

Available online at www.sciencedirect.com

DISCRETE MATHEMATICS

Discrete Mathematics 309 (2009) 686-692

www.elsevier.com/locate/disc

On semi-planar Steiner quasigroups

M.H. Armanious, M.A. Elbiomy

Mathematics Department, Faculty of Science, Mansoura University, Mansoura, Egypt

Received 16 October 2006; received in revised form 25 December 2007; accepted 27 December 2007 Available online 4 March 2008

Abstract

A Steiner triple system (briefly **ST**) is in 1–1 correspondence with a Steiner quasigroup or squag (briefly **SQ**) [B. Ganter, H. Werner, Co-ordinatizing Steiner systems, Ann. Discrete Math. 7 (1980) 3–24; C.C. Lindner, A. Rosa, Steiner quadruple systems: A survey, Discrete Math. 21 (1979) 147–181]. It is well known that for each $n \equiv 1$ or 3 (mod 6) there is a planar squag of cardinality n [J. Doyen, Sur la structure de certains systems triples de Steiner, Math. Z. 111 (1969) 289–300]. Quackenbush expected that there should also be semi-planar squags [R.W. Quackenbush, Varieties of Steiner loops and Steiner quasigroups, Canad. J. Math. 28 (1976) 1187–1198]. A simple squag is semi-planar if every triangle either generates the whole squag or the 9-element squag. The first author has constructed a semi-planar squag of cardinality 3n for all n > 3 and $n \equiv 1$ or 3 (mod 6) [M.H. Armanious, Semi-planar Steiner quasigroups of cardinality 3n, Australas. J. Combin. 27 (2003) 13–27]. In fact, this construction supplies us with semi-planar squags having only nontrivial subsquags of cardinality 9. Our aim in this article is to give a recursive construction as $n \rightarrow 3n$ for semi-planar squags. This construction permits us to construct semi-planar squags having nontrivial subsquags of cardinality >9. Consequently, we may say that there are semi-planar $SQ(3^m n)$ s (or semi-planar $ST(3^m n)$ s) for each positive integer *m* and each $n \equiv 1$ or 3 (mod 6) with n > 3 having only medial subsquags at most of cardinality 3^{ν} (sub- $ST(3)^{\nu}$) for each $\nu \in \{1, 2, ..., m + 1\}$.

© 2008 Elsevier B.V. All rights reserved.

Keywords: Steiner triple system; Steiner quasigroup; Squag; Semi-planar triple systems; Semi-planar squag

1. Introduction

A Steiner quasigroup (or a squag) is a groupoid Q = (Q; .) satisfying the identities:

 $x \cdot x = x,$ $x \cdot y = y \cdot x,$ $x \cdot (x \cdot y) = y.$

A squag is called *medial*, if it satisfies the medial law:

 $(x \cdot y) \cdot (z \cdot w) = (x \cdot z) \cdot (y \cdot w).$

A Steiner triple system (briefly triple system) P is a pair (P; B), where P is a set of points and B is a set of 3element subsets of P called blocks such that for distinct points $p_1, p_2 \in P$, there is a unique block $b \in B$ such that $\{p_1, p_2\} \subset b$. Triple systems are in 1–1 correspondence with the squage [6,12].

The associated squag Q = (P; .) with the triple system P = (P; B) is defined by:

 $x \cdot x = x$ for all $x \in P$ and for each pair $\{x, y\} \subseteq P, x \cdot y = z$ if and only if $\{x, y, z\} \in B$ [6,11].

E-mail address: m.armanious@excite.com (M.H. Armanious).

⁰⁰¹²⁻³⁶⁵X/\$ - see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.disc.2007.12.097

If the cardinality of P is equal to n, then (P; B) and (P; .) are called of *order* n (or of *cardinality* n), and briefly written **ST**(n) and **SQ**(n), respectively.

