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Summary

Angiosperms (flowering plants) evolved relatively re-

cently and are substantially diverged from early land
plants (bryophytes, lycophytes, and others [1]). The

phytohormone gibberellin (GA) adaptively regulates
angiosperm growth via the GA-DELLA signaling

mechanism [2–7]. GA binds to GA receptors (GID1s),
thus stimulating interactions between GID1s and the

growth-repressing DELLAs [8–12]. Subsequent 26S
proteasome-mediated destruction of the DELLAs pro-

motes growth [13–17]. Here we outline the evolution of
the GA-DELLA mechanism. We show that the interac-

tion between GID1 and DELLA components from
Selaginella kraussiana (a lycophyte) is GA stimulated.

In contrast, GID1-like (GLP1) and DELLA components
from Physcomitrella patens (a bryophyte) do not

interact, suggesting that GA-stimulated GID1-DELLA

interactions arose in the land-plant lineage after the
bryophyte divergence (w430 million years ago [1]).

We further show that a DELLA-deficient P. patens
mutant strain lacks the derepressed growth character-

istic of DELLA-deficient angiosperms, and that both
S. kraussiana and P. patens lack detectable growth re-

sponses to GA. These observations indicate that early
land-plant DELLAs do not repress growth in situ. How-

ever, S. kraussiana and P. patens DELLAs function as
growth-repressors when expressed in the angiosperm

Arabidopsis thaliana. We conclude that the GA-DELLA
growth-regulatory mechanism arose during land-plant

evolution and via independent stepwise recruitment of
GA-stimulated GID1-DELLA interaction and DELLA

growth-repression functions.

Results and Discussion

S. kraussiana and P. patens Possess Candidate

GA-DELLA Signaling Components yet Lack
Detectable Growth Responses to GA

DELLAs are a subset of the GRAS (GAI, RGA, and
SCARECROW) family of candidate transcription factors
[18]. We identified genes encoding DELLAs SkDELLA
(from S. kraussiana) and PpDELLAa and PpDELLAb
(from P. patens) (see Experimental Procedures). Phylo-
genetic analysis revealed that SkDELLA, SmDELLA
(from the related Selaginella moellendorffii), PpDELLAa,
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and PpDELLAb are included within a monophyletic land-
plant DELLA group (Figure S1A in the Supplemental
Data available online). Angiosperm DELLAs contain in
their N termini two highly conserved domains (I and II)
that are necessary for GID1-DELLA interactions [10,
11, 19–21] (Figure 1A). SkDELLA contains divergent
but conserved domains I and II (as does SmDELLA;
Figure 1A; see Tables S1 and S2). PpDELLAa and
PpDELLAb are more widely divergent (as is SpDELLA
from the bryophyte Sphagnum palustre), with only small
sections of domains I and II matching the overall con-
sensus for these regions (Figure 1A; Tables S1 and
S2). We also identified genes encoding S. kraussiana
and P. patens gibberellin (GA) receptors (GID1s) (and re-
lated proteins) SkGID1, SmGID1, PpGLP1, and PpGLP2
(Figure S1B; see Experimental Procedures). Although
SkGID1 and SmGID1 are clearly included in and basal
to the clade that distinguishes gymnosperm and angio-
sperm GID1s, PpGLP1 and PpGLP2 are more substan-
tially diverged (Figure S1B).

The GA-DELLA mechanism regulates growth and de-
velopment throughout the angiosperm life cycle [22] but
was not previously known to operate in basal (‘‘ances-
tral’’) land plants. We found that exogenous GA3 (which
promotes angiosperm and gymnosperm growth [23])
did not detectably promote the growth of S. kraussiana
(sporophyte; data not shown) or P. patens (gameto-
phyte; Figure 1B). Furthermore, although the GA-
biosynthesis inhibitor paclobutrazol (PAC [24]) inhibited
the growth of P. patens, exogenous GA3 did not reverse
this effect (Figure 1B). Similarly, GA3 did not reverse the
inhibitory effect of PAC on the growth of S. kraussiana
(data not shown).

Substantial DELLA deficiency confers derepressed
growth, relatively rapid life-cycle progression, and resis-
tance to the growth-inhibitory effects of PAC, salt stress,
and the phytohormone abscisic acid (ABA) on A. thali-
ana [5, 25]. In contrast, we found that a DELLA-deficient
P. patens strain (Ppdellaa Ppdellab) did not exhibit dere-
pressed growth and did not display accelerated life-
cycle progression (data not shown) or increased resis-
tance to PAC, ABA-, or salt-induced growth inhibition
(Figure 1B). Thus PpDELLAs do not repress the growth
of P. patens, suggesting that DELLAs do not restrain
bryophyte growth.

