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Abstract

A Steiner triple system (briefly ST) is in 1–1 correspondence with a Steiner quasigroup or squag (briefly SQ) [B. Ganter,
H. Werner, Co-ordinatizing Steiner systems, Ann. Discrete Math. 7 (1980) 3–24; C.C. Lindner, A. Rosa, Steiner quadruple systems:
A survey, Discrete Math. 21 (1979) 147–181]. It is well known that for each n ≡ 1 or 3 (mod 6) there is a planar squag of cardinality
n [J. Doyen, Sur la structure de certains systems triples de Steiner, Math. Z. 111 (1969) 289–300]. Quackenbush expected that
there should also be semi-planar squags [R.W. Quackenbush, Varieties of Steiner loops and Steiner quasigroups, Canad. J. Math.
28 (1976) 1187–1198]. A simple squag is semi-planar if every triangle either generates the whole squag or the 9-element squag.
The first author has constructed a semi-planar squag of cardinality 3n for all n > 3 and n ≡ 1 or 3 (mod 6) [M.H. Armanious,
Semi-planar Steiner quasigroups of cardinality 3n, Australas. J. Combin. 27 (2003) 13–27]. In fact, this construction supplies us
with semi-planar squags having only nontrivial subsquags of cardinality 9. Our aim in this article is to give a recursive construction
as n → 3n for semi-planar squags. This construction permits us to construct semi-planar squags having nontrivial subsquags of
cardinality >9. Consequently, we may say that there are semi-planar SQ(3m n)s (or semi-planar ST(3m n)s) for each positive
integer m and each n ≡ 1 or 3 (mod 6) with n > 3 having only medial subsquags at most of cardinality 3ν (sub-ST(3)ν ) for each
ν ∈ {1, 2, . . . ,m + 1}.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

A Steiner quasigroup (or a squag) is a groupoid Q = (Q; . ) satisfying the identities:

x . x = x, x . y = y . x, x . (x . y) = y.

A squag is called medial, if it satisfies the medial law:

(x . y) . (z . w) = (x . z) . (y . w).

A Steiner triple system (briefly triple system) P is a pair (P; B), where P is a set of points and B is a set of 3-
element subsets of P called blocks such that for distinct points p1, p2 ∈ P , there is a unique block b ∈ B such that
{p1, p2} ⊆ b. Triple systems are in 1–1 correspondence with the squags [6,12].

The associated squag Q = (P; . ) with the triple system P = (P; B) is defined by:

x . x = x for all x ∈ P and for each pair {x, y} ⊆ P, x . y = z if and only if {x, y, z} ∈ B [6,11].
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If the cardinality of P is equal to n, then (P; B) and (P; . ) are called of order n (or of cardinality n), and briefly
written ST(n) and SQ(n), respectively.

It is well known that the necessary and sufficient condition for an ST(n) to exist is that n ≡ 1 or 3 (mod 6) [6,11].
In fact, there is a 1–1 correspondence between the subsquags (or sub-SQs) of the co-ordinatizing squag Q = (P; . )

and the subspaces (or sub-STs) of the underlying triple system (P; B) [6].
A subsquag N = (N ; .) of a squag Q = (Q; .) is called normal if and only if N is a congruence class of Q [6,12].

In the following theorem, Quackenbush [12] has given a necessary and sufficient condition for a large subsquag N1 of
a finite squag Q to be normal.

Theorem 1 ([12]). If N1 = (N1; . ) and N2 = (N2; . ) are two subsquags of a finite squag Q = (Q; .) such that
N1 ∩ N2 = ∅ and |Q| = 3|N1| = 3|N2|, then Ni; for i = 1, 2 and 3 are normal subsquags, where N3 = (N3; .) and
N3 = Q − (N1 ∪ N2).

The author [3] has shown that there is a subsquag N1 = (N1; . ) of a finite squag Q = (Q; . ) with |Q| = 3|N1|

and N1 is not normal. This means that a subsquag N1 = (N1; . ) of a finite squag Q = (Q; . ) with |Q| = 3|N1| is
normal if and only if the set Q − N1 can be divided into two subsquags of Q of cardinality |N1|.

Quackenbush [12] also proved that squags have permutable, regular, and Lagrangian congruences. Basic concepts
of universal algebra and properties of squags can be found in [4,6,7].