It is well known that the necessary and sufficient condition for an ST(n) to exist is that $n \equiv 1$ or 3 (mod 6) [6,11]. In fact, there is a 1–1 correspondence between the subsquags (or sub-SQs) of the co-ordinatizing squag Q = (P; .) and the subspaces (or sub-STs) of the underlying triple system (P; B) [6].

A subsquag N = (N; .) of a squag Q = (Q; .) is called *normal* if and only if N is a congruence class of Q [6,12]. In the following theorem, Quackenbush [12] has given a necessary and sufficient condition for a large subsquag N_1 of a finite squag Q to be normal.

Theorem 1 ([12]). If $N_1 = (N_1; \cdot)$ and $N_2 = (N_2; \cdot)$ are two subsquags of a finite squag $Q = (Q; \cdot)$ such that $N_1 \cap N_2 = \emptyset$ and $|Q| = 3|N_1| = 3|N_2|$, then N_i ; for i = 1, 2 and 3 are normal subsquags, where $N_3 = (N_3; \cdot)$ and $N_3 = Q - (N_1 \cup N_2)$.

The author [3] has shown that there is a subsquag $N_1 = (N_1; ...)$ of a finite squag Q = (Q; ...) with $|Q| = 3|N_1|$ and N_1 is not normal. This means that a subsquag $N_1 = (N_1; ...)$ of a finite squag Q = (Q; ...) with $|Q| = 3|N_1|$ is normal if and only if the set $Q - N_1$ can be divided into two subsquags of Q of cardinality $|N_1|$.

Quackenbush [12] also proved that squags have permutable, regular, and Lagrangian congruences. Basic concepts of universal algebra and properties of squags can be found in [4,6,7].

A squag is called *simple* if it has only the trivial congruences. Guelzow [8] and the author [2] have constructed examples of non-simple squags (and not medial, of course).

An **ST** is *planer* if it is generated by every triangle and contains a triangle. A planer **ST**(*n*) exists for each $n \ge 7$ and $n \equiv 1$ or 3 (mod 6) [5]. Quackenbush has also shown in the next theorem that the only non-simple finite planar squag has 9 elements.

Theorem 2 ([12]). Let (Q; B) be a planar **ST**(n) and let $Q = (Q; \cdot)$ be the corresponding squag. Then either Q is simple or n = 9.

Quackenbush [12] has expected that there should be *semi-planar squags* that are simple squags and each of whose triangles either generates the whole squag or the 9-element subsquag. We observe that any planar squag (except of cardinality 9) is semi-planar and the inverse is not true.

The triple system ST(n) associated with a semi-planar squag SQ(n) will also be called semi-planar (for much more precision it may be called semi-9-planar). In other words, one may say that a triple system ST(n) is *semi-planar* if the ST(n) has no proper *a*-normal subsystems (see [13]) (equivalently, the corresponding SQ(n) is simple) and each triangle generates a sub-ST(9) or the whole triple system ST(n).

Indeed, for n = 7, 9, 13, 15 there are only planar squags. In [1] the first author has constructed semi-planar squags of cardinality *n* for all n > 9 and $n \equiv 3$ or 9 (mod 18) having only nontrivial subsquags of cardinality 9.

In this article, we give a recursive construction as $n \rightarrow 3n$ for semi-planar squags. This construction permits us to construct semi-planar squags having nontrivial subsquags of cardinality >9. In fact, we may construct a semi-planar squag having only medial subsquags of cardinality 3^m for each finite positive integer m.

2. Construction of semi-planar squags of cardinality 3n

In this section we describe the construction of semi-planar squags given in [1]. Let $T_i = (S_i; B_i)$ be a triple system with $S_i = (S_i; \cdot)$ the corresponding squag for i = 1, 2. The direct product $T_1 \times T_2$ of the two triple systems can be obtained from the underlying triple system of the direct product squag $S_1 \times S_2$ [6].

