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SUMMARY

It is widely accepted that metastasis is a late event in cancer progression. Here, however, we show that tumor
cells can disseminate systemically from earliest epithelial alterations in HER-2 and PyMT transgenic mice
and from ductal carcinoma in situ in women. Wild-type mice transplanted with single premalignant HER-2
transgenic glands displayed disseminated tumor cells and micrometastasis in bone marrow and lungs.
The number of disseminated cancer cells and their karyotypic abnormalities were similar for small and large
tumors in patients and mouse models. When activated by bone marrow transplantation into wild-type recipients,
80 early-disseminated cancer cells sufficed to induce lethal carcinosis. Therefore, release from dormancy
of early-disseminated cancer cells may frequently account for metachronous metastasis.
INTRODUCTION

The final step in cancer progression is metastasis, according to

the prevailing view based on several clinical and experimental

observations. First, most cancer patients die from metastases

and not from their primary disease. Second, early surgery is often

the only cure. Third, somatic genetic changes accumulate during

local progression (Fearon and Vogelstein, 1990), which was

extrapolated to systemic progression since only rare variant cells

within the tumor gave rise to metastases (Fidler and Kripke,

1977). Fourth, repeated rounds of in vivo selection led to cell

lines with increased metastasis formation (Kang et al., 2003;

Minn et al., 2005). However, several clinical and experimental

observations are inconsistent with this model. For example, me-
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tastasis can develop from small cancers or even in the absence

of detectable primary tumors (so-called ‘‘cancer of unknown

primary,’’ which ranks among the 10 most frequent cancer diag-

noses) (van de Wouw et al., 2002). Furthermore, epidemiological

analysis of more than 12,000 breast cancer patients indicated

that metastasis might be initiated already 5–7 years before diag-

nosis of the primary tumor (Engel et al., 2003), suggesting that

cancer cells capable to metastasize do not necessarily develop

within large tumors. Also, the notion of early metastasis is indi-

rectly supported by gene expression studies (van’t Veer et al.,

2002), revealing that patients with poor prognosis can be identi-

fied before manifestation of metastasis. Thus, while metastatic

spread seems to be somehow genetically predetermined, the

time point of metastatic dissemination is not resolved.
SIGNIFICANCE

Patients with large breast cancers are at higher risk to die from metastasis than patients with small tumors. This was thought
to reflect the late onset of metastatic spread. The finding, reported here, that the earliest transformed cells are capable of
dissemination challenges this notion of late-disseminating, fully transformed cells as sole players in metastasis. It empha-
sizes that additional genetic or epigenetic events and release from dormancy are critical for productive metastatic growth of
early-disseminated cancer cells. Larger tumors may, therefore, affect outgrowth of ectopic cancer cells in ways not yet fully
understood. The peculiar nature of disseminated tumor cells—being genetically different from the primary tumor—must be
considered when designing targeted adjuvant therapies, which are increasingly applied to eliminate remnant occult
metastases.
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There is no doubt that a deeper understanding of metastasis is

critical for designing more effective therapies for systemic can-

cer. For example, if metastatic spread occurs late in progression,

inhibitors of invasion should be able to prevent it. This, however,

was not observed in several clinical trials testing inhibitors of

matrix-metalloproteinases (Coussens et al., 2002). If, however,

tumor cell dissemination occurs early, the question needs to

be addressed how tumor cells can survive in a quiescent state

for years at ectopic sites and how tumor dormancy and meta-

static outgrowth are regulated. Last but not least, if disseminated

tumor cells (DTCs) develop parallel to the primary tumor over

a prolonged time, molecular targets on those DTCs need to be

urgently identified.

We previously addressed the issue of early versus late meta-

static spread by analyzing DTCs in bone marrow of breast cancer

patients years before metastatic manifestation (Klein, 2003).

Such cells displayed different and fewer aberrations than their

matched primary tumors, a finding suggestive of early dissemina-

tion (Schmidt-Kittler et al., 2003). Among those DTCs, we identi-

fied cancer cells that spread before onset of chromosomal insta-

bility (Schardt et al., 2005). Though chromosomal instability has

been observed before histological cancer invasion (Chin et al.,

2004), breast cancer cells may still disseminate before they be-

come chromosomally instable and prior to microscopic invasion.

Interestingly, a subpopulation of these karyotypically normal can-

cer cells in bone marrow displayed HER-2 amplification (Schardt

et al., 2005), a marker of particularly aggressive disease (Al-Kur-

aya et al., 2004; Kronqvist et al., 2004). Therefore, we thought to

search for DTCs in a transgenic HER-2 model of breast cancer at

the earliest time point of atypical epithelial transformation. For

direct comparison, we report on findings of DTCs in 600 breast

cancer patients, including patients with in situ carcinomas.

RESULTS

Epithelial Cells Disseminate in the Premalignant Phase
of Murine Breast Cancers
To study tumor progression more closely, we chose BALB/c

mice transgenic for the activated rat HER-2/neu gene (BALB-

NeuT mice) (Di Carlo et al., 1999), a model that mimics progres-

sion and gene expression profiles of human breast cancer

(Astolfi et al., 2005). Females of this strain, which are hemizygous

for the constitutively activated rat HER-2 gene under control of

the MMTV promoter (Muller et al., 1988), develop invasive mam-

mary cancers, while their HER-2 negative siblings (wild-type

BALB/c mice) remain tumor free (Boggio et al., 1998). In BALB-

NeuT females, mammary epithelia start to express the oncogene

at the onset of puberty (weeks 3 to 4 of age) when the mice be-

come responsive to steroid sex hormones. Epithelial hyperplasia

can be detected microscopically in the mammary glands at

weeks 7–9 (Di Carlo et al., 1999). Progress to in situ carcinomas

occurs between weeks 14 and 18. Around week 18 tumors of the

mammary glands become palpable or visible, and at weeks

23–30, invasive cancers become apparent (Figure 1A). Mice

have to be euthanized between weeks 27 and 33 when primary

tumors exceed the size of 1.5 cm in diameter and lung metasta-

ses are macroscopically detectable.

