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Abstract

A Steiner triple system (briefly ST) is in 1-1 correspondence with a Steiner quasigroup or squag (briefly SQ) [B. Ganter,
H. Werner, Co-ordinatizing Steiner systems, Ann. Discrete Math. 7 (1980) 3-24; C.C. Lindner, A. Rosa, Steiner quadruple systems:
A survey, Discrete Math. 21 (1979) 147-181]. It is well known that for each n = 1 or 3 (mod 6) there is a planar squag of cardinality
n [J. Doyen, Sur la structure de certains systems triples de Steiner, Math. Z. 111 (1969) 289-300]. Quackenbush expected that
there should also be semi-planar squags [R.W. Quackenbush, Varieties of Steiner loops and Steiner quasigroups, Canad. J. Math.
28 (1976) 1187-1198]. A simple squag is semi-planar if every triangle either generates the whole squag or the 9-element squag.
The first author has constructed a semi-planar squag of cardinality 3n for all » > 3 and n = 1 or 3 (mod 6) [M.H. Armanious,
Semi-planar Steiner quasigroups of cardinality 3n, Australas. J. Combin. 27 (2003) 13-27]. In fact, this construction supplies us
with semi-planar squags having only nontrivial subsquags of cardinality 9. Our aim in this article is to give a recursive construction
as n — 3n for semi-planar squags. This construction permits us to construct semi-planar squags having nontrivial subsquags of
cardinality >9. Consequently, we may say that there are semi-planar SQ(3" n)s (or semi-planar ST (3™ n)s) for each positive
integer m and each n = 1 or 3 (mod 6) with n > 3 having only medial subsquags at most of cardinality 3" (sub-ST(3)") for each
vel{l,2,...,m+1}.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction
A Steiner quasigroup (or a squag) is a groupoid Q = (Q; . ) satisfying the identities:
X.x=2x, X.y=Yy.x, x.(x.y)=y.
A squag is called medial, if it satisfies the medial law:
x.y.z.w)y=x.2.H.w).

A Steiner triple system (briefly triple system) P is a pair (P; B), where P is a set of points and B is a set of 3-
element subsets of P called blocks such that for distinct points pj, p» € P, there is a unique block b € B such that
{p1, p2} € b. Triple systems are in 1-1 correspondence with the squags [6,12].

The associated squag Q = (P; .) with the triple system P = (P; B) is defined by:

x .x =x forall x € P and for each pair {x, y} € P,x .y = zif and only if {x, y, z} € B [6,11].
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If the cardinality of P is equal to n, then (P; B) and (P; .) are called of order n (or of cardinality n), and briefly
written ST (n) and SQ(n), respectively.

It is well known that the necessary and sufficient condition for an ST(#n) to exist is that n = 1 or 3 (mod 6) [6,11].
In fact, there is a 1-1 correspondence between the subsquags (or sub-SQs) of the co-ordinatizing squag Q@ = (P; .)
and the subspaces (or sub-STs) of the underlying triple system (P; B) [6].

A subsquag N = (N; .) of asquag Q = (Q; .) is called normal if and only if N is a congruence class of Q [6,12].
In the following theorem, Quackenbush [12] has given a necessary and sufficient condition for a large subsquag N of
a finite squag @Q to be normal.

Theorem 1 ([12]). If Ny = (N1; . ) and Ny = (No; . ) are two subsquags of a finite squag Q = (Q; .) such that
N1 NNy =@ and |Q| = 3|N1| = 3| V3|, then N;; for i = 1,2 and 3 are normal subsquags, where N3 = (N3; .) and
N3 = Q — (N1 U Ny).

The author [3] has shown that there is a subsquag N1 = (N7; . ) of a finite squag Q@ = (Q; . ) with |Q| = 3|Nq|
and Ny is not normal. This means that a subsquag Ny = (Ny; . ) of a finite squag Q@ = (Q; . ) with |Q| = 3|Ny] is
normal if and only if the set O — N; can be divided into two subsquags of Q of cardinality |Ny]|.

