two special sequences which we denote by
M, ={(1,1)} and M, = {(1,2)}. The corresponding functions in Q are
hy=hy, =11, X]and hy = hy =1[1,Y] So BS,, is covered by the two
affine subsets I’y =V}, and Vy, =V, , both of which are isomorphic to AS,
the six-dimensional affine space over k. Therefore, the only work is finding
out how these two varieties glue together.

From Theorem 1.9, we know k[V,]= k[s,,s,, 53, 5,, S5, S¢] where we
define

s, = [X2% X]hyt s =Y, X ]hyt ss = [YX, X]hyt (24)
s, = [1, X?)hyt s, = [1,Y]hyt se = [1, YX ]hy!

and the s, are algebraically independent over k. Similarly, we let k[V; ] =
klty,...,ts] where

t, =[X,Y]h,t t; = [XY,Y]ht ts =[Y?,Y]hyt

(25)
t, =[1, X]hyt t, =[1, XY ]hyt ts =[1,Y?]hyt
and the ¢, are algebraically independent over k.
Finally, let
X/ — 0 Sl Y/ — S3 S5
1 Sy S4  Sg
(26)

t ot 0 ¢
X” - ( 1 3) Y’/ - ( 5)
t, 1, 1 ¢
Then for any (¢, kv) € Uy, ($(X), ¢(Y)) is equivalent to (X'(¢, kv),
Y'(¢, kv)) and similarly (X,Y) is equivalent to (X", Y”) on Uy.
It is clear from definitions that in Q. , ) We get s,t, = 1, 15, = —s3,

and ¢,s; = —t;. Also, tr(X) = tr(X') = s, must equal tr(X") =1¢, + ¢,.
Similarly, from tr(Y) we get s, + 54 = ¢. Finally, using det(X) and det(Y)
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we get that —s; = 1,1, — t,t; and —t; = 555, — §,55. Solving this system
we get the following relationships defining the gluing morphism w on
VynVy:

S, =lyty — ity  S3= —1t,*! S = Lyt — tytg — t21; " .

S, =1t +1, s, = 15" Se = o + 11151 (27)
It is not hard to verify that the morphism given by

ty = —838, % l3=8.85, — 8§38, — §55, % t5 = 5,55 — 8§38 28

t, =51 fy =5, + 5385, " ls =S5 + 55 (28)

is the inverse of w. This formulation of BS,, does not give us the best
picture of what the scheme looks like, so we state the following proposition
that gives a description of QO as a C-algebra.

ProposITION 3.1.  Let Q' = Cluy, u,, uyl/(f) where
f=det(Y)u? + ul + det(X)uj + (tr(XY) — tr(X)tr(Y))uu,
—tr(X)uus + tr(Y)uu, (29)

and let Q' be graded by letting the degree of the u; be one and the elements of
C be of degree zero. Then B, , = Proj(Q’).

Proof. Note that Proj(Q’) is covered by two open affine subsets, U, =
Spec(Qy,,,)) and U; = Spec(Qy,.»)-

First, we claim that U, = V. Let 7: C — k[V, ] be the natural injection
and let p: k[U;] — k[V ] be defined by letting p|C = 7, p(u,u; ') = —s,,
and p(usu;*) =s,. In order for p to be well-defined, we need to check
that p(fu;?) = 0 for the canonical lifting of p to Clu,u;*, usu; '] But
this follows from the following calculations:

p(fu?)

p(det(X))si? + 53 + p(det(Y)) + p(tr(XY) — tr(X)tr(Y))s,
+ p(r(X)) 555, — p(tr(Y)) 53

T(det(X))s; 2 + 55 + 7(det(Y)) + 7(tr(XY) — tr(X)tr(Y))s,
+ 7(tr( X)) sz, — 7(tr(Y)) s,

=(—s1)s4’2 +S§+(S3S6 — 5485) + (Ss+S154+s256_sz(33+56))s4

+(52)535, — (55 + 55)53
= 0. (30)
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To finish proving our claim, we show p is invertible. But we can construct
the inverse map by sending s, and s, to —u,u; * and u,u; *, respectively.
Then the images of the rest of the indeterminants are determined by
5, = —det(X), s, = tr(X), s5 = tr(XY) + det(X)s, — tr(X)(Ar(Y) — s5),
and sg = tr(Y) — 55 as plC = 7.

In a similar way, one can show that there is an isomorphism p': U; =V,
such that p’|C is equal to the canonical injection C < k[V, ]. Then it is
tedious, but straightforward, to show that p’ can be constructed so that
pe pand p’ agree on Q. - Therefore, we get an isomorphism between
the schemes B, , and Proj(Q’). Q.E.D.

So we can think of BS,, as a conic in projective 2-space over C,,
defined by f. We now consider the local Brauer—Severi schemes to
investigate the nature of BS, ,.

From [5 Lemma 1] it follows that C,, = k[tr(X),tr(Y), det(X),
det(Y), tr(XY)] and that the generating set {tr(X), tr(Y), det(X), det(Y),
tr(XY)} is algebraically independent over k. Now given any closed point
£ €V,,, its corresponding maximal ideal m, is generated by elements of
the form tr(X) — a,,tr(Y) — a,, tr(XY) — a,, det(X) — «,, det(Y) — as.
Then the image of f in (C/m,)[uy, u,, us], which we will denote by f;, is

fe= asuf +ub + auf + (a3 — aya,)ugits — ayu,ug + ayugu,. (31)

After a bit of straightforward algebraic manipulation, it can be shown that
¢ factors into two linear terms exactly when

(af — 4a,)(af — 4as5) — (2a5 — 011012)2 =0. (32)

