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Abstract--Implicit finite-difference techniques may be applied readily to solve acoustic wave-propa- 
gation problems in diverse ocean environments. For only the most simple cases, however, can the 
stability of such schemes be established. In this paper the method of energy inequalities is applied to 
examine the stability and step-size requirements for solving the parabolic approximation to the wave 
equation. 

1. INTRODUCTION 

The parabolic approximation to the wave equation (PE) was first applied by Tappert[1], who 
used the split-step Fourier algorithm[2] to effect its solution. McDaniel[3] noted that implicit 
finite-difference (IFD) solutions offered greater flexibility in the range of ocean environments 
to which the PE could be applied. Lee et al.[4] developed an IFD solution to the PE which 
was subsequently extended[5, 6] to include a treatment of the boundary between media of 
differing densities and indices of refraction, such as that which occurs at the water-sediment 
interface. Using the Fourier transform, we have demonstrated the stability (and hence the 
convergence) of the solutions obtained for the case where the propagation media show no 
dependence on range. However, when applied to media having range-dependent refractive 
indices, the Fourier transform method fails. 

In this paper the method of energy inequalities developed by Samarsky and Gulin[7] is 
used to demonstrate the stability of IFD solutions to the PE in range-dependent environments. 
For both continuous media and diverse media having horizontal interfaces, the energy method 
may be used to establish stability, and it also has applications for selecting range step sizes to 
bound the error in the norm of the field. In the case of diverse media separated by nonhorizontal 
interfaces, the energy method fails to establish stability. The energy method also fails when 
applied to an alternative scheme for treating irregular interfaces. 

For clarity, the problem addressed in this paper is that of propagation in a two-dimensional 
ocean, where the medium is assumed lossless and Dirichlet boundary conditions are assumed 
to hold at the surface and at a deep interface within the bottom. In Section 2 the basic equation 
of interest to us is introduced. Its IFD solution is presented, and the failure of the Fourier 
transform method to establish stability is demonstrated. In Section 3 the method of energy 
inequalities is applied to the stability of IFD solutions for propagation in a continuous range- 
dependent medium and in Section 4 is extended to the horizontal interface. Section 5 considers 
the stability of IFD solutions for diverse media with nonhorizontal interfaces, and Section 6 
addresses the implications of the results for selecting range step increments. 

2. THEORETICAL BACKGROUND 

Propagation in a two-dimensional continuous ocean medium is described by the reduced 
wave equation 

3x 2 Oz 2 

where p is the pressure, k0 is an arbitrarily chosen reference wavenumber, and e, the square of 
the index of refraction, is dependent on both range x and depth z. The medium is lossless: ko 
and ~ are real. To obtain the parabolic approximation, p = u(x ,  z)  exp (ikox) is substituted 
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into Eq. (1). With the assumption that u(x,  z) is weakly dependent on x. so that 02u/O2x may 
be neglected, the result is 

Ou O Zu 
2iko-~x + ~ + ko (e  - 1)u = O. (2) 

If eq. (2) is discretized on a range and depth grid (nk, mh),  its solution[4] is given by 

(I - /A "+L) u "+~ = (1 + i A " ) u " ,  (3) 

where A is a real symmetric tridiagonal matrix and u is a column vector. The diagonal elements 
of A are 

AT, m = a~, = k[(ko/4)(¢~m - 1) - 1/2h2ko], 

and the off-diagonal elements are b = k/4h2ko . 
To prove stability using the Fourier transform method, we expand uT, as a Fourier series: 

u~ = ~ 0", exp (ihms), (4) 
s 

and the stability of  the difference scheme is established for each Fourier component s by using 
the ratio test. Substituting 07exp (imhs) into eq. (3) and performing the matrix operations yield 

n + l  n I0, /d:,j = 1(I + ida)~(1 - id".,+')l, (5) 

where d~, = a~. + 2b cos (hs). The finite-difference scheme, in this case, is stable if 
]qJ~"+~/0~"l --< 1. If ~"~ = ~,÷t,  the method is stable. However,  for a medium having a range- 
dependent index of refraction ~7, ~ ~,+ ~, the Fourier transform method fails to establish stability. 
When a nonhorizontal interface separates media of different densities, the Fourier transform 
method is inapplicable because the basis functions used in Eq. (4) are not a complete set of  
functions obeying the boundary conditions at the interface. 