In addition to regulating the growth of angiosperms,
GA regulates the levels of various angiosperm gene
transcripts, such as those encoding GID1 GA receptors
(e.g., [10]). We found that SkGID1-encoding SkGID1
transcript levels were reduced in S. kraussiana plants
treated with GA3 (Figure 1C). Thus, GA3 does not pro-
mote the growth of S. kraussiana or P. patens, and the
lack of PpDELLAs does not derepress growth of
P. patens. However, although P. patens growth may be
responsive to GA forms other than GA3, S. kraussiana
SkGID1 transcript levels are GA3 responsive. This sug-
gests that lycophytes exhibit a limited range of (non-
growth) GA3 responses.
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Figure 1. Initial Characterization of GA-DELLA Components and GA-Responses of the Basal Land Plants S. kraussiana and P. patens

(A) Alignment of N-terminal amino acid sequences (including domains I and II [19]) from angiosperm, lycophyte, and bryophyte DELLAs. Although

domains I and II of SkDELLA and SmDELLA are clearly related to those of angiosperms, the more widely divergent N-termini of bryophyte

DELLAs (PpDELLAa, PpDELLAb, and SpDELLA) only have recognizable domain I and II sequences toward the C-terminal end of each domain.

The alignment was generated with BioEdit software (http://www.mbio.ncsu.edu/BioEdit/bioedit.html). Database sequence accession numbers

are in Table S1, and the color coding of amino acid properties is in Table S2.

(B) Comparison of growth of P. patens (WT and Ppdellaa Ppdellab) in the presence or absence of 10 mM GA3 in response to PAC (20 mM), ABA

(5 mM), or NaCl (75 mM). PAC, ABA and NaCl are equally inhibitory to the growth of the WT and Ppdellaa Ppdellab, and exogenous GA3 does not

overcome this inhibition. For details of construction of the Ppdellaa Ppdellab mutant strain, see the Supplemental Experimental Procedures and

Figure S2. Scale bars represent 5 mm.

(C) Comparison (via semiquantitative RT-PCR) of SkGID1 transcript levels in S. kraussiana plants (and controls) treated with 100 mM GA3. Ubiq-

uitin-encoding transcripts (SkUBQ) provide loading control. The result is representative of three biological replicates.
GID1-DELLA Interactions Probably Arose
Subsequent to the Divergence of the Bryophytes

from the Land-Plant Lineage
We next investigated interactions between S. kraussi-
ana and P. patens GID1s or GLPs and DELLAs. First
studying within-species interactions, we found that
S. kraussiana SkGID1 and SkDELLA components inter-
act with one another and that this interaction, like the
A. thaliana AtGID1c-AtRGA interaction [9, 10], was stim-
ulated by GA3 (Figure 2A). In contrast, the P. patens
PpGLP1 and PpDELLAa components did not detectably
interact with one another in the presence or absence of
GA3 (Figure 2A). Thus A. thaliana and S. kraussiana ex-
hibit GA3-stimulated GID1-DELLA interactions, whereas
P. patens does not. The lack of a GA3-stimulated
PpGLP1-PpDELLAa interaction explains the absence
of detectable GA3 responses in P. patens (Figure 1B),
whereas the GA3-stimulated SkGID1-SkDELLA interac-
tion presumably explains the transcript-level GA3 re-
sponse exhibited by S. kraussiana (Figure 1C).

GID1-DELLA interactions require dual affinities: GID1
affinity for DELLA, and DELLA affinity for GID1. Our
studies of between-species GID1-DELLA interactions
revealed the evolution of these two separate affinities.
We found that PpGLP1 interacts strongly with SkDELLA
(Figure 2A). Thus P. patens PpGLP1 interacts with a lyco-
phyte DELLA but not with the bryophyte PpDELLAa of
P. patens itself. We also found that neither SkGID1 nor
AtGID1c interact with PpDELLAa (Figure 2A). Thus the
affinity of the bryophyte GLP1 for DELLAs was pre-
existent and presumably preserved during subsequent
evolution of the GID1 clade (i.e., retained in lycophyte
and angiosperm GID1s). Conversely, the DELLAs
evolved affinity for the GID1s sometime between the
bryophyte and lycophyte divergences (as probably re-
flected in the differences between PpDELLAa and
SkDELLA domains I and II; Figure 1A).