Quackenbush [12] also proved that squags have permutable, regular, and Lagrangian congruences. Basic concepts
of universal algebra and properties of squags can be found in [4,6,7].

A squag is called simple if it has only the trivial congruences. Guelzow [8] and the author [2] have constructed
examples of non-simple squags (and not medial, of course).

An ST is planer if it is generated by every triangle and contains a triangle. A planer ST(n) exists for each n > 7
and n = 1 or 3 (mod 6) [5]. Quackenbush has also shown in the next theorem that the only non-simple finite planar
squag has 9 elements.

Theorem 2 ([12]). Let (Q; B) be a planar ST(n) and let Q = (Q; . ) be the corresponding squag. Then either Q is
simple or n = 9.

Quackenbush [12] has expected that there should be semi-planar squags that are simple squags and each of whose
triangles either generates the whole squag or the 9-element subsquag. We observe that any planar squag (except of
cardinality 9) is semi-planar and the inverse is not true.

The triple system ST(n) associated with a semi-planar squag SQ(n) will also be called semi-planar (for much more
precision it may be called semi-9-planar). In other words, one may say that a triple system ST (n) is semi-planar if
the ST (n) has no proper a-normal subsystems (see [13]) (equivalently, the corresponding SQ(n) is simple) and each
triangle generates a sub-ST(9) or the whole triple system ST(n).

Indeed, forn =7, 9, 13, 15 there are only planar squags. In [1] the first author has constructed semi-planar squags
of cardinality n for all n > 9 and n = 3 or 9 (mod 18) having only nontrivial subsquags of cardinality 9.

In this article, we give a recursive construction as n — 3n for semi-planar squags. This construction permits us to
construct semi-planar squags having nontrivial subsquags of cardinality >9. In fact, we may construct a semi-planar
squag having only medial subsquags of cardinality 3" for each finite positive integer m.

2. Construction of semi-planar squags of cardinality 3n

In this section we describe the construction of semi-planar squags given in [1]. Let T; = (S;; B;) be a triple system
with S; = (S;; . ) the corresponding squag for i = 1, 2. The direct product T x T3 of the two triple systems can be
obtained from the underlying triple system of the direct product squag S1 x S2 [6].

Let T9 = (Qo; Bo) be a triple system of cardinality n, and let Q9 = {ai,a2,...,a,}. We consider the
direct product Ty x C3, where C3 is the ST(3) on the set {1, 2, 3} and I3 is its corresponding squag. The direct
product Ty x C3 = (Q1; By) is formed by the usual tripling of (Qo; Bp). Namely, (Q1; By) is an ST(3n), where
01 = Qo x {1, 2, 3} and the set of triples B; is obtained by:

By = {{(a;, 1), (a;, 2), (., 3)} | {ai, aj, ax} € Boora; = a; = a}
U {{(ai,i), (aj,i), (ak»i)} | {ai’ajvak} €By&ic {1’27 3}}

We denote the squag (Qo; . ¢) associated with Ty by Q¢ and the squag 3 x Q¢ = (Q1; x) = Qo x I3 associated
with Ty x C3 := (Qq; By).
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Without loss of generality, we may assume that A9 = {ay, a2, a3} is a block of By, then the triple system (Qq; Bo)
contains the subsystem (A; R), where A = Ao x C3 and the set of blocks R obtained by:

R = {{(a1, D), (a2, 1), (a3, D)} 1 i € {1,2,3}}
U {(x, D, (x,2), (x,3)} 1 x € {a1, a2, a3}}
U {Ge, D), 0, ), (0 o {x, y, 2h = H{ar, a2, a3} & i, j, k= {1, 2, 3}).

Define on the subset A the set of triples H as follows:

H = {{(a3, 1), (a3,2), (a1, 3}, {(a2, 1), (a2, 2), (a2, 3)}, {(a1, 1), (a1, 2), (a3, 3)},
{(a3, 1), (a2,2), (a1, D}, {(a3,2), (a2, 3), (a1, 2)}, {(a1, 3), (a2, 1), (a3, 3)},
{(a3, 1), (a2, 3), (a3, 3)}, {(a2, 2), (a1, 2), (a1, 3)}, {(a1, 1), (a2, ), (a3, 2)},
{(a1,3), (a2, 3), (a1, D}, {(a2, 2), (a3, 2), (a3, 3)}, {(a1, 2), (a2, 1), (a3, D}}.