Let $T_0 = (Q_0; B_0)$ be a triple system of cardinality n, and let $Q_0 = \{a_1, a_2, \ldots, a_n\}$. We consider the direct product $T_0 \times C_3$, where C_3 is the ST(3) on the set $\{1, 2, 3\}$ and I_3 is its corresponding squag. The direct product $T_0 \times C_3 = (Q_1; B_1)$ is formed by the usual tripling of $(Q_0; B_0)$. Namely, $(Q_1; B_1)$ is an ST(3n), where $Q_1 = Q_0 \times \{1, 2, 3\}$ and the set of triples B_1 is obtained by:

 $B_1 = \{\{(a_i, 1), (a_j, 2), (a_k, 3)\} \mid \{a_i, a_j, a_k\} \in B_0 \text{ or } a_i = a_j = a_k\} \cup \{\{(a_i, i), (a_j, i), (a_k, i)\} \mid \{a_i, a_j, a_k\} \in B_0 \& i \in \{1, 2, 3\}\}.$

We denote the squag $(Q_0; \cdot_0)$ associated with T_0 by Q_0 and the squag $3 \times Q_0 = (Q_1; \times) = Q_0 \times I_3$ associated with $T_1 \times C_3 := (Q_1; B_1)$.

Without loss of generality, we may assume that $A_0 = \{a_1, a_2, a_3\}$ is a block of B_0 , then the triple system $(Q_0; B_0)$ contains the subsystem (A; R), where $A = A_0 \times C_3$ and the set of blocks R obtained by:

 $R = \{\{(a_1, i), (a_2, i), (a_3, i)\} : i \in \{1, 2, 3\}\}$ $\cup \{\{(x, 1), (x, 2), (x, 3)\} : x \in \{a_1, a_2, a_3\}\}$ $\cup \{\{(x, i), (y, j), (z, k)\} : \{x, y, z\} = \{a_1, a_2, a_3\} \& \{i, j, k\} = \{1, 2, 3\}\}.$

Define on the subset A the set of triples H as follows:

$$H = \{\{(a_3, 1), (a_3, 2), (a_1, 3)\}, \{(a_2, 1), (a_2, 2), (a_2, 3)\}, \{(a_1, 1), (a_1, 2), (a_3, 3)\}, \\ \{(a_3, 1), (a_2, 2), (a_1, 1)\}, \{(a_3, 2), (a_2, 3), (a_1, 2)\}, \{(a_1, 3), (a_2, 1), (a_3, 3)\}, \\ \{(a_3, 1), (a_2, 3), (a_3, 3)\}, \{(a_2, 2), (a_1, 2), (a_1, 3)\}, \{(a_1, 1), (a_2, 1), (a_3, 2)\}, \\ \{(a_1, 3), (a_2, 3), (a_1, 1)\}, \{(a_2, 2), (a_3, 2), (a_3, 3)\}, \{(a_1, 2), (a_2, 1), (a_3, 1)\}\}.$$

Each of (A; R) and (A; H) are isomorphic to the affine plane over **GF**(3). Note that the block $\{(a_2, 1), (a_2, 2), (a_2, 3)\}$ is the only block lying in the intersection of R and H.

Using the replacement property by interchanging the two sets of blocks R and H in $(Q_1; B_1)$, then we get again an $ST(3n) = (Q_1; \underline{B}_1)$, where $\underline{B}_1 := B_1 - R \cup H$ [6,11]. In fact, the sub-ST formed by the direct product of $\{a_1, a_2, a_3\}$ and $\{1, 2, 3\}$ is replaced with an isomorphic copy on the same set of points. We denote the squag associated with the $ST(3n) = (Q_1; \underline{B}_1)$ by $Q_1 = 3 \otimes_A Q_0 = (Q_1; .)$. Observe that the difference between the binary operations '×' and '.' depends only on the elements of A.