The principal goal of the study was to find out when cells

expressing the HER-2 transgene disseminate and how they
emigrate from the dysplastic breast epithelia. Since the HER-2

receptor is expressed neither in normal lung tissue nor in bone

marrow, we concentrated on these organs as preferred sites of

metastasis in breast cancer patients. In addition, for the detec-

tion of early human cancer spread in bone marrow, staining with

anti-cytokeratin (CK) antibodies is specific and sensitive as dem-

onstrated by numerous studies (Braun et al., 2005; Klein, 2003),

including simultaneous staining with anti-CK and anti-CD45

panhematopoietic antibodies, which showed CD45-negativity

of the cells (Schlimok et al., 1987). Surprisingly, in BALB-NeuT

mice, cytokeratin positive (CK+) cells and HER-2 expressing

cells (HER-2+) became detectable in bone marrow at as early

as 4–9 weeks of age when the most meticulous analysis of the

mammary gland could detect areas of atypical ductal hyper-

plasia (ADH) solely (Figure 1C and Figures S1A–S1C available

with this article online). In lung tissue, single HER-2+ tumor cells

became detectable from week 9 on, and micrometastases were

first visible around week 20 (Table S1 and Figure 1B). Further-

more, the descent of lung micrometastases from mammary tis-

sue was confirmed by the demonstration of mammary-specific

alpha casein and lactalbumin transcripts (Figure 1B). The spec-

ificity of tumor cell detection by antibodies directed against

HER-2 and cytokeratin was further controlled using samples of

nontransgenic siblings (Figure 1C).

Despite exponential growth at the primary sites (which is

depicted as sum of the total tumor area of the ten mammary

glands of BALB-NeuT mice in Figure 1C), the number of CK+

and HER2+ cells in bone marrow rose marginally over the course

of time (4/500,000 to 17/500,000 and 1/500,000 to 7/500,000,

respectively; Figure 1C). As the total number of cells singly

positive for HER-2 and CK were not congruent, we performed

double staining for the two antigens. Indeed, not all tumor cells

expressed both markers (Figure 1D), suggesting either the

existence of heterogeneous tumor cell populations that disse-

minated to distant sites or different cellular states of the disse-

minated tumor cells (DTCs). Interestingly, the majority of all

detected DTCs (n = 35 cells in 7 mice) were CK+ (71%), while HER-2

was expressed in less than 50%. Similar data were obtained

from blood samples (Table S2), although the detection rate of

DTCs was lower than in bone marrow.

To test whether early dissemination is only characteristic for

BALB-NeuT mice, we also screened bone marrow samples

from MMTV-polyomavirus-middle T transgenic mice (Maglione

et al., 2001). Though we were unable to establish immunohisto-

logical detection of tumor cells by antibodies directed against

the PyMT antigen, tumor cells were detected at weeks 4–6 in

bone marrow by anti-CK staining (Figures S2C and S2D) when

only ADH or DCIS was found in mammary tissues (Figure S2A).

Lung micrometastases, although difficult to detect by hematox-

ylin/eosin (HE) staining alone, were found starting from 14 weeks

of age (Figure S2B). As in the BALB-NeuT mice, we observed no

significant increase in numbers of DTCs in bone marrow during

tumor growth (Table S3).

Tumor Cells Emigrate from Transgenic Mammary
Gland Transplants in Wild-Type Siblings
Although cytokeratin expression in bone marrow provided

strong evidence that the cells were indeed derived from epithe-

lia, we sought direct evidence that the HER-2+ and CK+ cells
Cancer Cell 13, 58–68, January 2008 ª2008 Elsevier Inc. 59
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Figure 1. Tumor Progression of Systemic

Disease in BALB-NeuT

(A) Left panel: Whole mount of the mammary gland

of a BALB-neuT mouse at week 9 showing the ab-

sence of tumor in the branching ductal tree. ‘‘N’’

indicates lymph node, arrow points to the nipple,

and arrowheads show side buds into and around

the mammary ducts. Middle panel: Histological

section of mammary gland at week 9 showing

that side buds display the morphology of atypical

ductal hyperplasia (ADH) with epithelial cells ar-

ranged in small, well-defined nodules around the

duct. Right panel: Histology of invasive cancer in

week 30. The neoplastic epithelial cells form pseu-

doalveolar and scarcely defined solid nests invad-

ing the surrounding fibroadipose stroma.

(B) Left panel: Detection of micrometastases by

anti-HER-2 antibodies in lung of a 27 week-old

mouse. Right panel: Eight HER-2+ (micro)meta-

stasis in the lungs from three transgenic mice

(week 27) and two samples of normal lung tissue

were microdissected and analyzed for the mam-

mary-gland-specific transcripts lactalbumin and

alpha-casein. ‘‘+’’, microdissected tissue of nor-

mal mammary gland; ‘‘�’’, mock-control.

(C) Progression of local and systemic disease in

BALB-neuT mice over time. Left panel: Increase

of tumor area (triangles indicate mean values,

whiskers 95% confidence interval with solid line

between triangle indicating best fitted curve).

Right panel: number of CK+ (red dots) and HER-2+

(blue dots) cells per 500000 bone marrow cells

(whiskers indicate 95% confidence interval,

dashed red or blue line depicts results from non-

transgenic control mice for CK or HER-2, respec-

tively).

(D) Immunofluorescent double staining of bone

marrow cells for CK (red) and HER-2 (green)

expression. Left to right: CK+/HER-2� small two-

cell-aggregate; CK�/HER-2+ single cell; CK+/

HER-2+ small aggregate (3 cells). Table summa-

rizes the results of all analyzed cells.
had disseminated from the transformed breast tissue and that

the detection of positive cells was not due to extramammary

transgene expression. Therefore, we transplanted mammary

gland fragments from 3- to 12-week-old transgenic mice (n = 8)

orthotopically onto 3-week-old wild-type siblings (n = 16). Each

recipient received in one cleared fat pad one tissue fragment

of one donor gland. Bone marrow of the recipients was then

screened for CK+ and HER-2+ cells 7–26 weeks later. In all recip-

ients of BALB-NeuT mice transplants, we found the HER-2 trans-

gene to be expressed in the grafts at dissection (Figure 2A).