A squag is called simple if it has only the trivial congruences. Guelzow [8] and the author [2] have constructed
examples of non-simple squags (and not medial, of course).

An ST is planer if it is generated by every triangle and contains a triangle. A planer ST(n) exists for each n ≥ 7
and n ≡ 1 or 3 (mod 6) [5]. Quackenbush has also shown in the next theorem that the only non-simple finite planar
squag has 9 elements.

Theorem 2 ([12]). Let (Q; B) be a planar ST(n) and let Q = (Q; . ) be the corresponding squag. Then either Q is
simple or n = 9.

Quackenbush [12] has expected that there should be semi-planar squags that are simple squags and each of whose
triangles either generates the whole squag or the 9-element subsquag. We observe that any planar squag (except of
cardinality 9) is semi-planar and the inverse is not true.

The triple system ST(n) associated with a semi-planar squag SQ(n)will also be called semi-planar (for much more
precision it may be called semi-9-planar). In other words, one may say that a triple system ST(n) is semi-planar if
the ST(n) has no proper a-normal subsystems (see [13]) (equivalently, the corresponding SQ(n) is simple) and each
triangle generates a sub-ST(9) or the whole triple system ST(n).

Indeed, for n = 7, 9, 13, 15 there are only planar squags. In [1] the first author has constructed semi-planar squags
of cardinality n for all n > 9 and n ≡ 3 or 9 (mod 18) having only nontrivial subsquags of cardinality 9.

In this article, we give a recursive construction as n → 3n for semi-planar squags. This construction permits us to
construct semi-planar squags having nontrivial subsquags of cardinality >9. In fact, we may construct a semi-planar
squag having only medial subsquags of cardinality 3m for each finite positive integer m.

2. Construction of semi-planar squags of cardinality 3n

In this section we describe the construction of semi-planar squags given in [1]. Let Ti = (Si ; Bi ) be a triple system
with Si = (Si ; . ) the corresponding squag for i = 1, 2. The direct product T1 × T2 of the two triple systems can be
obtained from the underlying triple system of the direct product squag S1 × S2 [6].

Let T0 = (Q0; B0) be a triple system of cardinality n, and let Q0 = {a1, a2, . . . , an}. We consider the
direct product T0 × C3, where C3 is the ST(3) on the set {1, 2, 3} and I3 is its corresponding squag. The direct
product T0 × C3 = (Q1; B1) is formed by the usual tripling of (Q0; B0). Namely, (Q1; B1) is an ST(3n), where
Q1 = Q0 × {1, 2, 3} and the set of triples B1 is obtained by:

B1 = {{(ai , 1), (a j , 2), (ak, 3)} | {ai , a j , ak} ∈ B0 or ai = a j = ak}

∪ {{(ai , i), (a j , i), (ak, i)} | {ai , a j , ak} ∈ B0 & i ∈ {1, 2, 3}}.

We denote the squag (Q0; . 0) associated with T0 by Q0 and the squag 3 × Q0 = (Q1;×) = Q0 × I3 associated
with T1 × C3 := (Q1; B1).
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Without loss of generality, we may assume that A0 = {a1, a2, a3} is a block of B0, then the triple system (Q0; B0)

contains the subsystem (A; R), where A = A0 × C3 and the set of blocks R obtained by:

R = {{(a1, i), (a2, i), (a3, i)} : i ∈ {1, 2, 3}}

∪ {{(x, 1), (x, 2), (x, 3)} : x ∈ {a1, a2, a3}}

∪ {{(x, i), (y, j), (z, k)} : {x, y, z} = {a1, a2, a3} & {i, j, k} = {1, 2, 3}}.

Define on the subset A the set of triples H as follows:

H = {{(a3, 1), (a3, 2), (a1, 3)}, {(a2, 1), (a2, 2), (a2, 3)}, {(a1, 1), (a1, 2), (a3, 3)},

{(a3, 1), (a2, 2), (a1, 1)}, {(a3, 2), (a2, 3), (a1, 2)}, {(a1, 3), (a2, 1), (a3, 3)},

{(a3, 1), (a2, 3), (a3, 3)}, {(a2, 2), (a1, 2), (a1, 3)}, {(a1, 1), (a2, 1), (a3, 2)},

{(a1, 3), (a2, 3), (a1, 1)}, {(a2, 2), (a3, 2), (a3, 3)}, {(a1, 2), (a2, 1), (a3, 1)}}.