Theorem 3 ([1]). If Q_0 is a planar squag of cardinality n, then the constructed squag $Q_1 = 3 \otimes_A Q_0$ is semi-planar of cardinality 3 n for all $n \neq 3$ or 9 and $n \equiv 1$ or 3 (mod 6).

Moreover, in [1] an example of a semi-planar squag of cardinality 27 was given. According to Theorems 2 and 3, we may say that there is always a semi-planar SQ(3 n) for all n > 3 and $n \equiv 1$, or 3 (mod 6).

Also, according to the proof of Theorem 3 given in [1] we may directly deduce the following result.

Corollary 4. Any subsquag S of the constructed semi-planar squag $Q_1 = 3 \otimes_A Q_0$ satisfies that:

- 1. If $|S \cap A| = 3$, then $S \cap A = \{(a_2, 1), (a_2, 2), (a_2, 3)\}$.
- 2. If $S \supset A$, then $S = Q_1$.
- 3. The only nontrivial subsquags of $Q_1 = 3 \otimes_A Q_0$ are of cardinality 9.

In the next section, we will discuss the following problem: Is there a semi-planar squag having nontrivial subsquags of cardinality >9?

3. Recursive construction of semi-planar squags

According to Theorem 3 and Corollary 4, we may always assume that there is a semi-planar squag of cardinality n having only nontrivial subsquags of cardinality 9, for all n > 9 and $n \equiv 3$ or 9 (mod 18). In other words, the subsquags of the constructed semi-planar squag Q_1 are exactly of cardinality 1, 3, 9 and n. In the next theorem we generalize the results of Theorem 3 and Corollary 4 to construct semi-planar squags of cardinality $3^m n$ for n > 3 and $n \equiv 1$ or 3 (mod 6) having only medial subsquags at most of cardinality 3^v for each v = 1, 2, ... or m + 1 and for each positive integer m. If a squag Q has only medial subsquags of cardinality $3^{v'}$ for each $v' \le v$ (i.e.; all subsquags are medial with the maximum cardinality 3^v), we will say that Q is a squag with sub-SQ(3)^vs.

We note that if Q_0 is planar, then each sub-SQ(3) of Q_0 is only covered by the whole squag Q_0 , this means that each sub-SQ(3) of a planar squag Q_0 is a maximal subsquag in Q_0 . We attempt in the next lemma to show that the constructed semi-planar $Q_1 = 3 \otimes_A Q_0$ has a sub-SQ(3) = A_1 satisfying that the only subsquag covering A_1 is Q_1 .

Lemma 5. Let Q_0 be a planar squag of cardinality $n \neq 9$, then the constructed semi-planar squag $Q_1 = 3 \otimes_A Q_0$ has a maximal sub-SQ(3); i.e. Q_1 has a sub-SQ(3) covered only by Q_1 .

Proof. Let $A_1 = \{(a_1, 1), (b, 1), (c, 1)\}$ be a subsquag in $Q_1 = 3 \otimes_A Q_0$ with $b, c \notin A_0 = \{a_1, a_2, a_3\}$. We want to prove that the only subsquag containing A_1 is Q_1 .

(i) $S \cap A$ has more than one element or (ii) $S \cap A = \{(a_1, 1)\}$, where A_0 is a subsquag in Q_0 and $A = A_0 \times I_3$ is given as in the construction $Q_1 = 3 \otimes_A Q_0$.

For the case (i): We may say that $|S \cap A| = 3$ or 9. But we have $(a_1, 1) \in S \cap A$, hence if $|S \cap A| = 3$, then $S \cap A$ is a sub-**SQ**(3) $\neq \{(a_2, 1), (a_2, 2), (a_2, 3)\}$ contradicting Corollary 4 that the only possible case with the condition $|S \cap A| = 3$ is $S \cap A = \{(a_2, 1), (a_2, 2), (a_2, 3)\}$.