Each of (A;R) and (A; H) are isomorphic to the affine plane over GF(3). Note that the block
{(az, 1), (a2, 2), (az, 3)} is the only block lying in the intersection of R and H.

Using the replacement property by interchanging the two sets of blocks R and H in (Q1; B1), then we get again an
ST(3n) = (Q1; B;), where B| := B — RU H [6,11]. In fact, the sub-ST formed by the direct product of {a1, a2, a3}
and {1, 2, 3} is replaced with an isomorphic copy on the same set of points. We denote the squag associated with the
ST(3n) = (Q1; B;) by 01 = 3®4 Qo = (Q1; . ). Observe that the difference between the binary operations ‘x’
and ‘.’ depends only on the elements of A.

Theorem 3 ([1]). If Qq is a planar squag of cardinality n, then the constructed squag Q1 = 3 ®a Qo is semi-planar
of cardinality 3 n for alln # 3 or 9 and n = 1 or 3 (mod 6).

Moreover, in [1] an example of a semi-planar squag of cardinality 27 was given. According to Theorems 2 and 3,
we may say that there is always a semi-planar SQ(3 n) foralln > 3 and n = 1, or 3 (mod 6).
Also, according to the proof of Theorem 3 given in [1] we may directly deduce the following result.

Corollary 4. Any subsquag S of the constructed semi-planar squag Q1 = 3 ®4 Qo satisfies that:
L IfISNA| =3, then SN A = {(az, ), (a2, 2), (a2, 3)}.

2.If S D A, then S = Q.

3. The only nontrivial subsquags of Q1 = 3 ®4 Qg are of cardinality 9.

In the next section, we will discuss the following problem:
Is there a semi-planar squag having nontrivial subsquags of cardinality >9?

3. Recursive construction of semi-planar squags

According to Theorem 3 and Corollary 4, we may always assume that there is a semi-planar squag of cardinality n
having only nontrivial subsquags of cardinality 9, for alln > 9 and n = 3 or 9 (mod 18). In other words, the subsquags
of the constructed semi-planar squag Q1 are exactly of cardinality 1, 3, 9 and n. In the next theorem we generalize the
results of Theorem 3 and Corollary 4 to construct semi-planar squags of cardinality 3™ n forn > 3andn =1 or 3
(mod 6) having only medial subsquags at most of cardinality 3" for each v = 1, 2, ... or m 4 1 and for each positive
integer m. If a squag Q has only medial subsquags of cardinality 3V for each v < v (i.e.; all subsquags are medial
with the maximum cardinality 3"), we will say that Q is a squag with sub-SQ(3)"s.

We note that if Qg is planar, then each sub-SQ(3) of Qy is only covered by the whole squag Qy, this means that
each sub-SQ(3) of a planar squag Qy is a maximal subsquag in Q9. We attempt in the next lemma to show that the
constructed semi-planar @1 = 3 ®4 Qo has a sub-SQ(3) = Ay satisfying that the only subsquag covering A is Q1.

Lemma 5. Let Qg be a planar squag of cardinality n # 9, then the constructed semi-planar squag Q1 = 3 ®4 Qo
has a maximal sub-SQ(3); i.e. Q1 has a sub-SQ(3) covered only by Q1.

Proof. Let A| = {(a;, 1), (b, 1), (¢, 1)} be a subsquag in @1 = 3 ®4 Q¢ with b, ¢ € Ay = {ay, a2, a3}. We want to
prove that the only subsquag containing A is Q.
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Assume that there is a subsquag § O Aj. Then we have two cases:

(i) S N A has more than one element or (ii) SN A = {(aj, 1)}, where Ay is a subsquag in Qg and A = Ay x I3 is given
as in the construction @1 = 3 ®4 Qy.