Each of (A; R) and (A; H) are isomorphic to the affine plane over GF(3). Note that the block
{(a2, 1), (a2, 2), (a2, 3)} is the only block lying in the intersection of R and H .

Using the replacement property by interchanging the two sets of blocks R and H in (Q1; B1), then we get again an
ST(3n) = (Q1; B1), where B1 := B1− R ∪ H [6,11]. In fact, the sub-ST formed by the direct product of {a1, a2, a3}

and {1, 2, 3} is replaced with an isomorphic copy on the same set of points. We denote the squag associated with the
ST(3n) = (Q1; B1) by Q1 = 3 ⊗A Q0 = (Q1; . ). Observe that the difference between the binary operations ‘×’
and ‘ .’ depends only on the elements of A.

Theorem 3 ([1]). If Q0 is a planar squag of cardinality n, then the constructed squag Q1 = 3 ⊗A Q0 is semi-planar
of cardinality 3 n for all n 6= 3 or 9 and n ≡ 1 or 3 (mod 6).

Moreover, in [1] an example of a semi-planar squag of cardinality 27 was given. According to Theorems 2 and 3,
we may say that there is always a semi-planar SQ(3 n) for all n > 3 and n ≡ 1, or 3 (mod 6).

Also, according to the proof of Theorem 3 given in [1] we may directly deduce the following result.

Corollary 4. Any subsquag S of the constructed semi-planar squag Q1 = 3 ⊗A Q0 satisfies that:

1. If |S ∩ A| = 3, then S ∩ A = {(a2, 1), (a2, 2), (a2, 3)}.
2. If S ⊃ A, then S = Q1.
3. The only nontrivial subsquags of Q1 = 3 ⊗A Q0 are of cardinality 9.

In the next section, we will discuss the following problem:
Is there a semi-planar squag having nontrivial subsquags of cardinality >9?

3. Recursive construction of semi-planar squags

According to Theorem 3 and Corollary 4, we may always assume that there is a semi-planar squag of cardinality n
having only nontrivial subsquags of cardinality 9, for all n > 9 and n ≡ 3 or 9 (mod 18). In other words, the subsquags
of the constructed semi-planar squag Q1 are exactly of cardinality 1, 3, 9 and n. In the next theorem we generalize the
results of Theorem 3 and Corollary 4 to construct semi-planar squags of cardinality 3m n for n > 3 and n ≡ 1 or 3
(mod 6) having only medial subsquags at most of cardinality 3ν for each ν = 1, 2, . . . or m + 1 and for each positive
integer m. If a squag Q has only medial subsquags of cardinality 3ν

′

for each ν′ ≤ ν (i.e.; all subsquags are medial
with the maximum cardinality 3ν), we will say that Q is a squag with sub-SQ(3)νs.

We note that if Q0 is planar, then each sub-SQ(3) of Q0 is only covered by the whole squag Q0, this means that
each sub-SQ(3) of a planar squag Q0 is a maximal subsquag in Q0. We attempt in the next lemma to show that the
constructed semi-planar Q1 = 3 ⊗A Q0 has a sub-SQ(3) = A1 satisfying that the only subsquag covering A1 is Q1.

Lemma 5. Let Q0 be a planar squag of cardinality n 6= 9, then the constructed semi-planar squag Q1 = 3 ⊗A Q0
has a maximal sub-SQ(3); i.e. Q1 has a sub-SQ(3) covered only by Q1.

Proof. Let A1 = {(a1, 1), (b, 1), (c, 1)} be a subsquag in Q1 = 3 ⊗A Q0 with b, c 6∈ A0 = {a1, a2, a3}. We want to
prove that the only subsquag containing A1 is Q1.
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Assume that there is a subsquag S ⊃ A1. Then we have two cases:
(i) S ∩ A has more than one element or (ii) S ∩ A = {(a1, 1)}, where A0 is a subsquag in Q0 and A = A0× I3 is given
as in the construction Q1 = 3 ⊗A Q0.

For the case (i): We may say that |S ∩ A| = 3 or 9. But we have (a1, 1) ∈ S ∩ A, hence if |S ∩ A| = 3, then S ∩ A
is a sub-SQ(3) 6= {(a2, 1), (a2, 2), (a2, 3)} contradicting Corollary 4 that the only possible case with the condition
|S ∩ A| = 3 is S ∩ A = {(a2, 1), (a2, 2), (a2, 3)}.