If $|S \cap A| = 9$, then $S \supseteq A$, moreover $S \supset A_1$, hence |S| > 9. Again, according to Corollary 4, the only subsquag containing A with cardinality >9 is the whole squag, hence $S = 3 \otimes_A Q_0$.

For the second case (ii) $S \cap A = \{(a_1, 1)\}$: Since $S \supset A_1$, there is an element $(x, i) \in S - A_1$. Hence we have 3 possible cases:

(1) (x, i) = (x, 1), (2) (x, i) = (x, 2) or (3) (x, i) = (x, 3).

For the case (1): Since $(x, 1) \notin A_1$, it follows that $x \notin \{a_1, b, c\}$. Hence S contains the 4-element subset $\{(x, 1), (a_1, 1), (b, 1), (c, 1)\}$, this means that |S| = 9 or $S = 3 \otimes_A Q_0$. But |S| = 9 means that the number of elements of the first components of S is greater than 3, which contradicts the fact that Q_0 is planar. Then $S = 3 \otimes_A Q_0$.

Case (2): For (x, i) = (x, 2), we have two cases $x \notin \{a_1, b, c\}$ or $x \in \{a_1, b, c\}$. If $x \notin \{a_1, b, c\}$, then S contains the 4 distinct elements $\{(x, 2), (a_1, 1), (b, 1), (c, 1)\}$. Hence the set of the first components $P_1(S)$ of S forms a subsquag of cardinality >4 of Q_0 . Since Q_0 is planar, it follows that $P_1(S) = Q_0$. Hence $S = 3 \otimes_A Q_0$ for the same reason given in the preceding case.

If $x \in \{a_1, b, c\}$, then x = b or c because of $(x, i) \in S - A_1$ and $S \cap A = \{(a_1, 1)\}$. But x = b or c tends to $(b, 2) \cdot (c, 1) = (a_1, 3)$ or $(c, 2) \cdot (b, 1) = (a_1, 3) \in S$ which contradicts the assumption that $S \cap A = \{(a_1, 1)\}$.

The same discussion holds for the case (3): (x, i) = (x, 3). Then the only possible case for a subsquag *S* containing the block $\{(a_1, 1), (b, 1), (c, 1)\}$ is the whole squag $3 \otimes_A Q_0$. This completes the proof. \Box

Note that we may prove the same result if we choose $A_1 = \{(a_1, 1), (b, 2), (c, 3)\}$ with $b, c \notin A_0 = \{a_1, a_2, a_3\}$.

For n = 9, the author [1] has constructed an example of a semi-planar SQ(27). It is also easy to find a sub-SQ(3) = A_1 covered by the whole squag SQ(27).

In the next theorem we assume that Q_m is a semi-planar squag and $3 \times Q_m := (Q_{m+1}; \times)$ is the direct product squag $Q_m \times I_3$. For any sub-SQ(3) = A_m of Q_m the set $A = A_m \times I_3$ forms a sub-SQ(9) in $3 \times Q_m = (Q_{m+1}; \times)$. Consider the same subsystems (A; R) and (A; H) exactly as in the construction $Q_1 = 3 \otimes_A Q_0$. So the construction $Q_{m+1} = 3 \otimes_A Q_m$ is still a squag (but not necessarily be semi-planar). Indeed, if we choose a sub-SQ(3) = $A_m = \{a_1, a_2, a_3\}$ of Q_m satisfying that A_m is only covered by the whole squag Q_m , then we will show in the next two theorems that the constructed squag $Q_{m+1} = 3 \otimes_A Q_m$ is semi-planar and preserves the first two properties as in Corollary 4.

Lemma 6. Assume that Q_m is a semi-planar squag having a sub-SQ(3) $A_m = \{a_1, a_2, a_3\}$ covered only by Q_m . Let S be a subsquag of the constructed squag $Q_{m+1} = 3 \otimes_A Q_m$, It follows that if $|S \cap A| = 3$, then $S \cap A = \{(a_2, 1), (a_2, 2), (a_2, 3)\}$.

