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a b s t r a c t

The goal of this paper is to prove the following asymptotic formula

0 (x) ≈
√
2πe−b (x+ b)x exp

(
−x−

1
2
ψ (x+ c)

)
as x ∈ N, x→∞,

where 0 is the Euler Gamma function and ψ is the digamma function, namely, the
logarithmic derivative of 0. Moreover, optimal values of parameters b, c are calculated in
such a way that this asymptotic convergence is the best possible.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the recent paper [1], H. Alzer and N. Batir considered the function

Gc (x) = log0 (x)− x log x+ x−
1
2
log 2π +

1
2
ψ (x+ c) (x > 0; c ≥ 0) ,

where0 is the Euler Gamma function andψ = 0′/0 is the digamma function. They proved that Ga is completelymonotonic
on (0,∞) if and only if a ≥ 1/3 and−Gb is completely monotonic on (0,∞) if and only if b = 0.
As an application, they provided sharp bounds for 0 (x) , i.e., they determined the smallest number α = 1/3 and the

largest number β = 0 such that for x > 0, the following inequalities are valid

√
2πxx exp

(
−x−

1
2
ψ (x+ α)

)
< 0 (x) <

√
2πxx exp

(
−x−

1
2
ψ (x+ β)

)
. (1.1)

We extend this class of approximations by introducing a new parameter b to obtain the asymptotic formula

0 (x) ≈
√
2πe−b (x+ b)x exp

(
−x−

1
2
ψ (x+ c)

)
≡ Gb,c (x) . (1.2)

We find the best approximations Gb∗,c∗ and Gb#,c# , where b∗ > b# are the real roots of the polynomial 18b
4
+24b3+6b2−1

and c∗ = 1
3 − b

2
∗
, c# = 1

3 − b
2
#. Computer softwares such as MAPLE provide us the exact values of

b∗ =
v + 2
6
+
1
6

√
4
v
− v2 + 6, b# =

v + 2
6
−
1
6

√
4
v
− v2 + 6
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and

c∗ =
v − 2− 2v2

18v
+
v + 2
18

√
4
v
− v2 + 6, c# =

v − 2− 2v2

18v
−
v + 2
18

√
4
v
− v2 + 6

where v =
√
9u+ 2− 5

9u , with u =
3
√

1
243

√
46− 17

729 . The numerical values are: b∗ = 0.269448666249 . . . , b# =
−1.0665985070008 . . . , c∗ = 0.260730749589 . . . , c# = −0.804299041803 . . ..
At the end of this work, we discuss the superiority of our approximations Gb∗,c∗ and Gb#,c# over the approximations G0,1/3

and G0,0 which appear in (1.1).
With every approximation (1.2), we associate the sequence (ωn)n≥1 defined by

0 (n) =
√
2πe−b (n+ b)n exp

(
−n−

1
2
ψ (n+ c)

)
· expωn. (1.3)

It is easy to see that (ωn)n≥1 converges to zero, since

ψ (x) ≈ log x−
1
2x
−

1
12x2
+ · · ·

(see [2, pp. 259]), but our study is based on the elementary idea that the approximation (1.2) is as better as (ωn)n≥1 faster
converges to zero.
In order to calculate the speed of convergence of the sequence (ωn)n≥1, we use the following:

Lemma. If (ωn)n≥1 is convergent to zero and there exists the limit

lim
n→∞

nk(ωn − ωn+1) = l ∈ R, (1.4)

with k > 1, then there exists the limit:

lim
n→∞

nk−1ωn =
l

k− 1
.

Proof. For ε > 0, assume that l − ε ≤ nk(ωn − ωn+1) ≤ l + ε, for every integer n greater than or equal to the rank n0. By
adding the inequalities of the form

(l− ε) ·
1
nk
≤ ωn − ωn+1 ≤ (l+ ε) ·

1
nk
,

we get

(l− ε)
n+p−1∑
i=n

1
ik
≤ ωn − ωn+p ≤ (l+ ε)

n+p−1∑
i=n

1
ik
,

for every n ≥ n0 and p ≥ 2. By taking the limit as p→∞, then multiplying by nk−1, we obtain