If |S ∩ A| = 9, then S ⊇ A, moreover S ⊃ A1, hence |S| > 9. Again, according to Corollary 4, the only subsquag
containing A with cardinality >9 is the whole squag, hence S = 3 ⊗A Q0.

For the second case (ii) S ∩ A = {(a1, 1)}: Since S ⊃ A1, there is an element (x, i) ∈ S − A1. Hence we have 3
possible cases:

(1) (x, i) = (x, 1), (2) (x, i) = (x, 2) or (3) (x, i) = (x, 3).

For the case (1): Since (x, 1) 6∈ A1, it follows that x 6∈ {a1, b, c}. Hence S contains the 4-element subset
{(x, 1), (a1, 1), (b, 1), (c, 1)}, this means that |S| = 9 or S = 3 ⊗A Q0. But |S| = 9 means that the number of
elements of the first components of S is greater than 3, which contradicts the fact that Q0 is planar. Then S = 3 ⊗A Q0.

Case (2): For (x, i) = (x, 2), we have two cases x 6∈ {a1, b, c} or x ∈ {a1, b, c}. If x 6∈ {a1, b, c}, then S
contains the 4 distinct elements {(x, 2), (a1, 1), (b, 1), (c, 1)}. Hence the set of the first components P1(S) of S forms
a subsquag of cardinality >4 of Q0. Since Q0 is planar, it follows that P1(S) = Q0. Hence S = 3 ⊗A Q0 for the same
reason given in the preceding case.

If x ∈ {a1, b, c}, then x = b or c because of (x, i) ∈ S − A1 and S ∩ A = {(a1, 1)}. But x = b or c tends to
(b, 2) . (c, 1) = (a1, 3) or (c, 2) . (b, 1) = (a1, 3) ∈ S which contradicts the assumption that S ∩ A = {(a1, 1)}.

The same discussion holds for the case (3): (x, i) = (x, 3). Then the only possible case for a subsquag S containing
the block {(a1, 1), (b, 1), (c, 1)} is the whole squag 3 ⊗A Q0. This completes the proof. �

Note that we may prove the same result if we choose A1 = {(a1, 1), (b, 2), (c, 3)} with b, c 6∈ A0 = {a1, a2, a3}.
For n = 9, the author [1] has constructed an example of a semi-planar SQ(27). It is also easy to find a sub-

SQ(3) = A1 covered by the whole squag SQ(27).
In the next theorem we assume that Qm is a semi-planar squag and 3 × Qm := (Qm+1;×) is the direct product

squag Qm × I3. For any sub-SQ(3) = Am of Qm the set A = Am × I3 forms a sub-SQ(9) in 3 × Qm = (Qm+1;×).
Consider the same subsystems (A; R) and (A; H) exactly as in the construction Q1 = 3 ⊗A Q0. So the construction
Qm+1 = 3 ⊗A Qm is still a squag (but not necessarily be semi-planar). Indeed, if we choose a sub-SQ(3) = Am =

{a1, a2, a3} of Qm satisfying that Am is only covered by the whole squag Qm, then we will show in the next two
theorems that the constructed squag Qm+1 = 3 ⊗A Qm is semi-planar and preserves the first two properties as in
Corollary 4.

Lemma 6. Assume that Qm is a semi-planar squag having a sub-SQ(3) Am = {a1, a2, a3} covered only by
Qm. Let S be a subsquag of the constructed squag Qm+1 = 3 ⊗A Qm, It follows that if |S ∩ A| = 3, then
S ∩ A = {(a2, 1), (a2, 2), (a2, 3)}.

Proof. Let S ∩ A be a 3-element subsquag 6= {(a2, 1), (a2, 2), (a2, 3)}. We will show that any other choice of S ∩ A
leads to a contradiction. The intersection S ∩ A belongs to one of two essential cases.

First, let S ∩ A = {(a1, 1), (a2, 2), (a3, 1)}, {(a1, 3), (a2, 1), (a3, 3)},

{(a1, 2), (a2, 3), (a3, 2)}, {(a1, 1), (a2, 1), (a3, 2)} or

{(a1, 2), (a2, 1), (a3, 1)}.