3. THE METHOD OF ENERGY INEQUALITIES 

To apply the method of energy inequalities[7], we expand the field u" on a local set of  
eigenvectors of  A": 

u" = ~ ~b~ v~", (6) 
s 

where 

n n n n A vs = hs v~. (7) 

Because A is a real symmetric matrix, the eigenvalues h, are real, and the eigenvectors Vs are 
complete and orthonormal: 

v*,. Vsj = aj~, (8) 
S 

v*,,  vr,~ = 8~r, (9) 
m 

where vsj is the j th  element of  the sth eigenvector, and * denotes the complex conjugate of  the 
transposed matrix, 
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Substituting Eq. (6) into Eq. (3) and making use of Eq. (7) then yield 

~b~ ' + i ( l  - " ,,+i ,,+ • ,, , ~X, )v., ] = ~ (b~'(l + tX.,)v,. 
s .~ 
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(lO) 

The transposed complex conjugate of Eq. (10) is 

• " n ~ k n  Z v * " + '  ( I  + , hT+ ' )~b  * ' + '  = Z v * " ( 1  - z h , ) d ) ,  . 
• r 

(li) 

Multiplying, respectively, the right and left sides of Eq. (10) by those of Eq. (1 1) and using 
Eq. (9) yield 

+*"" +:!+' II + ix~!+' l  -~ = ~, +.,*" +~" I1 + ix:"l 2. (12) 

From Eqs. (6) and (9) the norm of the field Ilu"l[ is given by 

~ t /  n Ilu"ll = u,*,"u'D = (b,, 
m s 

(13) 

Because the h are real, 

'~*"~" <~ Z <h*',,h" I1 + ,X:I', 
s 

so that, for a fixed step size k, 

Ilu°lP ~< ~ +*~+q l1 ÷ ihql 2 = M 
$ 

(14) 

for all q and n. Thus, if the initial data (q = 0) and h ° are bounded (which is easily arranged 
in practice), M will be finite, and the norm of the field will remain finite for all n. Thus, for 
bounded input data, the difference scheme is stable[7]. The method of energy inequalities does 
not require a range-independent medium for stability. 

4. THE HORIZONTAL INTERFACE 

The energy method may be readily extended to demonstrate the stability of IFD solutions 
to the PE when a horizontal interface separates two media of differing densities and indices of 
refraction, as shown in Fig. 1. The density p in each medium is assumed to be independent of 
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Fig. 1. The horizontal interface between media of different densities and indices of refraction. 
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range, whereas the square of the refractive indices el(x, z) and e:(x. z) may vary arbitrarily. 
In this case the IFD solution[5] is given by 

(I - i C"+l)u "+l = (I + i C" )u" ,  (15) 

where C is a real tridiagonal matrix. 
Away from the interface, m ~ m ' ,  C,,: = A,,:. On the interface. 

C~,'.m'-I = 2p2b/(pl + P2), 

n ~  p n tz I C, . . . ,  = (Pla,.'2 + p2am I)/(91 + P2), (16) 

C~', . , '÷l = 2plb/(Pl + P2), 

where the Pl > 0. For Pl ¢= P2, C is not symmetric. To symmetrize C, we introduce the diagonal 
positive definite matrix B: 

f l /p l ,  m < m',  
B,,,, = ~(Pl + p2)/2p~p2,  m = m ' ,  (17) 

Ll/p2; m > m'. 

With this, Eq. (15) may be written as 

B-1:2 ( I  - iO "+') B ' /Zu  "+1 = B - I : 2 ( I  + iO") B ' :2u  ", (18) 

where D = B l:z C B -1/2 is a real symmetric matrix. Defining 

W = B 1:2 u (19) 

and multiplying both sides of Eq. (18) by B ~:2 then yield 

(I - iD "+l)  w "+' = (I + iD") w". (20)  

Using the methods of Section 3, we can project w onto the eigenvectors of D and readily 
establish that 

IIw"ll 2 -> ~ ,t,*q~,~ I1 + ih.~l 2 = M ,  (21)  
s 

where the hs are, in this case, the real eigenvalues of D. Thus, for bounded input data the 
difference scheme represented by Eq. (21) is stable. The finite-difference scheme given by Eq. 
(15) is said to be stable in the B-norm[8]. 

~ n  n llu"ll~ = ~ u,. Bum <~ M ,  (22) 
m 

where M is finite. 
Note that the assumption that B was constant, requiring constant p~ and P2, was necessary 

to cast Eq. (18) into a form [Eq. (20)] to which the method of energy inequalities is applicable. 
Without this assumption the energy method fails, as will become apparent in the treatment of 
sloping interfaces. 