In transplanted wild-type animals, the number of CK+ or HER-

2+ cells per 500,000 bone marrow cells (Figures 2B and 2C) was

lower than in BALB-NeuT mice (p < 0.0001 and p = 0.002,

respectively; Mann-Whitney-test; Figure 2D) but significantly

above very rare false-positive cell numbers in control mice (on

average 4 in 107 bone marrow cells for CK and 6 in 107 for

HER-2; p < 0.0001 for CK+ and HER-2+ cells, Mann-Whitney-

test; Figure 2D). Most likely this reflects the reduced total number

of transgenic mammary cells in recipient mice carrying a single

transgenic gland compared to BALB-NeuT mice carrying ten

transgenic mammary glands. In the transgenic mice, we had
60 Cancer Cell 13, 58–68, January 2008 ª2008 Elsevier Inc.
analyzed the histology of the largest tumor only, ignoring the

remaining 9 mammary glands, while in transplant recipient

mice, we scrutinized the single tumor arising from the transgenic

mammary graft for signs of invasiveness; the exact staging of the

transplant was based on histology after complete serial section-

ing. Again, no increase of DTCs in bone marrow was observed

from the stage of ADH on up to the stage of invasive cancer

(p = 0.26 for CK+ cells and p = 0.83 for HER-2+ cells; Mann-Whit-

ney-test; Figure 2E). The malignant origin of the CK+ or HER-2+

disseminated cells detected in bone marrow was established by

single-cell comparative genomic hybridization (CGH) (Klein et al.,

1999). Both CK+ and HER-2+ cells isolated from bone marrow

displayed multiple chromosomal aberrations in contrast to single

leukocytes with normal CGH profiles (Figure 2F and Figure S3).

Thus, CGH ascertained the malignancy of the cells, which unambi-

guously originated from the single transplanted mammary glands.

Gene Expression Programs Associated
with Early Tumor Spread
In the BALB-NeuT and the PyMT tumor models, dissemination

begins shortly after expression of the oncogenic transgene
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Figure 2. CK+ and HER2+ DTCs Are Derived from

Transformed Mammary Tissue

(A) HER-2 staining of grafted tissue at autopsy 14 weeks after

transplantation of transgenic tissue into wild-type mice. Nu-

merous epithelial cells in the atypical ductal hyperplasia

(ADH) focus express HER-2 (in brown).

(B and C) CK+ and HER-2+ cells in bone marrow of recipient

wild-type mouse, respectively.

(D) Box plot displaying numbers of CK+ and HER-2+ cells per

500,000 bone marrow cells of BALB-NeuT, wild-type Balb/c

mice, and wild-type recipients of transplanted transgenic

mammary tissue (transplant).

(E) Box plot displaying numbers of CK+ and HER-2+ cells per

500,000 bone marrow cells of wild-type recipients of trans-

planted transgenic mammary tissue. IC, invasive cancer.

(F) Representative results of CGH analysis of isolated single

cells from different models. Only chromosomal regions (desig-

nated according http://www.informatics.jax.org/mgihome/

nomen/anomalies.shtml) with aberrations are shown. Left col-

umn depicts identifiers of the mice with the letters ‘‘C’’ and ‘‘H’’

indicating the antigen used for detection (C, cytokeratin; H,

HER2) (281-9-C9 to 281-9-H6, CK+ and HER-2+ cells isolated

at week 9 from BALB-NeuT mice; 158-29-C31 to 102-27-H1,

CK+ and HER-2+ cells isolated at week 27-29 from BALB-

NeuT mice; MT10-C229 to MT16-H301, CK+ and HER-2+

cells isolated from bone marrow of wild-type mice after mam-

mary tissue transplantation; BMT5-C119 to BMT3-H61, CK+

and HER-2+ cells isolated from bone marrow of wild-type

mice after bone marrow transplantation.)
without histologically detectable signs of invasion. By light mi-

croscopy, the underlying basement membrane showed no gross

interruptions. This raised the question of how transformed epi-

thelial cells get out of the atypical hyperplastic areas. However,

when examined by electron microscopy, epithelial cells crossing

the basement membrane were clearly identified (Figures 3B and

3C for BALB-NeuT mice and Figures S2E and S2F for MMTV-

PyMT). In wild-type siblings, neither basement membrane lesions

nor emigrating cells were discerned (Figure 3A). The observation

that the basement membrane underlying hyperplastic epithelia

appeared to be disrupted in BALB-NeuT mice begged the ques-

tion whether a local activation of proteolytic enzymes could be

verified there. We, therefore, applied cDNA array analysis of laser

microdissected samples to assess the expression of invasion-

associated proteases in ADH at week 9 and large carcinomas

at week 27 using a recently established mRNA amplification

method (Klein et al., 2002a, 2002b) and hybridized the samples

onto a small, dedicated cDNA array (Figure 3D). This array com-

prised 41 cDNAs encoding matrix-metalloproteases (MMPs) and

cathepsins that have earlier been implied in invasion and metas-

tasis (Egeblad and Werb, 2002; Turk et al., 2002). A higher

expression of cathepsins Ctsz, Ctsb, Ctsf, Ctsl, Ctsd, and Ctsh;

metalloproteases Mmp2, Mmp14, Mmp11, and Timp3; and

caspases Casp2 and Casp9 was observed in the early lesions

(false discovery rate q = 4.7% for week 9 compared to

week 27). The increases in Ctsz (p = 0.0046), Ctsd (p = 0.0046),

Mmp2 (p = 0.009), Ctsh (p = 0.0132), and Ctsb (p = 0.0215)
expression were significant in a one-sided Wilcoxon test (cor-

rected according to Hochberg). The gene expression patterns

at week 9 could be separated from those at week 27 by cluster

analysis (cluster robustness index = 0.901; Figure 3D), except

for a few outliers. For Mmp2, we found by immunohistochemistry

that the protein is not expressed in normal tissue of young mice

(week 9, Figure 3E) while strongly expressed in ADH at week 9

in transgenic mice (Figure 3F).