In this case, the set of the second components of the elements of S ∩ A is a 2-element subset of {1, 2, 3}. But one
can easily see that the set of second components of the elements of S− A consists of {1, 2, 3} for any choice of S∩ A.

Let {i, j, k} = {1, 2, 3} and let the maximum number of distinct elements of S, having second components i ,
be equal to r . Let the values of second components of the sub-SQ(3) of S ∩ A be i , i and j . If (y, k) ∈ S − A,
then the product of any element (x, i) of S by (y, k) gives an element of S having a second component j ;
i.e. (x, i) . (y, k) = (z, j). This means that S contains exactly r elements having second components equal to j .
Also, let (y, j) ∈ S− A, then the product (x, i) . (y, j) = (z, k), which means that S contains also r distinct elements
having second components equal to k. Accordingly, we may deduce that S consists exactly of an r -element subset of
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pairs with second components i , an r -element subset of pairs with second components j and an r -element subset of
pairs with second components k.

Since the second components of S ∩ A are i , i and j , each of the r -element subsets of S with second components
j or k forms a subsquag of S. According to Theorem 1, the third r -element subset of S with second component equal
to i must be a subsquag of S, contradicting the choice that S ∩ A = {(a1, i), (a2, i), (a3, j)}. Therefore, this case is
ruled out.

Next, let S ∩ A = {(a1, 1), (a1, 2), (a3, 3)}, {(a3, 1), (a2, 3), (a3, 3)},

{(a2, 2), (a1, 2), (a1, 3)}, {(a1, 1), (a2, 3), (a1, 3)},

{(a3, 1), (a3, 2), (a1, 3)} or {(a2, 2), (a3, 2), (a3, 3)}.

For any choice of S ∩ A, the set of second components of the elements of S ∩ A is the set {1, 2, 3} or a 2-element
subset of {1, 2, 3}. But one can directly see that the set of second components of the elements of S − A consists of all
elements of {1, 2, 3}. Also, the index set of the first components of any choice of S ∩ A is a 2-element subset of {1, 2,
3}.

Let {i, j, k} = {1, 2, 3} and let S ∩ A = {(ai , l), (ai , n), (a j ,m)} with l 6= n and l, n, m ∈ {1, 2, 3}.
Let (b, l) ∈ S− A and (b, l)× (ai , l) = (b, l) . (ai , l) = (c, l), then (b, l)× (ai , n) = (b, l) . (ai , n) = (c, k) with

{l, n, k} = {1, 2, 3}. Hence (c, l)× (c, k) = (c, l) . (c, k) = (c, n) and accordingly (c, n)× (b, l) = (c, n) . (b, l) =
(ai , k) ∈ S. On the other side, we have (ai , k) ∈ A contradicting the choice that S ∩ A = {(ai , l), (ai , n), (a j ,m)}
and {l, n, k} = {1, 2, 3}. We will get the same contradiction, if we choose (b, n) or (b, k) ∈ S − A instated of (b, l).
Therefore, the second possible case of S ∩ A is also ruled out.

This means that the only possible case for a subsquag S of Qm+1 with |S ∩ A| = 3 is S ∩ A =

{(a2, 1), (a2, 2), (a2, 3)}. This completes the proof of the lemma. �

The next theorem permits us to construct semi-planar squags of cardinality 3m n for n 6= 3 or 9 and each n ≡ 1, 3
(mod 6) with subsquags ∼= SQ(3)ν for all positive integers m and ν with ν ≤ m + 1.

Theorem 7. Let Qm be a semi-planar squag of cardinality 3m n with sub-SQ(3)νs for some ν = 1, 2, . . . or m + 1.
Also, let Qm have a sub-SQ(3) = Am covered by Qm. Then the constructed squag Qm+1 = 3 ⊗A Qm is semi-planar
of cardinality 3m+1 n with sub-SQ(3)ν+1s for all possible values n 6= 3 or 9 and n ≡ 1, 3 (mod 6).

Proof. Let S be a subsquag of Qm+1 and S has more than one element. First we have to prove that S is a sub-SQ(3)ν+1

or S = Qm+1. Let Am = {a1, a2, a3} and A = Am × C3 = {a1, a2, a3} × {1, 2, 3}. And choose the two sets of triples
R and H that are defined exactly as in the construction Q1 = 3 ⊗A Q0.