We also compared the GA enhancibility of between-
species GID1-DELLA interactions and found that inter-
actions involving AtGID1c or SkGID1 (AtGID1c-AtRGA,
AtGID1c-SkDELLA, and SkGID1-SkDELLA) were GA3

potentiated, whereas the interaction involving PpGLP1
and SkDELLA was not (Figure 2A). Although supported
by only a single interaction (PpGLP1 with SkDELLA),

http://www.mbio.ncsu.edu/BioEdit/bioedit.html
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Figure 2. Detection of Lycophyte and Angio-

sperm GID1-DELLA Interactions

(A) Quantitation of within- and between-

species GID1-DELLA interactions in the pres-

ence or absence of GA3 (versus vector

controls) by yeast two-hybrid assay. Results

are expressed as means 6 the standard devi-

ation (SD) (n = 3). The experiment was con-

ducted twice. Experiments with PpDELLAb

(data not shown) gave results similar to those

obtained with PpDELLAa.

(B and C) Effects of different (active and inac-

tive) GA forms on the strength of GID-DELLA

interactions. GA1, GA3, GA4, GA5, and GA7 all

promote angiosperm growth, whereas kaure-

noic acid and GA3 methyl ester lack biological

activity per se. Results (ratio to control) are

expressed as means 6 SD (n = 3) for (B) At-

GID1c-RGA and (C) SkGID1-SkDELLA. The

experiment was conducted twice.
our observations suggest that the capacity for the GA
potentiation of the newly arisen GID1-DELLA interaction
also arose sometime between the bryophyte and lyco-
phyte divergences.

SkDELLA interacts with almost equal strength with
both SkGID1 and AtGID1c (Figure 2A). Conversely,
AtRGA and SkGID1 do not detectably interact
(Figure 2A). Perhaps AtRGA has evolved a tight specific-
ity for its natural partner (AtGID1c). Furthermore, GA3

potentiated the AtGID1c-AtRGA interaction more effec-
tively than it did the SkGID1-SkDELLA interaction, sug-
gesting that the GID1-DELLA interaction has become
more susceptible to GA potentiation during the course
of evolution.

Relative bioactivity of GA forms is usually defined
by (angiosperm) bioassays [26]. We found that SkGID1-
SkDELLA and AtGID1c-AtRGA interactions were poten-
tiated (or not) by the same GAs (Figures 2B and 2C).
This suggests that there has been little change in the
GID1 ligand-specificity since the appearance of the
lycophytes.

Basal Land-Plant DELLAs Can Restrain Angiosperm

Growth
Angiosperm DELLAs restrain plant growth, whereas GA
releases angiosperms from DELLA-mediated growth re-
straint [17]. We next found that basal land-plant DELLAs
restrain growth when expressed in angiosperms. First,
we observed fluorescence due to green fluorescent
protein (GFP)-tagged DELLAs (GFP-PpDELLAa, GFP-
SkDELLA, and GFP-AtRGA) in root-cell nuclei of A. thali-
ana seedlings [27] (Figure 3A; expression driven by the
AtRGA promoter). GA3 treatment resulted in a rapid
loss of GFP-AtRGA fluorescence [27, 28], a clearly de-
tectable but less-rapid loss of GFP-SkDELLA fluores-
cence, and no detectable loss of GFP-PpDELLAa fluo-
rescence (Figure 3A; data not shown). These results,
consistent with those in Figure 2A, indicate that GA3

stimulates the AtGID1-dependent destruction of GFP-
AtRGA and GFP-SkDELLA in A. thaliana, but not that
of GFP-PpDELLAa.

The GA-deficient A. thaliana ga1-3 mutant displays
DELLA-dependent dwarfism. The lack of both AtGAI
and AtRGA (e.g., in a gai-t6 rga-24 ga1-3 mutant line)
substantially suppresses the ga1-3 phenotype, confer-
ring a tall rather than a dwarf phenotype, whereas
the lack of AtGAI alone has relatively minor effects
[29, 30]. As expected [27], we found that transgenic ex-
pression of GFP-AtRGA substantially restored the
dwarfism characteristic of ga1-3 to gai-t6 rga-24 ga1-
3 (Figure 3B). GFP-PpDELLAa or GFP-SkDELLA also
conferred dwarfism (resembling that exhibited by ga1-
3) when expressed in gai-t6 rga-24 ga1-3 (Figure 3B).
Furthermore, in accordance with our previous observa-
tions (Figures 2A and 3A), exogenous GA3 overcame the
effects of GFP-AtRGA and GFP-SkDELLA on gai-t6 rga-
24 ga1-3, but not those of GFP-PpDELLAa (data not
shown).
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Figure 3. Basal Land-Plant DELLAs Repress