Abundant protease expression in hyperplastic lesions may

provide a mechanism for early tumor spread and may be part

of a gene regulatory program. We, therefore, determined the

expression of the transcription factor Twist, which is a morpho-

genetic regulator affecting cell migration, a marker of undifferen-

tiated mammary cells, and apparently plays a role in metastasis

by regulating both cell invasion and intravasation (Howe et al.,

2003; Yang et al., 2004). We compared mRNA expression from

several glands from wild-type mice (n = 10), lesions with ADH

(n = 16), and areas of invasive cancers dissected from central

parts (n = 19) or the invasion front (n = 12) by quantitative PCR.

More than 90% of samples from normal mammary glands,

central tumor areas, and microdissected areas from the invasion

front displayed no or very low levels of Twist mRNA. In contrast,

ADH lesions expressed Twist mRNA significantly more often at

medium or high levels (p = 0.02, Pearson Chi-square, df = 6,

two-sided; Figure 3G), which is in keeping with the notion that

the genetic program governing cell dissemination is activated

during early transformation.
Cancer Cell 13, 58–68, January 2008 ª2008 Elsevier Inc. 61
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Figure 3. Electron Microscopical Analyses of

Mammary Tissue and Activation of Invasive

Properties during ADH

(A–C) Electron microscopical analyses of mammary

tissue. (A) Mammary duct of a 9-week-old wild-type

sibling BALB/c mouse lined by polygonal large dark

and light cells with luminal microvilli and dark myoepi-

thelial cells (M) located at the basal surface without lu-

minal contact. Throughout, the duct is surrounded by

a well-defined basal membrane (arrowheads), which

continuously outlines the basal borders of the epithe-

lial and myoepithelial cells. (B and C) Mammary duct of

a 9-week-old BALB-NeuT mouse lined by polygonal,

irregularly arranged cells. (B) Indifferent small- and

medium-sized cells without luminal contact frequently

show aspects of stromal invasiveness disrupting the

basal membrane. Myoepithelial cells are scarcely

present. (C) Higher magnification of the cell-disrupting

basal membrane (arrowheads, intact basal mem-

brane; arrows, disrupted basal membrane).

(D) Cluster analysis of expression data from the cDNA

array dedicated to molecules from the proteolytic sys-

tem. Sample identifiers on the right consist of age in

weeks, the number of the mouse from which the sam-

ple was taken, and the sample number; individual

samples from one animal were isolated from different

mammary glands. Note clustering of samples from 9-

week-old mice in the lower third of the figure display-

ing upregulation of various proteolytic enzymes.

(E and F) Immunohistochemistry with anti-MMP2 anti-

body showing scarce MMP2 expression in wild-type

BALB/c mice at 9 weeks of age (E), while strong ex-

pression (in brown) in side buds and ducts with ADH

of 9-week-old BALB-NeuT mice (F).

(G) Quantitative RT-PCR of Twist mRNA. Microdis-

sected tissue samples isolated from transgenic ani-

mals at week 9 (ADH) and 27 (tumor edge and center)

and wild-type BALB/c-mice (normal). Asterisks indi-

cate significant upregulation of Twist in ADH samples.
Evidence that Early-Disseminated Cells Grow
into Metastases
The intriguing finding of tumor cells disseminating from preinva-

sive mammary lesions raised the question of whether they also

may grow into metastases. Although the time point of dissemina-

tion of metastatic founder cells cannot be determined directly

in vivo, we obtained evidence of early systemic spread of founder

cells from the following different types of experiments.

We assessed the onset of metastasis relative to primary tumor

growth. Histological sections of the lungs were therefore taken to

detect the presence of micrometastases and to measure their

increase over time (Figure 4B). These could be detected from

weeks 20 to 21 onward, a time point at which mostly in situ

carcinomas are present at the primary sites (Figure 4A). Since

metastases need time to grow, their increase in size paralleling

that of the primary lesions supports the conclusion that, at least

in some cases, founder cells of metastases had disseminated

there earlier and had started to proliferate.

To address this point more directly we performed surgery on

BALB-NeuT mice and tried to remove the entire milk line. Only

mice older than 18 weeks survived this radical procedure. How-

ever, for none of the four 18-week-old mice displaying in situ
62 Cancer Cell 13, 58–68, January 2008 ª2008 Elsevier Inc.
carcinomas only, we could prevent or reduce the number or

size of lung metastases at 27–33 weeks of age (Figure 4B).

To test whether DTCs from large tumors differ from early-

disseminated tumor cells, we compared their chromosomal ab-

errations. We reasoned that, while dissemination occurs early,

only genetically further-progressed cancer cells would be able

to grow into metastases. We, therefore, analyzed the CGH

profiles from tumor cells isolated from bone marrow of mice at

week 9 and older than week 27 by hierarchical cluster analysis

and support-vector-machine classification (Figure S4). We could

not separate the tumor cells from young and old animals and

could not detect a significant increase of aberrations from young

to old animals (p = 0.3485, exact Wilcoxon rank sum test).

A final set of experiments was directed at tumor progression

in wild-type females that had received orthotopic grafts of mam-

mary glands from their 3- to 4-week-old transgenic siblings. In

these mice, lung (micro)metastases became detectable at about

40 weeks of age while BALB-NeuT females with autochthonous

primary cancers developed lung metastases at 30 weeks on av-

erage (Figure 4B). Next, we excised the engrafted glands again

at various time points and followed the operated recipients. In

recipients (n = 8) from which the grafted glands had been excised
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Figure 4. Progression of Lung Metastasis in

Balb-NeuT Mice and Wild-Type Recipients

of Transgenic Mammary Tissue

(A and B) Progression of lung metastasis in BALB-

NeuT mice with and without removal of primary tu-

mors. Increase of tumor area over time ([A], same

as Figure 1C) is plotted next to the sizes of the larg-

est lung metastases (note logarithmic scale) de-

tected in individual mice (B). Blue squares indicate

average size of metastases from nonoperated

mice at various time points, red triangles indicate

the average size of metastases from operated an-

imals at 10–15 weeks after surgery, and whiskers

indicate 95% confidence interval.