In general, there are only four essential cases for the relation between the subsquags S and A:

(i) S ⊆ A, (ii) |S ∩ A| = 0, 1 or S ∩ A = {(a2, 1), (a2, 2), (a2, 3)}

(iii) |S ∩ A| = 3, (iv) A ⊂ S.

(i) If S ⊆ A, then S is a sub-SQ(3) or a sub-SQ(9).
(ii) If |S ∩ A| = 0, 1 or S ∩ A = {(a2, 1), (a2, 2), (a2, 3)}, then S is a subsquag in Qm+1 so also in 3 × Qm =

Qm×{1, 2, 3}, hence the set of first components of S is a subsquag of Qm. But in these three cases given in (ii), the set
of first components of S 6= Qm because the number of elements of the first component of S ∩ A < 3. Hence the set of
the first components of S forms a medial subsquag at most of cardinality 3ν of Qm for some positive integer ν ≤ m+1.
Also, the second projection P2(S) consists of one element or three elements, then we may say that S ∼= SQ(3)ν or
SQ(3)ν × {1, 2, 3} = SQ(3)ν+1 of 3 × Qm and so also of Qm+1.

(iii) According to the above lemma, we may say directly that S ∩ A = {(a2, 1), (a2, 2), (a2, 3)}. Then we get the
same result as in the preceding case.

(iv) Note that the sub-SQ(3) Am = {a1, a2, a3} is covered by Qm. So A = Am × I3 is a sub-SQ(9) of 3×Qm
satisfying that the only subsquag containing A is 3×Qm.

Let S = (S; . ) be a subsquag satisfying S ⊃ A and with (S; BS) the corresponding ST, then (S; BS − H ∪ R) is
a sub-ST of (Q; B) ((Q; B) is the ST associated with 3×Qm). As a consequence, the squag S′ = (S,×) associated
with (S; BS − H ∪ R) is a subsquag of 3 × Qm containing A. Since S ⊃ A, it follows that S′ is equal to 3 × Qm.
But the subsquag S in Qm+1 has the same set of points as the subsquag S′ in 3 × Qm. Because S differs only from
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S′ in the binary operations ‘ ×’ and ‘ . ’. This implies that S is equal to Qm+1. So we may say that the only subsquag
containing A is the whole squag Qm+1.

Finally we may say that the semi-planar squag Qm+1 has only medial proper subsquags at most of cardinality 3ν+1

for ν ≤ m + 1. This completes the proof of the first part of the theorem.
Now, we need only show that Qm+1 is a simple squag. Assume that Qm+1 has a proper congruence θ , since [(x, i)]θ

is a subsquag of Qm+1, then [(x, i)]θ must be a medial subsquag ∼= SQ(3)ν
′

with ν′ − 1 ≤ ν ≤ m + 1. On the other
hand, for any 3-element subsquag X of Qm+1 the set [X ]θ forms a proper subsquag of Qm+1 and so forms a medial
subsquag. Hence, if ν′ − 1 = ν = m + 1, then [(x, i)]θ = SQ(3)m+2. But we may choose a 3-element subsquag X
satisfying that the subsquag [X ]θ is of cardinality SQ(3)m+3. This is a contradiction. Therefore, in light of the first
part of the proof, we may deduce that [(x, i)]θ = SQ(3)ν

′

with ν′ ≤ ν for some positive integer ν ≤ m + 1.
If [(x, i)]θ = SQ(3)ν

′

with 2 ≤ ν′ ≤ ν, so for (a, 1) ∈ A, we have three cases: (a) |[(a, 1)]θ ∩ A| = 1, (b)
|[(a, 1)]θ ∩ A| = 3 or (c) A ⊆ [(a, 1)]θ .

For case (a): [A]θ is a proper subsquag of Qm+1, so [A]θ ∼= SQ(3)ν
′
+2. According to the first part of the theorem

if ν′ = ν = m or m + 1, it contradicts the preceding fact that the maximum cardinality of subsquags is 3m+1. In
general, for 2 ≤ ν′ ≤ ν, the subset S1 = {(a1, 1), (a1, 2), (a3, 3)} forms a sub-SQ(3) ⊆ A, then [S1]θ is a sub-SQ
intersects A in S1 which contradicts the result of Lemma 6.