(l− ε) · nk−1
(
ζ (k)−

n−1∑
i=1

1
ik

)
≤ nk−1ωn ≤ (l+ ε) · nk−1

(
ζ (k)−

n−1∑
i=1

1
ik

)
, (1.5)

where ζ (k) is the Riemann-zeta function.
Now, by using the rate of convergence of the generalized harmonic series

lim
n→∞

nk−1
(
ζ (k)−

n−1∑
i=1

1
ik

)
=

1
k− 1

,

(see [2,3]) we can take the limit as n→∞ in (1.5), to complete the proof of the Lemma. �

We can see from the Lemma that the speed of convergence of the sequence (ωn)n≥1 increases together with the value k
satisfying (1.4).
This Lemma is also an important tool for constructing asymptotic expansions, or to accelerate some convergences. See,

e.g., [4–6].
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2. Main results

From (1.3), we deduce that

ωn = ln0 (n)− ln
√
2π + b− n ln (n+ b)+ n+

1
2
ψ (n+ c) ,

thus

ωn − ωn+1 = (n+ 1) ln (n+ b+ 1)− n ln (n+ b)− ln n−
1

2 (n+ c)
− 1,

where we have used the recurrence formula ψ (x+ 1) = ψ (x)+ 1/x.
As we are interested to compute a limit of the form (1.4), we prefer to write

ωn − ωn+1 =

(
1
2
b2 +

1
2
c −

1
6

)
1
n2
−

(
2
3
b3 +

1
2
b2 +

1
2
c2 −

1
12

)
1
n3

+

(
3
4
b4 + b3 +

1
2
b2 +

1
2
c3 −

1
20

)
1
n4
+ O

(
1
n5

)
.

Using this expression for ωn−ωn+1 written as the power sum of n−1 and Lemma, we can state the main result of this work.

Theorem. (i) If c 6= 1
3 − b

2, then the speed of convergence of the sequence (ωn)n≥1 is n−1 since

lim
n→∞

nωn =
1
2
b2 +

1
2
c −

1
6
6= 0.

(ii) If c = 1
3 − b

2 and 23b
3
+
1
2b
2
+
1
2 c
2
−

1
12 6= 0, then the speed of convergence of the sequence (ωn)n≥1 is n

−2 since

lim
n→∞

n2ωn = −
1
2

(
2
3
b3 +

1
2
b2 +

1
2
c2 −

1
12

)
6= 0.

(iii) If c = 1
3 − b

2 and 23b
3
+
1
2b
2
+
1
2 c
2
−

1
12 = 0 (equivalent with (b, c) = (b∗, c∗), or (b, c) = (b#, c#)), then the speed of

convergence of (ωn)n≥1 is n−3.
If (b, c) = (b∗, c∗) , then

lim
n→∞

n3ωn =
1
3

(
3
4
b4
∗
+ b3
∗
+
1
2
b2
∗
+
1
2
c3
∗
−
1
20

)
6= 0

and if (b, c) = (b#, c#) , then

lim
n→∞

n3ωn =
1
3

(
3
4
b4# + b

3
# +

1
2
b2# +

1
2
c3# −

1
20

)
6= 0.

By replacing c = 1
3 − b

2, in 23b
3
+
1
2b
2
+
1
2 c
2
−

1
12 = 0, we deduce that b∗ and b# are the real solutions of the equation

6b2 + 24b3 + 18b4 − 1 = 0, that is

b∗ = 0.269448666249 . . . , b# = −1.0665985070008 . . . .

The approximations from [1] are obtained in cases (i) and (ii) of the Theorem, for b = 0, c = 0, respectively b = 0 and
c = 1

3 . Indeed, let us introduce the sequences (un)n≥1 , (vn)n≥1 associated with the approximations (1.1) from [1], by

0 (n) = G0,0 (n) exp un, 0 (n) = G0,1/3 (n) exp vn.

According to the Theorem, we have

lim
n→∞

nun = −
1
6
and lim

n→∞
n2vn =

1
36
,

while

lim
n→∞

n3ωn =
1
3

(
3
4
b4 + b3 +

1
2
b2 +

1
2
c3 −

1
20

)
6= 0,

where b ∈ {b∗, b#}. In other words, the remainder (ωn)n≥1 becomes much smaller as n increases, since

ωn = O
(un
n2

)
and ωn = O

(vn
n

)
.
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