For the case (i): We may say that |[SN A| = 3 or 9. But we have (a1, 1) € SN A, henceif |[SNA| =3,then SN A
is a sub-SQ(3) # {(az, 1), (a2, 2), (az, 3)} contradicting Corollary 4 that the only possible case with the condition
ISNAl=3is SN A ={(az, 1), (a2, 2), (a2, 3)}.

If|SN Al =9,then S O A, moreover § D Ay, hence |S| > 9. Again, according to Corollary 4, the only subsquag
containing A with cardinality >9 is the whole squag, hence S = 3 ®4 Q.

For the second case (ii) S N A = {(a1, 1)}: Since § D Ay, there is an element (x,i) € S — A;. Hence we have 3
possible cases:

1) (x,i) =(x, 1), 2) (x,i)=(x,2) or Q) (x,i)=(x,3).

For the case (1): Since (x,1) & Ay, it follows that x ¢ {a;, b, c}. Hence S contains the 4-element subset
{(x, 1), (a1, 1), (b, 1), (c, 1)}, this means that [S| = 9or § = 3®4 Qp. But |S| = 9 means that the number of
elements of the first components of S is greater than 3, which contradicts the fact that Qy is planar. Then S = 3 ®4 Qy.

Case (2): For (x,i) = (x,2), we have two cases x & {aj,b,c} or x € {a,b,c}. If x & {ay,b,c}, then S
contains the 4 distinct elements {(x, 2), (ag, 1), (b, 1), (¢, 1)}. Hence the set of the first components Py (S) of S forms
a subsquag of cardinality >4 of Qy. Since Q) is planar, it follows that P;(S) = Qp. Hence S = 3 ®4 Qy for the same
reason given in the preceding case.

If x € {a1,b,c}, then x = b or ¢ because of (x,i) € S — Ay and SN A = {(a;, 1)}. But x = b or ¢ tends to
b,2).(c,1)=1(ar,3)or(c,2). (b, 1) = (a1, 3) € S which contradicts the assumption that SN A = {(ay, 1)}.

The same discussion holds for the case (3): (x, i) = (x, 3). Then the only possible case for a subsquag S containing
the block {(ay, 1), (b, 1), (c, 1)} is the whole squag 3 ®4 Qp. This completes the proof. [

Note that we may prove the same result if we choose A1 = {(a1, 1), (b, 2), (c, 3)} with b, c € Ag = {a1, a2, a3}.

For n = 9, the author [1] has constructed an example of a semi-planar SQ(27). It is also easy to find a sub-
SQ(3) = Aj covered by the whole squag SQ(27).

In the next theorem we assume that @y, is a semi-planar squag and 3 X @y, ‘= (Qm+1; X) is the direct product
squag O, x Is. For any sub-SQ(3) = A,, of Q,, the set A = A, x I3 forms a sub-SQ(9) in 3 x @, = (Qm+1; X).
Consider the same subsystems (A; R) and (A; H) exactly as in the construction @1 = 3 ®4 Qy. So the construction
Om+1 = 3 ®4 O is still a squag (but not necessarily be semi-planar). Indeed, if we choose a sub-SQ3) = A, =
{a1, az, a3z} of Qp satisfying that A, is only covered by the whole squag Q,,, then we will show in the next two
theorems that the constructed squag Q;;+1 = 3 ®4 O is semi-planar and preserves the first two properties as in
Corollary 4.

Lemma 6. Assume that Q, is a semi-planar squag having a sub-SQ@3) Am = {a1, a2, az} covered only by
Om. Let S be a subsquag of the constructed squag Qm+1 = 3 @4 Qm, It follows that if |S N Al = 3, then
SNA={(a 1), (a2,2), (a2, 3)}.

Proof. Let S N A be a 3-element subsquag # {(a2, 1), (a2, 2), (a2, 3)}. We will show that any other choice of SN A
leads to a contradiction. The intersection S N A belongs to one of two essential cases.

First,let SN A = {(a1, 1), (a2, 2), (a3, 1)}, {(a1, 3), (a2, 1), (a3, 3)},
{(a1,2), (a2, 3), (a3, 2)}, {(a1, 1), (a2, 1), (a3, 2)} or
{(a1,2), (a2, 1), (a3, D}.