For case (b): According to Lemma 6, we have [(a2, 1)]θ ∩ A = {(a2, 1), (a2, 2), (a2, 3)}. Again the set
B = (a1, 1) . [(a2, 1)]θ is a medial subsquag and ∼= SQ(3)ν

′

. But (a1, 1) . {(a2, 1), (a2, 2), (a2, 3)} =
{(a3, 2), (a3, 1), (a1, 3)} ⊆ B contradicts the result of Lemma 6 that B ∩ A must be equal to {(a2, 1), (a2, 2), (a2, 3)}.

For case (c): A ⊆ [(a, 1)]θ , but according to case (iv) of the first part we may say that [(a, 1)]θ is equal to A or
Qm+1. If [(a, 1)]θ is equal to A we choose (b, 2) 6∈ A, then (b, 2) . [(a, 1)]θ is a sub-SQ(3)2 i.e.; (b, 2) . [(a, 1)]θ
is a medial subsquag and so it is distributive. But (b, 2) . ((a1, 1) . (a2, 1)) = (b, 2) . (a3, 2) = (c, 2) and
((b, 2) . (a1, 1)) . ((b, 2) . (a2, 1)) = (c1, 3) . (c2, 3) = (c3, 3), which contradicts the fact that (b, 2) . [(a, 1)]θ
must be distributive. Consequently, these three cases (a), (b) and (c) are ruled out.

If |[(x, i)]θ | = 3, so for (a, 1) ∈ A, we have two essential cases:

(I) |[(a, 1)]θ ∩ A| = 1, or (II) |[(a, 1)]θ ∩ A| = 3.

For case (I): Choose a block X ∈ H − {(a2, 1), (a2, 2), (a2, 3)}, the subsquag [X ]θ is an SQ(9) and [X ]θ ∩ A is a
block ∈ H − {(a2, 1), (a2, 2), (a2, 3)}, which contradicts the result of Lemma 6.

Case (II) tends to [(a, 1)]θ ∩ A = [(a, 1)]θ , then θA is a nontrivial congruence on the sub-SQ(9) = A. Then we
may choose (ai , j) ∈ A−{(a2, 1), (a2, 2), (a2, 3)}, so [(ai , j)]θ ∈ H−{(a2, 1), (a2, 2), (a2, 3)}. By choosing a block
X satisfying X ∩ A = (ai , j), hence [X ]θ is an SQ(9) containing a block in the set H − {(a2, 1), (a2, 2), (a2, 3)}.
That contradicts again the result of Lemma 6.

Therefore, the constructed squag Qm+1 = 3 ⊗A Qm is simple. This completes the proof of the theorem. �

Now, we may say that the planar squag Q0 is semi-planar with sub-SQ(3)s and has a sub-SQ(3) = A0 covered
by Q0 (indeed each sub-SQ(3) covered by Q0). According to Theorem 3, Corollary 4 and Lemma 5, the constructed
squag Q1 = 3 ⊗A Q0 is semi-planar with sub-SQ(3)2s and has a sub-SQ(3) = A1 covered by Q1. To complete the
requirements of the mathematical induction we have to prove that if the squag Qm is semi-planar with sub-SQ(3)νs for
some positive integer ν ≤ m + 1 and has a sub-SQ(3) = Am covered by Qm, then the constructed Qm+1 = 3 ⊗A Qm
is semi-planar with sub-SQ(3)ν+1s and has also a sub-SQ(3) = Am+1 covered by Qm+1. The first part is already
established by Theorem 7 and the second part will be proven in the next theorem.

Theorem 8. Let Qm be a semi-planar squag with sub-SQ(3)νs for some ν = 1, 2, . . . ,m + 1 having a sub-
SQ(3) = Am covered by Qm. Then the constructed semi-planar squag Qm+1 = 3 ⊗A Qm has also a sub-
SQ(3) = Am+1 covered by Qm+1.

Proof. Let Am = {a1, a2, a3} be a sub-SQ(3) of Qm covered only by Qm. Also, let A be the set Am × {1, 2, 3} of
Qm+1. According to Theorem 7, the construction Qm+1 = 3 ⊗A Qm is a semi-planar squag having sub-SQ(3)ν+1s.
Consider the subsquag Am+1 = {(a1, 1), (b, 2), (c, 3)} of Qm+1 with b and c 6∈ Am . We will show that the only
subsquag containing Am+1 is Qm+1.