5. SLOPING INTERFACES 

Lee and McDaniel[6] developed an IFD technique to handle irregular interfaces between 
media of different densities. The geometry considered is shown in Fig. 2, where the irregular 
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Fig. 2. The sloping interface between two media. 

boundary is approximated by an interface of  constant slope passing through the grid points. For 
propagation in a two-dimensional ocean, the scheme of  Ref. [6] takes the form 

(I - i E"+~)u "+1 = (I + i E" )u" ,  (23) 

where E is a real tridiagonal matrix: 

E" = A" for m ~ m' ,  rnj mj 

r l t  t E,~ ,~ = 
k(~2 - 132 - ~2) 

2i ' 

k~2 
and E,,'.m'_ ~ 2i ' 

k132 
Em'.m + ~ 2i " 

(24) 

For 

m # m'  - 1, E~71 = a "+l . . , , j  and  

E "+lm,-I.,='- i = k ( a l  - 131 - ~ / 1 ) / 2 i ,  

E , + l  = k ' y I / 2 i ,  m ~ - -  l , r n '  - - 2  

E",,+, ~ = k13 / 2 i .  - l .m '  I 

(25) 

Expressions for ct~, 131 and ~/i may be obtained from Ref. [6] by substituting iko for ] ) r / 1  ) ,  

From Eqs (24) and (25) it is clear that the matrices E" and E "÷~ may be symmetrized by 
a transformation similar to that used for the horizontal interface. It is also, however, clear that 
the same matrix will not symmetrize both E" and E "+ ~. Hence, as anticipated, the method of  
energy inequalities fails to establish the stability of  the scheme represented by Eq. (23) because 
it cannot be cast into the required form. 

If the sloping interface is approximated by a stairstep, Fig. 3, and the stable finite-difference 
scheme of  Section 4 is employed, the stability of the resulting solution cannot be established 
by energy methods. To show this, we must recognize that a complete step, in this case, consists 
of  two substeps. The first substep is the solution of Eq. (20) for an intermediate value wi "+1, 
and the second is the assignment of  new densities to w'U ~ to yield w"* 1 in preparation for the 
next application of  Eq. (20). 

Thus, the first substep yields 

wl '÷l = (I - i D " + l ) - l ( l  + i D " )  w" .  (26) 

The second substep may be represented by 

w " ' l  = H,,+ w,,,+l (27) 
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Fig. 3. The "stairstep" interface between diverse media. 

where H is a diagonal matrix having e!ements H ..... = 1, for m ~ m' - 1, m ' ,  and 

H.,n'-L, .n'-]  = [(91 + 92) /29"-]  1'2, H,,'.m' = [2pl/(pl + p,_)] I =. (28) 

Combining Eqs (27) and (28) then yields 

( 1  - i D ' + t ) ( H " + l )  -]  w ''+1 = (I + i D " )  w " ,  (29) 

for which the energy method fails. Although the stability of neither method considered for 
treating sloping interfaces can be demonstrated, the scheme of Eq. (23) is preferable because 
it includes an exact treatment of  the boundary conditions at the interface. 

6. STEP-SIZE SELECTION 

Both the range step size and the reference wavenumber k0 may be selected to bound the 
norm of the field. To develop expressions for the dependence of Iluil on k and k . ,  the fact that 
the eigenvectors of  A are those of the local acoustic normal modes will be used. Thus, for A ,  

- 

h, - (30) 
2 2k. 

where k, is the solution of  

( v "  2v~,,, + " ) /h ' -  + "" " "" '" - " (koch , , ,  - k ,  ) , .  ..... = O .  s , m  + I , V ~ , m  - I (31) 

subject to the appropriate boundary conditions. Thus, if our input data consist of a single normal 
mode, the rth for example, ~b ° = 0 for s ~ r, and with the choice k. = k,.. Eq. (14) becomes 

Ilu"rl 2 < +r +, = Ilu'lI-L (32) 

In this case the norm of the propagated field will be bounded by the norm of the input field. 
In most underwater applications, however, the input field consists of a sum over several 

modes to approximate an omnidirectional acoustical source. At progressive range steps the 
modal content of the field decreases until at long ranges only a few dominant lower-order modes 
remain. This pattern suggests that the norm of the field may be suitably bounded with the choice 
of  range steps in the vicinity of  the source shorter than those used at long ranges. The bound 
on the norm of the field is, in this case. weaker than that obtained in Eq. (14): 

[lu"ll 2 ~ ~ +:~"'+'," II + ix',"l 2. <33) 
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where q' denotes the interval having the greatest range increment, and n I> q' .  A similar bound 
is obtained for the norm of w when horizontal interfaces are present. An analysis of the phase 
errors[3] that arise from the local truncation error also indicates that it is desirable to use small 
range steps at short ranges and to select k0 to correspond closely to the eigenvalues of the 
dominant normal modes. 

C O N C L U S I O N S  

The method of energy inequalities has been applied to establish the stability of IFD solutions 
to the PE for propagation in a range-dependent ocean. Whereas the energy method succeeds 
when horizontal interfaces separate media of different densities, it fails for nonhorizontal in- 
terfaces. The results obtained imply a step size and reference wavenumber choice that is in 
qualitative agreement with that obtained from a consideration of the local truncation error. 
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