In this case, the set of the second components of the elements of § N A is a 2-element subset of {1, 2, 3}. But one
can easily see that the set of second components of the elements of S — A consists of {1, 2, 3} for any choice of SN A.

Let {i, j, k} = {1,2,3} and let the maximum number of distinct elements of S, having second components i,
be equal to r. Let the values of second components of the sub-SQ(3) of SN Abei,i and j. If (y,k) € S — A,
then the product of any element (x,i) of S by (y, k) gives an element of S having a second component j;
ie. (x,i) . (v,k) = (z,j). This means that S contains exactly r elements having second components equal to j.
Also, let (y, j) € S — A, then the product (x, i) . (y, j) = (z, k), which means that S contains also r distinct elements
having second components equal to k. Accordingly, we may deduce that S consists exactly of an r-element subset of
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pairs with second components i, an r-element subset of pairs with second components j and an r-element subset of
pairs with second components k.

Since the second components of S N A are 7, i and j, each of the r-element subsets of S with second components
Jj or k forms a subsquag of S. According to Theorem 1, the third r-element subset of S with second component equal
to i must be a subsquag of S, contradicting the choice that S N A = {(ay, i), (a2, 1), (a3, j)}. Therefore, this case is
ruled out.

Next, let SN A = {(a1, 1), (a1, 2), (a3, 3)}, {(a3, 1), (a2, 3), (a3, 3)},
{(a2,2), (a1,2), (a1, 3}, {(a1, 1), (a2, 3), (a1, 3)},
{(a3, 1), (a3,2), (a1, 3)} or {(a2, 2), (a3, 2), (a3, 3)}.

For any choice of S N A, the set of second components of the elements of S N A is the set {1, 2, 3} or a 2-element
subset of {1, 2, 3}. But one can directly see that the set of second components of the elements of § — A consists of all
elements of {1, 2, 3}. Also, the index set of the first components of any choice of S N A is a 2-element subset of {1, 2,
3}

Let {i, j,k} ={1,2,3}and let S N A = {(a;, ]), (a;, n), (aj, m)} withl #nandl,n,m € (1,2, 3}.

Let (b,]) e S— Aand (b,]) x (a;,]) = (b,1) . (a;,]) = (c, 1), then (b,]) x (a;,n) = (b, 1) . (a;, n) = (c, k) with
{l,n,k} = {1, 2,3}. Hence (¢, ) x (c, k) = (c,1) . (c, k) = (c, n) and accordingly (c,n) x (b,l) = (c,n) . (b,]) =
(a;, k) € S. On the other side, we have (a;, k) € A contradicting the choice that S N A = {(a;, ), (a;, n), (a;, m)}
and {/, n, k} = {1, 2, 3}. We will get the same contradiction, if we choose (b, n) or (b, k) € S — A instated of (b, [).
Therefore, the second possible case of S N A is also ruled out.

This means that the only possible case for a subsquag S of Qpy1 with [SN Al = 3 is SN A =
{(az, 1), (a2, 2), (az, 3)}. This completes the proof of the lemma. [

The next theorem permits us to construct semi-planar squags of cardinality 3" n forn # 3 or 9 and eachn =1, 3
(mod 6) with subsquags = SQ(3)" for all positive integers m and v with v < m + 1.

Theorem 7. Let Qp, be a semi-planar squag of cardinality 3™ n with sub-SQ(3)"s for somev = 1,2,...orm + 1.
Also, let Qm have a sub-SQ(3) = Ay, covered by Qu,. Then the constructed squag Qm+1 = 3 ®4 Qu is semi-planar
of cardinality 3" n with sub-SQ(3)"*'s for all possible values n # 3 or 9 and n = 1, 3 (mod 6).

Proof. Let S be a subsquag of Q,, 11 and S has more than one element. First we have to prove that S is a sub-SQ(3)"*!
orS = Qm+1-Let Ay, = {a1,az,a3}and A = A, x C3 = {ay, a2, a3z} x {1, 2, 3}. And choose the two sets of triples
R and H that are defined exactly as in the construction Q1 = 3 ®4 Qy.