Proof. Let $S \cap A$ be a 3-element subsquag $\neq \{(a_2, 1), (a_2, 2), (a_2, 3)\}$. We will show that any other choice of $S \cap A$ leads to a contradiction. The intersection $S \cap A$ belongs to one of two essential cases.

First, let
$$S \cap A = \{(a_1, 1), (a_2, 2), (a_3, 1)\}, \{(a_1, 3), (a_2, 1), (a_3, 3)\}, \{(a_1, 2), (a_2, 3), (a_3, 2)\}, \{(a_1, 1), (a_2, 1), (a_3, 2)\}$$
or $\{(a_1, 2), (a_2, 1), (a_3, 1)\}.$

In this case, the set of the second components of the elements of $S \cap A$ is a 2-element subset of $\{1, 2, 3\}$. But one can easily see that the set of second components of the elements of S - A consists of $\{1, 2, 3\}$ for any choice of $S \cap A$.

Let $\{i, j, k\} = \{1, 2, 3\}$ and let the maximum number of distinct elements of *S*, having second components *i*, be equal to *r*. Let the values of second components of the sub-**SQ**(3) of $S \cap A$ be *i*, *i* and *j*. If $(y, k) \in S - A$, then the product of any element (x, i) of *S* by (y, k) gives an element of *S* having a second component *j*; i.e. $(x, i) \cdot (y, k) = (z, j)$. This means that *S* contains exactly *r* elements having second components equal to *j*. Also, let $(y, j) \in S - A$, then the product $(x, i) \cdot (y, j) = (z, k)$, which means that *S* contains also *r* distinct elements having second components equal to *k*. Accordingly, we may deduce that *S* consists exactly of an *r*-element subset of

pairs with second components i, an r-element subset of pairs with second components j and an r-element subset of pairs with second components k.

Since the second components of $S \cap A$ are *i*, *i* and *j*, each of the *r*-element subsets of *S* with second components *j* or *k* forms a subsquag of *S*. According to Theorem 1, the third *r*-element subset of *S* with second component equal to *i* must be a subsquag of *S*, contradicting the choice that $S \cap A = \{(a_1, i), (a_2, i), (a_3, j)\}$. Therefore, this case is ruled out.

Next, let
$$S \cap A = \{(a_1, 1), (a_1, 2), (a_3, 3)\}, \{(a_3, 1), (a_2, 3), (a_3, 3)\}, \{(a_2, 2), (a_1, 2), (a_1, 3)\}, \{(a_1, 1), (a_2, 3), (a_1, 3)\}, \{(a_3, 1), (a_3, 2), (a_1, 3)\}$$
or $\{(a_2, 2), (a_3, 2), (a_3, 3)\}.$

For any choice of $S \cap A$, the set of second components of the elements of $S \cap A$ is the set $\{1, 2, 3\}$ or a 2-element subset of $\{1, 2, 3\}$. But one can directly see that the set of second components of the elements of S - A consists of all elements of $\{1, 2, 3\}$. Also, the index set of the first components of any choice of $S \cap A$ is a 2-element subset of $\{1, 2, 3\}$.

Let $\{i, j, k\} = \{1, 2, 3\}$ and let $S \cap A = \{(a_i, l), (a_i, n), (a_j, m)\}$ with $l \neq n$ and $l, n, m \in \{1, 2, 3\}$.