Growth of A. thaliana

(A) GFP-fluorescence due to GFP-AtRGA,

GFP-SkDELLA, and GFP-PpDELLAa is seen

in control A. thaliana gai-t6 rga-24 ga1-3

root-cell nuclei. Treatment with GA3 (10 mM;

4 hr) causes a reduction in GFP-AtRGA and

GFP-SkDELLA but not in GFP-PpDELLAa.

Scale bars represent 0.1 mm.

(B) Expression of GFP-AtRGA, GFP-

SkDELLA and GFP-PpDELLAa restores the

dwarfism conferred by ga1-3 and sup-

pressed by the lack of GAI and RGA in

gai-t6 rga-24 ga1-3. Three-week-old plants

are shown. The scale bar represents 1 cm.
Thus PpDELLAa and SkDELLA both restrain the
growth of A. thaliana, although neither restrains growth
in its species of origin. This suggests that DELLA-
mediated growth restraint evolved subsequent to the
lycophyte divergence and prior to that of the gymno-
sperms (whose growth is GA stimulated [23]). Further-
more, growth restraint appears to be a property of the
transgenic recipients rather than of the DELLAs them-
selves. DELLAs are candidate transcriptional regulators
[18], suggesting that the growth-restraint function arose
because downstream growth-controlling genes became
DELLA responsive via evolutionary change in cis-regula-
tory regions [31].

Conclusions

Plants are sessile organisms and are susceptible to en-
vironmental fluctuation. The angiosperm GA-DELLA
mechanism permits the adaptively significant, environ-
mentally responsive regulation of life-cycle progression
at the seed-dormancy and -germination [2, 4, 32], flow-
ering [3, 7], and floral-development [25, 33, 34] stages.
Furthermore, the GA-DELLA mechanism integrates the
effects of numerous growth-regulatory signals, includ-
ing the phytohormones ABA [32], auxin [28], and ethyl-
ene [7, 35]; environmental stress [5]; and light [6].
However, it was not previously clear how the GA-DELLA
mechanism arose during plant evolution.

Land plants are a monophyletic group thought to have
evolved from an aquatic ancestor [1]. Our work suggests
that the GA-DELLA mechanism arose after the coloniza-
tion of the land (Figure 4). In addition, we can position
various distinct stages in the evolution of the GA-DELLA
mechanism with respect to some major events in land-
plant evolution. Initially, the DELLAs (like PpDELLAa)
lacked the ability to interact with GID1s (although GID1
affinity for DELLAs was pre-existent). Next (step 1;
Figure 4), the DELLAs evolved an affinity for GID1s,
and GID1-DELLA interactions became possible (as
seen in SkDELLA). In step 2 (possibly achieved in paral-
lel with Step 1; Figure 4) GID1-DELLA interactions be-
came susceptible to potentiation by bioactive GA. In
step 3, plants evolved the capacity for growth restraint
in response to the DELLAs. Steps 1 and 2 occurred
between the bryophyte and lycophyte divergences
(w430–400 million years ago [MYA] [1]; Figure 4). Step
3 occurred later, subsequent to the divergence of the ly-
cophytes and prior to that of the gymnosperms (w300
MYA [36]; Figure 4). The increased capacity of GA to po-
tentiate angiosperm versus that of lycophyte GID1-
DELLA interactions suggests that GA-potentiation was
Figure 4. Stepwise Evolution of the Land-

Plant GA-DELLA Growth-Regulatory Mecha-

nism

Timing of the stages of evolution of the GA-

GID1-DELLA mechanism is shown in relation

to major events in land-plant evolution. Steps

1 and 2 took place after the bryophyte diver-

gence (w430 MYA) but before the lycophyte

divergence (w400 MYA). Step 3 occurred be-

fore the gymnosperm divergence (w300

MYA). Arrows relate each step to a simplified

land-plant phylogeny, which also includes

the charophytic algae (representative of the

likely aquatic ancestor of the land plants

[1]). Note that bryophytes and gymnosperms

as represented here comprise several line-

ages and might not be monophyletic. Also,

it is not currently known whether the evolu-

tion of DELLA-mediated growth repression

occurred before or after the fern divergence.
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refined during evolution, and that this process occurred
in parallel with the rise in prominence of the GA-DELLA
system as a mechanism for the adaptive regulation of
growth and development.