In general, there are only four essential cases for the relation between the subsquags S and A:

i ScA, ) [SNA|=0,1or SN A = {(a2, 1), (a2, 2), (a2, 3)}
(i) SN A| =3, (iv) ACS.

(i) If S C A, then S is a sub-SQ(3) or a sub-SQ(9).

@) IfISNA =0,1or SNA = {(az, 1), (a2, 2), (a2, 3)}, then S is a subsquag in Qy,+1 so alsoin 3 x @), =
Om x {1, 2, 3}, hence the set of first components of S is a subsquag of Qy,. But in these three cases given in (ii), the set
of first components of S # Q,, because the number of elements of the first component of SN A < 3. Hence the set of
the first components of S forms a medial subsquag at most of cardinality 3" of @, for some positive integer v < m+1.
Also, the second projection P»(S) consists of one element or three elements, then we may say that S = SQ(3)" or
SQQ3)’ x {1,2,3} = SQ3)"*! of 3 x Q) and 50 also of Q4 1.

(iii) According to the above lemma, we may say directly that S N A = {(a2, 1), (a2, 2), (a2, 3)}. Then we get the
same result as in the preceding case.

(iv) Note that the sub-SQ(3) A, = {a1, a2, a3} is covered by Q. S0 A = Ay, X I3 is a sub-SQ(9) of 3xQ,
satisfying that the only subsquag containing A is 3x Q.

LetS = (S; .) be a subsquag satisfying S D A and with (S; Bs) the corresponding ST, then (S; Bs — H U R) is
a sub-ST of (Q; B) ((Q; B) is the ST associated with 3xQ,,). As a consequence, the squag S’ = (S, x) associated
with (S; Bg — H U R) is a subsquag of 3 x @, containing A. Since S D A, it follows that §" is equal to 3 x Q.
But the subsquag S in Qp,+1 has the same set of points as the subsquag S’ in 3 x Q. Because S differs only from
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S’ in the binary operations ¢ x’ and ° . ’. This implies that S is equal to Q@y;+1. So we may say that the only subsquag
containing A is the whole squag Qy;+1.

Finally we may say that the semi-planar squag Q,,+1 has only medial proper subsquags at most of cardinality 3"+
for v < m + 1. This completes the proof of the first part of the theorem.

Now, we need only show that Q,,+1 is a simple squag. Assume that Q,,+1 has a proper congruence 9, since [(x, i)]0
is a subsquag of Qp+1, then [(x, i)]6 must be a medial subsquag = SQ(3)”’ with v’ — 1 < v < m + 1. On the other
hand, for any 3-element subsquag X of Q,,+1 the set [X]0 forms a proper subsquag of @Q,,+1 and so forms a medial
subsquag. Hence, if vV — 1 = v = m + 1, then [(x, i)]6 = SQ(3)” 2. But we may choose a 3-element subsquag X
satisfying that the subsquag [X]0 is of cardinality SQ(3)”"*3. This is a contradiction. Therefore, in light of the first
part of the proof, we may deduce that [(x, )]0 = SQ(3)"/ with v/ < v for some positive integer v < m + 1.

If [(x,0)]0 = SQ(3)“/ with 2 < v/ < v, so for (a,1) € A, we have three cases: (a) |[(a, 1)]0 N A| = 1, (b)
[[(a, DI NA| =3o0r(c) A C [(a, 1)]6.

For case (a): [A]0 is a proper subsquag of Qy,+1, so [A]0 = SQ(3)"/+2. According to the first part of the theorem
if v/ = v = m or m + 1, it contradicts the preceding fact that the maximum cardinality of subsquags is 3"*!. In
general, for 2 < v’ < v, the subset §1 = {(ay, 1), (a1, 2), (as, 3)} forms a sub-SQ(3) C A, then [S1]6 is a sub-SQ
intersects A in S1 which contradicts the result of Lemma 6.