Suppose S be a subsquag of Qm+1 containing Am+1. We have three cases:

(i) S ∩ A = A, (ii) |S ∩ A| = 3 or (iii) S ∩ A = {(a1, 1)}.
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Case (i) S ∩ A = A means that S ⊃ A, according to the result of case (iv) of the proof of Theorem 7 that Qm+1 is the
only subsquag containing A, hence S = Qm+1.

Case (ii) |S ∩ A| = 3, according to Lemma 6 we have S ∩ A = {(a2, 1), (a2, 2), (a2, 3)}, which contradicts that
(a1, 1) ∈ S ∩ A. Hence, this case is ruled out.

For the case (iii): If S ∩ A = {(a1, 1)}, then S is a subsquag of 3 × Qm and also of Qm+1. Assume that |S| > 3.
According to Theorem 7, S ∼= SQ(3)ν

′
+1 for 1 ≤ ν′ ≤ ν ≤ m + 1. Let P1(S) and P2(S) be the projections of S on

the first and second components, respectively. Then P1(S) ∼= SQ(3)ν
′

for ν′ ≤ ν and P2(S) = {1, 2, 3}. Note that S
contains more than one element with second component i = 1, 2 or 3. Similar to the proof of case (ii) of the preceding
theorem, we may say that S ∼= SQ(3)ν

′
+1
= SQ(3)ν

′

× {1, 2, 3}, where SQ(3)ν
′
+1 is a subsquag of both 3 × Qm and

Qm+1. Also, we have P1(S) ∩ P1(A) = {a1}, so S ∩ A = {(a1, 1), (a1, 2), (a1, 3)}, which is impossible. Because of
S ∩ A = {(a1, 1)} and also the result of Lemma 6 says that the set {(a1, 1), (a1, 2), (a1, 3)} does not form a subsquag
of Qm+1. Therefore, this case is also ruled out.

This means that the only possible case for S ⊇ Am+1 is S ⊇ A. So we go back to the result of case (i) that S must
be equal to Qm+1. This completes the proof of the lemma. �

According to the 1–1 correspondence between squags and triple systems, we may say that there are semi-planar
TS(3m n)s having only subsystems ∼= ST(3)νs for each positive integer ν ≤ m + 1 and for each possible number n
(n 6= 9 and n ≡ 1 or 3 (mod 6)). These triple systems satisfy that each triangle generates a sub-ST(9) or the whole
triple system and whose corresponding squag is simple.

For n = 9, the author [1] has constructed an example of semi-planar squag of cardinality 27. Also, it easy to
find a sub-SQ(3) = A1 covered by the whole squag, so we may apply Lemma 6, Theorems 7 and 8 to get a semi-
planar squag of cardinality 81 having only medial subsquags of cardinality 33 at most. Equivalently, there are three
semi-planar ST(81)s with subsystems ∼= ST(3)νs for ν = 1, 2 and 3.

Finally, one may say that there is a semi-planar SQ(3m n) := Qm,ν for all n > 3 and n ≡ 1 or 3 (mod 6) and each
positive integer m with medial subsquags of maximum cardinality 3ν for each positive integer ν ≤ m + 1.

Quackenbush [12] proved that the variety V(Q) generated by a simple planar squag Q has only two subdirectly
irreducible squags Q and the 3-element squag SQ(3) and then V(Q) covers the smallest nontrivial subvariety (the
class of all medial squags).

Similarly, if Qm,ν = SQ(3m n) is a semi-planar squag having only medial subsquags of cardinality 3ν at most, then
one can prove that the variety V(Qm,ν) generated by Qm,ν has only two subdirectly irreducible squags Qm,ν and the
3-element squag SQ(3). And hence we deduce the same result that each semi-planar squag Qm,ν with sub-SQ(3)νs
for each positive integer ν ≤ m + 1 generates a variety V(Qm,ν) which covers also the smallest nontrivial subvariety
(the class of all medial squags).

Hall [9] constructed a Steiner triple system in which each triangle generates a sub-ST(9), such a class is called
Hall triple systems. The corresponding squags of such class is the class of distributive squags. Klossik [10] gave a
construction of distributive squags as a vector space over GF(3) of dimension ≥4. Using the interchange property
to inject a distributive subsquag SQ(3ν) instead of a medial sub-SQ(3)ν , we get a construction of a squag having
distributive subsquags but not medial. Consequently, we are faced with the question:

Is there a semi-planar squag having distributive (not medial) subsquags?
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