(C–H) Tumor progression after transplantation of

noncancerous mammary tissue from BALB-

NeuT mice into wild-type siblings. (C and D)

Histology of graft tissue at surgery 26 weeks after

transplantation resembling ADH (C) and small in-

vasive carcinoma (D). HE- (E) and HER-2 staining

(F) of lung micrometastasis 13 weeks after sur-

gery. (G) Experimental design to assess tumor

progression in wild-type recipients of mammary

glands after surgery. Primary tumors were ana-

lyzed after 26 weeks in euthanized and operated

mice. Asterisks indicate time points when lung

and bone marrow samples were analyzed. (H) Re-

sults of transplantation experiments of mice treated with curative intention by surgery (ADH, atypical ductal hyperplasia; IC, invasive carcinoma). Note the small

size of resected tumors when compared to tumors of BALB-NeuT mice in (A) and the unusually high number of HER2-positive cells in BM of MT1 diagnosed

with ADH.
23–26 weeks after primary transplantation, the mammary tissue

was diagnosed with atypical ductal hyperplasia (ADH) in two

recipients (Figure 4C), with small invasive cancers of < 9 mm2

in four recipients (Figure 4D), and with invasive cancers measur-

ing between 30–35 mm2 in the remaining two recipients (tallying

with tumors of BALB-NeuT females before week 18 and at week 22,

respectively; Figure 4A). After an additional 11–13 weeks, the

operated recipients were sacrificed and screened for local relapse

and for tumor cells in bone marrow and lungs (Figure 4G). In none

of the animals did we observe a local relapse, but all displayed

signs of either minimal residual disease or lung metastasis.

Even animals with very small primary lesions in the resected

glands carried HER-2+ micrometastasis in their lungs (Figures

4C–4F). We then compared the incidence of lung (micro)meta-

stases between animals that had been diagnosed with invasive

cancer and either sacrificed (n = 10) or operated (n = 6) about

26 weeks after mammary tissue transplantation (Figure 4G). Of

the 10 animals that were sacrificed at this time point, only one

mouse harbored lung micrometastasis. In contrast, of the six

animals with resection of the transplanted mammary tissue by

surgery at week 26, four of them were diagnosed with metastatic

growths (micrometastasis or metastases) in the lungs 11–13

weeks later (p = 0.036; Fisher’s exact test, Figures 4G and 4H).

This finding indicates that disseminated cancer cells continued

to progress and underscores that the single case with ADH

and lung micrometastasis indeed represents progressive mini-

mal residual disease (Figure 4H).

Early DTCs Can Be Released from Growth Arrest
Obviously, tumor cell dissemination occurs early but additional

mechanisms regulate outgrowth. For example, at no time point

could we observe manifest bone metastasis or a frequency of
tumor cells of more than 10�4 in bone marrow of BALB-NeuT

mice. Therefore,weaskedwhether DTCs inbonemarrowofyoung

mice could proliferate and generate progeny after stimulation with

endogenousgrowth factors and chemokines as a consequence of

irradiation. We transplanted bone marrow from transgenic mice

into lethally irradiated nontransgenic siblings. Three transgenic

donors (11 weeks old) were euthanized, and 7 to 10 3 106 bone

marrow cells were transplanted i.v. into 11 wild-type littermates

(Figure 5). The bone marrow of one wild-type BALB/c mouse

was transplanted into three siblings as control. Staining with CK

antibodies revealed the presence of 4–12 positive cells per 0.5 3

106 bone marrow cells in the inoculum of transgenic mice, indi-

cating a total of 80–240 CK+ cells per recipient mouse. Nineteen

to 22 weeks later, all bone marrow transplant recipients became

moribund (four animals were found dead before their bone mar-

row could be analyzed), and autopsy showed massive infiltration

of bone marrow by CK+ cells comprising 10%–31% of all nucle-

ated cells (Figures 5A and 5B). Irradiated mice receiving bone

marrow from wild-type BALB/c siblings (n = 3) were healthy until

they were sacrificed (weeks 19, 28, and 43, respectively) and har-

bored no CK+ cells in their bone marrow. So far, all isolated single

CK+ and HER-2+ cells from recipient animals displayed CGH

abnormalities, demonstrating their malignant origin (Figure 2G).

Interestingly, no metastases were detected at other sites. The ex-

periments demonstrate that bone-marrow-derived tumor cells

disseminated during ADH and can establish bone marrow carci-

nosis upon transplantation.

Dissemination of Tumor Cells Is Not Associated
with Tumor Size in Human Breast Cancer
One provocative finding of our study is that, in mouse models of

breast cancer, large tumors seed neither more nor genetically
Cancer Cell 13, 58–68, January 2008 ª2008 Elsevier Inc. 63
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Figure 5. DTCs from 11-Week-Old Transgenic Mice Form Bone Marrow Carcinosis in Wild-Type Recipients

(A) Bone marrow sample full of CK+ cells (dark blue-black cells) indicating bone marrow carcinosis.

(B) Summary of bone marrow transplantation experiments from HER-2 transgenic or control mice into wild-type sibling BALB/c mice.
further-advanced cancer cells than do small lesions (Figure 1C

and Figure S4, respectively). Thus, the ability of metastatic dis-

semination does not appear to be the result of selection of tumor

cells within the tumor. Rather, the data suggest that tumor cells

disseminate early and will be selected for outgrowth at distant

sites. We analyzed samples from breast cancer patients to test

this hypothesis. From 607 breast cancer patients, we screened

bone marrow samples for the presence of DTCs and assessed

the number of DTCs for the different sizes of primary tumors.