For case (b): According to Lemma 6, we have [(a2, 1)]10 N A = {(a2, 1), (a2, 2), (a2, 3)}. Again the set
B = (a1, 1) . [(a2, )]0 is a medial subsquag and = SQ(3)V/. But (a1, 1) . {(a2, 1), (a2,2), (az,3)} =
{(a3,2), (a3, 1), (a1, 3)} € B contradicts the result of Lemma 6 that B N A must be equal to {(a2, 1), (a2, 2), (az, 3)}.

For case (¢): A C [(a, 1)]0, but according to case (iv) of the first part we may say that [(a, 1)]0 is equal to A or
Om+1. If [(a, 1)]6 is equal to A we choose (b,2) ¢ A, then (b,2) . [(a, 1)]0 isa sub—SQ(3)2 ie.; (b,2) . [(a, 1)]0
is a medial subsquag and so it is distributive. But (b,2) . ((a1, 1) . (a2, 1)) = (b,2) . (a3,2) = (c,2) and
(b,2) . (a1, D)) . ((b,2) . (a2, 1)) = (c1,3) . (c2,3) = (c3,3), which contradicts the fact that (b, 2) . [(a, 1)]0
must be distributive. Consequently, these three cases (a), (b) and (c) are ruled out.

If [[(x,i)]0] =3, sofor (a, 1) € A, we have two essential cases:
@ |[(@a,DIENA] =1, or (D) |[(a,D]ONA|=3.

For case (I): Choose a block X € H — {(az, 1), (a2, 2), (a2, 3)}, the subsquag [X]0 is an SQ(9) and [X]0 N A is a
block € H — {(a3, 1), (a3, 2), (a2, 3)}, which contradicts the result of Lemma 6.

Case (II) tends to [(a, 1)]0 N A = [(a, 1)]0, then 6, is a nontrivial congruence on the sub-SQ(9) = A. Then we
may choose (a;, j) € A—{(az, 1), (a2, 2), (a2, 3)},s0 [(a;, j)16 € H—{(az, 1), (a2, 2), (az, 3)}. By choosing a block
X satisfying X N A = (a;, j), hence [X]6 is an SQ(9) containing a block in the set H — {(a2, 1), (a2, 2), (a2, 3)}.
That contradicts again the result of Lemma 6.

Therefore, the constructed squag Qp+1 = 3 ®4 O is simple. This completes the proof of the theorem. [

Now, we may say that the planar squag Qy is semi-planar with sub-SQ(3)s and has a sub-SQ(3) = Ay covered
by Qg (indeed each sub-SQ(3) covered by Q). According to Theorem 3, Corollary 4 and Lemma 5, the constructed
squag @1 = 3 ®4 Qy is semi-planar with sub-SQ(3)%s and has a sub-SQ(3) = A; covered by Q1. To complete the
requirements of the mathematical induction we have to prove that if the squag Q, is semi-planar with sub-SQ(3)"s for
some positive integer v < m + 1 and has a sub-SQ(3) = A,, covered by Qy,, then the constructed @), +1 = 3 ®4 Om
is semi-planar with sub-SQ(3)"*!s and has also a sub-SQ(3) = A1 covered by Q,,11. The first part is already
established by Theorem 7 and the second part will be proven in the next theorem.

Theorem 8. Let Q,, be a semi-planar squag with sub-SQ(3)"s for some v = 1,2,...,m + 1 having a sub-
SQQB3) = Ay covered by Q. Then the constructed semi-planar squag Qm+1 = 3 ®4 OQm has also a sub-
SQ@3) = Ap+1 covered by Q1.

Proof. Let A,, = {ay, a2, a3z} be a sub-SQ(3) of @, covered only by Q,,. Also, let A be the set A,, x {1, 2, 3} of
Q1. According to Theorem 7, the construction @1 = 3 ®4 Qu is a semi-planar squag having sub-SQ(3)"*!s.
Consider the subsquag A,,+1 = {(a1, 1), (b, 2), (c,3)} of Q1 with b and ¢ &€ A,,. We will show that the only
subsquag containing A +1 1S Qm+1-

Suppose S be a subsquag of Q,,+1 containing A,,;1. We have three cases:

()SNA=A, (i)|SNA =3 or (i) SN A = {(a1, D}.
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Case (i) SN A = A means that S D A, according to the result of case (iv) of the proof of Theorem 7 that Q41 is the
only subsquag containing A, hence § = Q,, ;.