So for generic ¢, f; is irreducible, hence BS, = Bsev,(T,, k, tr) is isomor-
phic to P;, as expected. Under condition (32), f, = (u, + Byu; + Bus)u,
+ y,u; + y,uz) where

N[
N

{—al + e/ af — 4a4}

{a2+61\/a22—4a5> B, =

{az—el\/azz—4oz5} y2=%{—a1+62\/af—4a4}

B. =
(33)

N[

Y1 =

and ¢ € {1, —1} is chosen so that B,v, + B,y; = a3 — a;a,. It is not
unexpected that this is exactly the condition for a two-dimensional repre-
sentation of F, not to be irreducible.
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PRoOPOSITION 3.2. Let ¢: F, = M,(k) be a representation of F,. Then ¢
is irreducible if and only if

(tr((X))" — adet(p(X)))(r($(Y))* — adet($(Y)))
—(2tr($(XY)) — tr((X))tr(p(Y)))" = 0. (34)

Proof. Assume that ¢: F, - M,(k) is not irreducible. Then the pair
(p(X), ¢(Y)) is equivalent to the pair (X,Y) given by

= X1 X1 =S Yuu Yo
X=(0 )y=(0 ) (35)

X22 Y22

for appropriate x,;, y;;. Therefore tr(¢(X)) = tr(X) and similarly for the
rest of our generators for C, ,.

Now, for any A4, B € M,(k), define a(A, B) = tr(AB) — ; tr(Atr(B).
Then Eq. (34) can be rewritten as

4a(P(X), ¢(X))a(d(Y), d(Y)) — (2a($(X), ¢(Y)))* = 0. (36)

But a(p(X), p(Y)) = a(X,Y) = 2(x;; — x,,))(y;; — y,,) and the case is
similar for a(¢(X), $(X)) and a(H(Y), (Y)). So Eq. (34) follows when ¢
is not irreducible.

To show the converse, let P be the ideal defining the closed subvariety
of V,, of equivalence class non-irreducible representations. It follows
from [8, p. 158] that P is a prime ideal of height 1. By what was done
previously, it is clear that p € P where p = a(X, X)a(Y,Y) — a(X,Y)>?.
As we have noted in Proposition 3.1, p is irreducible in C, ,, so (p) is a
nonzero prime ideal of C contained in the height one prime ideal P
defining the equivalence classes of non-irreducible representations. There-
fore P = (p) and our proposition follows. Q.E.D.

So generically when ¢ €V, , corresponds to an equivalence class of
non-irreducible representations, Bsev,(T,, k, tr) is isomorphic to two pro-
jective lines intersecting transversally at a point.

Note that this picture is consistent with what Artin describes in [2,
Example 1.5())]. In this example, Artin is only considering Bsev,(A, R, tr)
when R is a Dedekind domain with field of fractions K and A4 is an
R-order in the central simple algebra 4 ® K. In our example, although
T, , is a maximal C-order in the corresponding universal division algebra,
UD, ,, the ring C is certainly not Dedekind. Yet, as the closed subvariety
in V, , of non-irreducible representations is defined by a height one prime
ideal, there is a nice analogy to the example of Artin’s mentioned above.
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Note that when m > 2 or n > 2 the closed subvariety in V,of non-irre-
ducible representations is no longer defined by a height one prime. In
these cases, the direct correspondence to Artin’s examples breaks down.
Even in our current example, there is an aspect we have yet to examine.
In particular, V, , can be given a Luna stratification of three locally closed,
smooth, irreducible subvarieties, say W, W,, W,, such that W, = W, c W,
C W, =V, ,, where W, denotes the Zariski closure of W; in V, , (see, for
example, [8]). Here W, corresponds to the open subvariety of V, , of ¢ of
equivalence classes of irreducible representations and W, is the comple-
ment of W, in V, ,. The variety W, consists of & of equivalence classes
of semisimple representations that decompose into an irreducible one-
dimensional representation of F, occurring with multiplicity two.

ProPosITION 3.3. If & € W, then Bsevy(T,, k, tr) = Proj(C
[y, uy, usl/(f2)) where fy = u, + byu, + b,u, for appropriate b, b, € k.

Proof.  From our discussion preceding Proposition 3.2, Bsev, (T, k, tr)
= Proj(Clu,, u,, us1/(f@)) if and only if g, =y, and B, =vy,. This
happens if and only if «? — 4a; = 0 and a? — 4a, = 0,50 b, = @,/2 and
b, = —a,/2. So let P be the ideal generated by p = a(X, X)a(Y,Y) —
a(X,Y)?, tr(X)? — 4det(X), and tr(Y)? — 4det(Y). Then it is sufficient
to show that P is a prime ideal defining W, in 1/, ,.

Let P’ denote the prime ideal defining W, in 1/, ,. As (p) defines W,
and W, C W,, it follows that p € P'. Next, let ¢ € W,. Then for any
¢ € (my)1(§), there exists a g € PGL,(k) such that

Yu J’12) (37)

X1 X2
(X)) = 8(Y) =
$5(X) ( 0 xll) $5Y) = ( Y1
for some x5, Xy, V15, V1o € k. Therefore, ¢(tr(X)? — 4 det(X)) =
= ¢8(tr(X)? — 4det(X)) = 0 and similarly ¢(tr(Y)? — 4det(Y)) = 0. So
PcCP.

Next, we claim that P is a prime ideal of C. Indeed, it is straightforward
to see that tr(XY) — 2tr(X)tr(Y) € P so C/P = k[tr(X),tr(Y)] is a
domain and thus P is prime. In particular, P is a prime ideal of height 3.
It follows from [8, p. 158] that P’ is also of height 3. Therefore, P = P’.

Q.E.D.
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