We found no association between the tumor stage and the

presence of disseminated cells (p = 0.38, Pearson’s chi-square,

df = 6, two-sided; Figure 6A) and specifically, the finding of CK+

cells in patients with ductal carcinoma in situ (DCIS; 13%)

and T1-stage patients (22%) was statistically not different

(p = 0.093, Pearson’s chi-square test). However, the number of

CK+ cells seeded to bone marrow in DCIS patients is signifi-

cantly higher than observed in control patients (Braun et al.,

2000), which were stained using the same antibody (mab A45

B/B3; p = 0.001, Pearson’s chi-square test, 2-sided).

Finally, as in the BALB-NeuT model, we ruled out that tumor

cells in bone marrow of patients with large primary tumors are

Figure 6. Number and Karyotype of DTCs Detected in Bone Marrow

of Breast Cancer Patients

(A) Number of detected CK+ cells per 2 3 106 bone marrow cells in patients

with different tumor stages (DCIS, n = 39; T1, n = 328; T2, n = 202; and

T3/4, n = 38).

(B) Karyotypes of CK+ cells in bone marrow of breast cancer patients. Patients

harboring DTCs with only normal, with only abnormal, and with normal and ab-

normal karyotypes are not differentially distributed between tumor stages. (T1,

27 patients with 49 DTC; T2, 23 patients with 39 DTC; and T3/4, 6 patients with

17 DTC).
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genetically further advanced than disseminated cancer cells of

patients with small tumors. We had previously shown that

bone marrow samples of breast cancer patients contain CK+ tu-

mor cells without chromosomal aberrations, while the matched

primary tumors displayed abnormal karyotypes (Schardt et al.,

2005). Such cells apparently disseminated before the onset of

chromosomal instability at the primary site, which is thought to

occur before stroma invasion (Chin et al., 2004). Furthermore,

the malignant origin of cytokeratin-positive cells with normal

karyotypes was established by demonstration of loss of hetero-

zygosity (Schardt et al., 2005). We concluded that such cells

represent the earliest stages of genetic tumor development. In

following up this lead, we examined the chromosomal aberra-

tions of DTCs in bone marrow taken from patients in various

tumor stages. Patients were classified into those harboring

only cells with CGH abnormalities, only cells without CGH abnor-

malities, and those harboring both types of tumor cells in bone

marrow. We analyzed 105 single cells isolated from 56 patients

and could not observe a significant difference between patients

with small and large cancers (Figure 6B; p = 0.17, Pearson’s chi-

square, df = 4), indicating that the well-known association of

large tumor size and development of manifest metastasis is

not explained by an increased frequency of genetically pro-

gressed cancer cells in bone marrow.

DISCUSSION

Here, we provide evidence that dissemination of tumor cells in

mouse models of breast cancer as well as in the human disease

can occur in preinvasive stages of tumor progression and that

the number and genotype of seeded tumor cells is not associ-

ated with tumor size. Both findings should modify the prevailing

view that metastatic dissemination is a late event and that the

association of tumor size and risk for metastasis reflects a higher

frequency of tumor cell seeding. Implicit in this view is the

surmise that extended periods of genetic progression within

the primary tumor are required for metastatic dissemination,

which our findings do not support. Chromosomal aberrations

in DTCs—either of the BALB-neuT mouse model or of human

breast cancers—are not associated with increased tumor size

though they accumulate over time in human cancer as amply

shown by Mitelman and Heim (Heim and Mitelman, 1995).

Mouse models and human samples, therefore, concurred on
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the observation that relative to the total number of tumor cells in

the primary lesion, dissemination is highest early after transfor-

mation.

Interestingly, in the BALB-NeuT model, activation of the

proteolytic system in breast epithelia was associated with young

age and ADH. Moreover, a quantitative analysis of Twist expres-

sion, comparing lesions with ADH, central and peripheral regions

of a large tumor, and normal samples, revealed a significant

upregulation in early-transformed breast cancer cells, exceeding

even expression levels of the so-called invasion front of the

primary tumor. Twist expression has been associated with epi-

thelial-mesenchymal transition, migration, invasion, and cell-

cycle deregulation (Stasinopoulos et al., 2005; Yang et al.,

2004). The activation of a specific genetic program early after

sex-hormone-induced expression of the transforming oncogene

HER-2 may, thus, initiate microinvasion, which can be detected

by transmission electron microscopy in breast lesions as early as

in the stage of ADH. These lesions are defined as noninvasive,

and no evidence of invasion was detected after careful light-

microscopic inspection by an experienced pathologist (P.M.).

Yet, both the BALB-NeuT and the PyMT mice harbored HER+

DTCs in lung and bone marrow and CK+ cells in bone marrow

during ADH. Evidence for their malignant origin was provided

by comparative genomic hybridization. An ectopic transgene ex-

pression at these sites could be excluded by the transplantation

experiments where mammary grafts grew on wild-type back-

ground. Also here, epithelial cells disseminated to bone marrow

and lungs at the stage of ADH and displayed genetic aberrations.

The existence of a genetic program associated with dissemina-

tion but only transiently activated in early lesions might explain

why in human breast cancer Twist expression was rarely found

in invasive ductal carcinomas (Yang et al., 2004).

We performed several experiments to assess whether in

mouse models, early-disseminated cancer cells may give rise

to metastasis. First, growth of metastasis occurs during transi-

tion of primary lesions from noninvasive to invasive, which indi-

cates that tumor cells had disseminated much earlier and started

to grow at the distant site. Second, at week 18, when only in situ

carcinomas were present, resection of the glands neither

prevented nor reduced the number of lung metastases. Third,

dissemination and early lung colonization were found also in

wild-type females that had only transiently carried a single trans-

genic mammary graft. At resection, most grafts displayed only

very small invasive cancers. In one of two cases where the trans-

plant was surgically removed at the stage of ADH, the cells had

started to form metastatic colonies when analyzed 10–13 weeks

after surgery. Thus, while the number of experiments is currently

too low to quantify the frequency of manifest metastasis as

consequence of ADH, it is safe to state that early-disseminated

tumor cells occasionally have metastatic potential. However,

we noted that the course of the disease in the transplanted

wild-type siblings was prolonged as compared to the transgenic

animals with autochthonous tumors. While in BALB-neuT fe-

males metastases are regularly present at week 30, in wild-

type mice (micro)metastases appeared only more than 40 weeks

after transplantation of a transgenic gland. At least two possibil-

ities may account for this observation: Although we transplanted

the mammary tissue before expression of the transgene into re-

cipient mice, which should result into peripheral immunological
tolerance, we cannot exclude that immunosurveillance against

the rat transgene product slowed down systemic cancer pro-

gression. Alternatively, surgical removal of the primary lesions

at very early time points may deprive early-disseminated cancer

cells from systemically acting factors important for outgrowth.