There is considerable current interest in the relative
evolutionary contributions of changes in the structure
and function of transcriptional regulators versus changes
in the cis-regulatory regions of genes responding to those
regulators [31]. Although the evolution of GA-stimulated
GID1-DELLA interactions occurred via changes in protein
structure, the evolution of the DELLA growth-restraint
functionappears tohavebeen morea functionof changes
in the transcriptional response of growth-controlling
genes to DELLAs. Thus both types of evolutionary change
have contributed to the step-wise acquisition of the
growth-regulatory GA-DELLA mechanism seen in pres-
ent-day angiosperms.

Experimental Procedures

Plant Material and Growth Conditions

Physcomitrella patens (Gransden2004 strain) and Selaginella

kraussiana were kindly provided by Yasuko Kamisugi (University

of Leeds, UK) and Jane Langdale (University of Oxford, UK), respec-

tively. The Arabidopsis gai-t6 rga-24 ga1-3 line was as previously

described [29]. Moss cultures were grown under sterile conditions

on BCD medium [37] at 25�C in a 16-hr-light/8-hr-dark cycle with

or without supplements for 15 days after the spot inoculation of fil-

amentous tissue (1 mm diameter). Selaginella and Arabidopsis

were grown at 21�C in a 16-hr-light/8-hr-dark cycle.

Gene Identification and Isolation

PpDELLAa, PpDELLAb, PpGLP1, PpGLP2, SmDELLA, and SmGID1

were obtained through basic logical alignment search tool (BLAST)

search from the Phycobase (http://moss.nibb.ac.jp/) and Selaginella

Genomics (http://selaginella.genomics.purdue.edu/) databases.

See also the Physcomitrella genome website (http://genome.

jgi-psf.org/Phypa1_1/Phypa1_1.home.html) for annotations and ID

numbers for PpGLP1 (118478) and PpGLP2 (121825). For SkDELLA,

SkGID1, and SpDELLA, gene fragments were amplified from geno-

mic DNA by degenerate polymerase chain reaction (PCR), and the

remaining coding sequences were obtained by the rapid amplifica-

tion of cDNA ends or by thermal-asymmetric-interlaced PCR (see

Table S4 for primer sequences).

Yeast Two-Hybrid Analysis

Expression constructs were made with plasmids pB42AD and

pLexA and introduced to the yeast strain EGY48 + pSH18.2. b-galac-

tosidase assays were performed in the presence or absence of 100

mM GA3, following the instructions in the Yeast Protocols Handbook

(PT3024-1) (http://www.clontech.com/). The expression of fusion

proteins was confirmed by immunoblot analysis with LEXA (Invitro-

gen) and HA antibodies (Roche) (data not shown).

Arabidopsis Transformation

A 3146 bp upstream sequence of AtRGA (pRGA) and a 1976 bp

downstream sequence of AtRGA (tRGA) were amplified from geno-

mic DNA of Arabidopsis Landsberg erecta (see Table S4 for primer

sequences). N-terminal fusions of GFP-DELLA flanked by pRGA

and tRGA were cloned into pGreenII0229 (http://www.pgreen.ac.

uk/). The constructs were introduced into the gai-t6 rga-24 ga1-3

mutant as described in [38].

Confocal Detection of GFP-DELLA

Seeds were sterilized and germinated on germination medium (GM)

plates [29]. Seven-day-old seedlings were treated with water or 10

mM GA3 for 4 hr and observed with a Leica confocal laser micro-

scope (Wetzlar, Germany) with 203 objectives at a 488 nm excitation

wavelength. All images were obtained with the same modifications

and intensity parameters.
RT-PCR

RNA was extracted from 30 mg of bifurcating tips of GA3- or water-

treated S. kraussiana with TRIzol LS Reagent (Invitrogen) according

to the manufacturer’s instructions. cDNA was generated with Super-

script II reverse transcriptase (Invitrogen), and PCR was performed

with 20 cycles for the SkGID1 fragment and 15 cycles for the SkUBQ

fragment (see Table S4 for primer information). PCR products were

detected by gel-blot analysis with the radiolabeled expected frag-

ment as probe.

Supplemental Data

Experimental Procedures, two figures, and four tables are available

at http://www.current-biology.com/cgi/content/full/17/14/1225/

DC1/.
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