Case (ii) |S N A| = 3, according to Lemma 6 we have S N A = {(a2, 1), (a2, 2), (a2, 3)}, which contradicts that
(a1, 1) € S N A. Hence, this case is ruled out.

For the case (iii): If S N A = {(aj, 1)}, then S is a subsquag of 3 x @y, and also of Q1. Assume that |S| > 3.
According to Theorem 7, § = SQ(3)”,Jrl for 1 <v' <v < m+ 1. Let P1(S) and P5(S) be the projections of S on
the first and second components, respectively. Then P1(S) = SQ(S)”’ for v/ < v and P2(S) = {1, 2, 3}. Note that S
contains more than one element with second component ; = 1, 2 or 3. Similar to the proof of case (ii) of the preceding
theorem, we may say that § = SQ(3)"/“‘1 = SQ(3)"/ x {1, 2, 3}, where SQ(3)"/+1 is a subsquag of both 3 x Q,, and
Om+1.- Also, we have P1(S) NP1(A) = {a1},s0 SN A = {(a1, 1), (a1, 2), (a1, 3)}, which is impossible. Because of
SN A ={(ar, 1)} and also the result of Lemma 6 says that the set {(a1, 1), (a1, 2), (a1, 3)} does not form a subsquag
of Om+1. Therefore, this case is also ruled out.

This means that the only possible case for § D A,,+1 is S 2 A. So we go back to the result of case (i) that S must
be equal to Q,,,+1. This completes the proof of the lemma. [J

According to the 1-1 correspondence between squags and triple systems, we may say that there are semi-planar
TS (3™ n)s having only subsystems = ST(3)"s for each positive integer v < m + 1 and for each possible number n
(n # 9and n = 1 or 3 (mod 6)). These triple systems satisfy that each triangle generates a sub-ST(9) or the whole
triple system and whose corresponding squag is simple.

For n = 9, the author [1] has constructed an example of semi-planar squag of cardinality 27. Also, it easy to
find a sub-SQ(3) = A covered by the whole squag, so we may apply Lemma 6, Theorems 7 and 8 to get a semi-
planar squag of cardinality 81 having only medial subsquags of cardinality 33 at most. Equivalently, there are three
semi-planar ST(81)s with subsystems = ST(3)"s for v = 1, 2 and 3.

Finally, one may say that there is a semi-planar SQ(3" n) := Qp,, foralln > 3 and n = 1 or 3 (mod 6) and each
positive integer m with medial subsquags of maximum cardinality 3" for each positive integer v < m + 1.

Quackenbush [12] proved that the variety V(Q) generated by a simple planar squag Q has only two subdirectly
irreducible squags Q and the 3-element squag SQ(3) and then V(Q) covers the smallest nontrivial subvariety (the
class of all medial squags).

Similarly, if Q,,,, = SQ(3" n) is a semi-planar squag having only medial subsquags of cardinality 3 at most, then
one can prove that the variety V(Q,,,,) generated by Q,, , has only two subdirectly irreducible squags Q,,., and the
3-element squag SQ(3). And hence we deduce the same result that each semi-planar squag Q@ , with sub-SQ(3)"s
for each positive integer v < m 4+ 1 generates a variety V(Q,,,,) which covers also the smallest nontrivial subvariety
(the class of all medial squags).

Hall [9] constructed a Steiner triple system in which each triangle generates a sub-ST(9), such a class is called
Hall triple systems. The corresponding squags of such class is the class of distributive squags. Klossik [10] gave a
construction of distributive squags as a vector space over GF(3) of dimension >4. Using the interchange property
to inject a distributive subsquag SQ(3") instead of a medial sub-SQ(3)”, we get a construction of a squag having
distributive subsquags but not medial. Consequently, we are faced with the question:

Is there a semi-planar squag having distributive (not medial) subsquags?
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