Such factors secreted from the primary tumor may prepare the

metastatic niche and foster early cancerous colonies as recently

suggested (Kaplan et al., 2005). Thus, large primary breast can-

cers in patients may support metastasis not by seeding more

cancer cells, but by providing unknown systemically acting

factors that stimulate colonization of previously disseminated

tumor cells at the ectopic site. This reasoning is backed by find-

ings that patients with small (T1-stage) tumors harbor similar

numbers of disseminated cancer cells as patients with late stage

tumors (T3 to T4) present in our cohort of 607 patients. In a meta-

analysis of several studies on DTCs in breast cancer, employing,

however, rather different techniques for DTC detection but total-

ing more than 4700 patients, Braun and coworkers observed an

increase of positive bone marrow samples from 22% in stage

T1 to 34% in stage T3 (Braun et al., 2005). These data give further

support to the conclusions that large tumors in relation to small

tumors seed far less tumor cells to bone marrow: On average,

primary T3 tumors comprise about 350 times more cancer cells

than T1-stage tumors, but the percentage of patients with DTCs

in bone marrow increases only marginally. Thus, the poorer

prognosis of patients with T3-stage breast cancers cannot be

explained by increased DTC numbers, but so far unknown exter-

nal triggers may be responsible for metastatic outgrowth that

currently are rather underestimated. In this context, it is notewor-

thy that while the highest number of DTC in bone marrow during

the lifetime of BALB-neuT mice never exceeds 10�4 bone mar-

row cells, transplantation of transgenic bone marrow containing

a total of about 80 tumor cells per inoculum taken from 11-week-

old BALB-neuT mice and injected into irradiated wild-type

animals resulted in bone marrow carcinosis with more than

30% of all cells being of cancerous origin. Since the donor

bone marrow had been taken from mice with ADH, this suggests

that the tumor cells may be released from dormancy or some

type of quiescence—possibly as consequence of the stimulatory

microenvironment during repopulation of the irradiated bone

marrow compartment—and eventually grow out.

Though the finding of microinvasion at the stage of ADH may

not apply to all patients with breast cancer, the detection itself

of disseminated cancer cells in DCIS suggests that conventional

histopathological analysis may miss tumor spread in human can-

cer as well. Although very rare, metastasis in DCIS patients has

been observed despite complete resection of their mammary tis-

sue (Cutuli et al., 2001). Other well-known clinical findings, such

as cancer of unknown primary (van de Wouw et al., 2002) as well

as inadvertent transfer of cancer with organ transplants from do-

nors with small undiagnosed malignant lesions (Riethmuller and

Klein, 2001), are equally consistent with early dissemination and

potential metastatic outgrowth.

Taken together, our findings suggest a concept of cancer

progression according to which metastatic dissemination is

a distinct early step in cancer progression being necessary,

but not sufficient, for metastatic outgrowth. The interactions of

early-disseminated cancer cells with their ectopic microenviron-

ment leading to selection or adaptation within an early metastatic
Cancer Cell 13, 58–68, January 2008 ª2008 Elsevier Inc. 65
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niche are ill understood at present and may require different ex-

perimental approaches than the frequent use of cell lines derived

from late stage tumors. Previous work and the present work

demonstrate that essential steps of genetic progression take

place at the ectopic site and not within the primary tumor. The

understanding of which mechanisms promote the outgrowth of

DTCs often after extended periods of cancer latency might be

key to the prevention of the lethal metastases.

EXPERIMENTAL PROCEDURES

Mice

BALB-NeuT and MMTV-PyMT mice transgenic mice were maintained in our

facilities according the European Union guidelines. All animal experiments

were performed according to the EU and national institutional regulations.

Mice were screened at 3 to 4 weeks of age for hemizygosity (neuT+/neuT�),

and negative littermates served as wild-type BALB/c mice controls. Mammary

glands of BALB-NeuT female mice were inspected twice a week and arising

tumors were measured with calipers in two perpendicular diameters (Boggio

et al., 1998). Tissue samples from transgenic MMTV-PyMT mice (FVB strain)

were obtained from Christoph Peters and Thomas Reinheckel (Institute for

Molecular Medicine, University of Freiburg).

Bone Marrow Preparation

After sterile preparation of both femurs, bone marrow was rinsed with a 26-G

needle in 1 ml of PBS. After density gradient centrifugation, 5 3 105 interphase

cells were dropped on adhesion slides (Menzel, Germany). At least 106 cells per

mouse were stained, and positive cells were isolated using a micromanipulator.

Immunostaining

For the detection of disseminated cells, anti-CK 8 and 18 (GP11, Progen,

Germany) and anti-HER-2 (c-erbB2, Dianova, Germany) antibodies were

used in a concentration of 5 mg/ml and visualized by ABC complex/AP

(Dako, Denmark) using the AP substrate BCIP/NBT (Biorad, Germany). For

HER-2 immunohistochemistry of solid tissues, 5 mm cryosections of primary

tumors or lung tissue were stained. For MMP2 immunohistochemistry, formal-

dehyde-fixed tissues were embedded in paraffin wax. Rabbit polyclonal anti-

MMP-2 (Chemicon International, AB809) was applied in a 1:250 dilution.

Laser Microdissection, DNA, and mRNA Preparation

Laser microdissection, single-cell isolation, and nucleic acid preparation for

DNA and mRNA was performed as described previously (Klein et al., 2002a,

2002b; Schmidt-Kittler et al., 2003). Small pieces summing up to 100,000 mm2

for each sample were catapulted into a cap with 6 ml PCR oil and centrifuged

into a 200 ml reaction tube (for DNA) while for mRNA analysis the tissues were

catapulted into reaction tubes containing 10 ml paramagnetic oligo-dT bead

suspension and lysis buffer (Dynal).

Quantitative PCR

Real-time PCR was performed using a LightCycler (Roche) and Fast Start

Master SYBR Green Kits (Roche). Analysis was done using the RelQuant soft-

ware (Roche) with PCR efficiency normalization and a reference sample in-

cluded in every run. Pooled mRNA from TUBO cells (Curcio et al., 2003) served

as positive control. Measurements showing unspecific products in the melting

curve analysis were discarded from further analysis. All expression levels are

given relative to Gapdh (primer sequences are provided in Table S4).

Comparative Genomic Hybridization, Image Acquisition,

and Analysis

Murine control DNA and tumor DNA were labeled with biotin-16-dUTP and

digoxigenin-12- dUTP (Roche Germany), respectively, and detected after hy-

bridization to metaphase chromosomes using anti-DIG-FITC Fab Fragments

(200 mg/ml, Roche, Germany) and biotinylated normal DNA by avidin-Cy 3.5

(Rockland, USA). Images were recorded by a Leica DMXA-RF8 microscope

(Leica acquisition program QFISH) equipped with a Sensys CCD camera
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(Photometrics, USA). Processing and karyotyping was done using the Leica

software package Q-CGH.

Array Hybridization and Analysis

After global mRNA amplification, PCR-amplified cDNA fragments were digox-

igenin labeled and nonradioactively hybridized to nylon filters (Klein et al.,

2002a). Scanning and significance analysis (SAM) was performed as published

(Tusher et al., 2001; Zohlnhofer et al., 2001). The clustering of proteases was

done for the Euclidean distances, complete linkage for proteases, and average

linkage for cases. Cluster assessment was performed using BRB ArrayTools

developed by Dr. Richard Simon and Amy Peng (McShane et al., 2002).

Calculation of Tumor Progression over Time

Tumor areas were calculated from 407 mammary glands of 41 mice assuming

the shape of an ellipse/circle for each tumor. The tumor size/area of a mam-

mary gland without a tumor was set to zero. The curve was fitted using Fried-

man’s scatterplot smoother. HER-2+ cells from 31 samples (28 mice) and CK+

cells from 33 samples (31 mice) were calculated as the sum of single dissem-

inated cells and the number of aggregates. Measurements from similar time

points (± 1 week) were consolidated. An offset of ±0.3 weeks was used to

draw HER-2+ (�0.3) and CK+ (+0.3) cells in one plot. The number of CK+

and HER-2+ cells from nontransgenic BALB/c mice were measured in

25 mice (CK) and 24 mice (HER-2) at five time points (weeks 4, 9, 18, 22, and

29) and connected by a dotted line. The area of lung metastases was mea-

sured using the PALM Robo V1.2.3 software and calculated as sum of all

metastases found. Values were averaged over two tissue sections. The size

of metastases was measured from four mice with and 14 mice without surgery,

and measurements from similar time points (± 2 week) were consolidated.

Surgery of Mammary Tumors

Mice were anaesthetized with ketamin 80–120 mg i.p. and xylazin 5 mg i.p

sufficient for 90–120 min. Thorax and abdomen were shaved, skin was incised

from caudal to cranial in the midline, and subcutaneous tissue was prepared,

i.e., the breast glands together with fatty tissue, and resected in toto after

coagulation of vessels. The skin was closed by a suture using prolene, 4-0,

Ethicon, Germany. Surgery took usually 30–60 min and mice were kept under

a warming lamp until awakening. Postoperative analgesia was achieved by

25 mg metamizol every 4 hr p.o. After 8 days, sutures were removed.

Tissue Transplantation

Surgical techniques and the transplantation procedure has been previously

described (Daniel et al., 1968; Deome et al., 1959). Briefly, the nipple region

from the fourth fat pad on the right side of 3-week-old recipient BALB/c

mice was removed under anesthesia. Then, a piece of donor mammary tissue

(approximately 1 to 2 mm in size) from 3- to 12-week-old BALB-neuT mice was

implanted in the ‘‘cleared’’ mammary fat pad of recipient mice.

Bone Marrow Transplantation

Eleven week-old BALB-NeuT mice were euthanized and bone marrow was

harvested from femurs and tibiae. 7-9 X 106 bone marrow cells injected into

the tail vein of 11 week-old lethally irradiated (split dose day –2 and day 0:

550 rad) wild-type siblings. From the remaining bone marrow, slides were

prepared as described above to determine tumor load by CK staining.

Analysis of Breast Cancer Patients

From our previous study on disseminated breast cancer cells, we included all

270 nonmetastatic patients (T1-4, N0-2, M0) for which information on T-stage

was available and four patients with DCIS. Cytokeratin-positive cells were

detected and isolated for genetic analysis, and their DNA was amplified for

comparative genomic hybridization as described before (Schmidt-Kittler

et al., 2003). In addition, 298 breast cancer patients with unilateral primary

breast cancer (T1–T4, N0–N2, M0) and 35 patients with DCIS undergoing

surgery at the Department of Oncology and Obstetrics, University of Tübingen,

Germany, were included. Bone marrow sampling, preparation, staining, and

screening were performed according to the consensus protocol for the detec-

tion of disseminated cancer cells (Fehm et al., 2006) applying the mab A45-B/B3

antibody (Micromet, Germany). All bone marrow samples were taken with

the approval of local ethics committees and after obtaining informed consent
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of the patients. Data for the control group of normal individuals, including 191

patients with nonmalignant disease (153 patients with benign lesions of the

breast, such as fibroadenomas, mastitis, abscesses, and cysts; 11 with simple

cysts; 10 with cystadenoma of the ovaries; and 17 with cervical intraepithelial

neoplasms of grade I or II), was taken from the study of Braun et al. (2000).

Supplemental Data

The Supplemental Data include four supplemental figures and four supple-

mental tables and can be found with this article online at http://www.

cancercell.org/cgi/content/full/13/1/58/DC1/.
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