Let $(b, l) \in S - A$ and $(b, l) \times (a_i, l) = (b, l) \cdot (a_i, l) = (c, l)$, then $(b, l) \times (a_i, n) = (b, l) \cdot (a_i, n) = (c, k)$ with $\{l, n, k\} = \{1, 2, 3\}$. Hence $(c, l) \times (c, k) = (c, l) \cdot (c, k) = (c, n)$ and accordingly $(c, n) \times (b, l) = (c, n) \cdot (b, l) = (a_i, k) \in S$. On the other side, we have $(a_i, k) \in A$ contradicting the choice that $S \cap A = \{(a_i, l), (a_i, n), (a_j, m)\}$ and $\{l, n, k\} = \{1, 2, 3\}$. We will get the same contradiction, if we choose (b, n) or $(b, k) \in S - A$ instated of (b, l). Therefore, the second possible case of $S \cap A$ is also ruled out.

This means that the only possible case for a subsquag S of Q_{m+1} with $|S \cap A| = 3$ is $S \cap A = \{(a_2, 1), (a_2, 2), (a_2, 3)\}$. This completes the proof of the lemma. \Box

The next theorem permits us to construct semi-planar squags of cardinality $3^m n$ for $n \neq 3$ or 9 and each $n \equiv 1, 3$ (mod 6) with subsquags \cong **SQ**(3)^{ν} for all positive integers *m* and ν with $\nu \leq m + 1$.

Theorem 7. Let Q_m be a semi-planar squag of cardinality 3^m n with sub-SQ(3)^vs for some v = 1, 2, ... or m + 1. Also, let Q_m have a sub-SQ(3) = A_m covered by Q_m . Then the constructed squag $Q_{m+1} = 3 \otimes_A Q_m$ is semi-planar of cardinality 3^{m+1} n with sub-SQ(3)^{v+1}s for all possible values $n \neq 3$ or 9 and $n \equiv 1, 3 \pmod{6}$.

Proof. Let *S* be a subsquag of Q_{m+1} and *S* has more than one element. First we have to prove that *S* is a sub-SQ(3)^{ν +1} or $S = Q_{m+1}$. Let $A_m = \{a_1, a_2, a_3\}$ and $A = A_m \times C_3 = \{a_1, a_2, a_3\} \times \{1, 2, 3\}$. And choose the two sets of triples *R* and *H* that are defined exactly as in the construction $Q_1 = 3 \otimes_A Q_0$.

In general, there are only four essential cases for the relation between the subsquags *S* and *A*:

(i) $S \subseteq A$, (ii) $|S \cap A| = 0, 1$ or $S \cap A = \{(a_2, 1), (a_2, 2), (a_2, 3)\}$ (iii) $|S \cap A| = 3$, (iv) $A \subset S$.

(i) If $S \subseteq A$, then S is a sub-SQ(3) or a sub-SQ(9).

(ii) If $|S \cap A| = 0, 1$ or $S \cap A = \{(a_2, 1), (a_2, 2), (a_2, 3)\}$, then *S* is a subsquag in Q_{m+1} so also in $3 \times Q_m = Q_m \times \{1, 2, 3\}$, hence the set of first components of *S* is a subsquag of Q_m . But in these three cases given in (ii), the set of first components of $S \neq Q_m$ because the number of elements of the first component of $S \cap A < 3$. Hence the set of the first components of *S* forms a medial subsquag at most of cardinality 3^{ν} of Q_m for some positive integer $\nu \leq m+1$. Also, the second projection $P_2(S)$ consists of one element or three elements, then we may say that $S \cong SQ(3)^{\nu}$ or $SQ(3)^{\nu} \times \{1, 2, 3\} = SQ(3)^{\nu+1}$ of $3 \times Q_m$ and so also of Q_{m+1} .

(iii) According to the above lemma, we may say directly that $S \cap A = \{(a_2, 1), (a_2, 2), (a_2, 3)\}$. Then we get the same result as in the preceding case.

(iv) Note that the sub-SQ(3) $A_m = \{a_1, a_2, a_3\}$ is covered by Q_m . So $A = A_m \times I_3$ is a sub-SQ(9) of $3 \times Q_m$ satisfying that the only subsquag containing A is $3 \times Q_m$.

Let S = (S; .) be a subsquag satisfying $S \supset A$ and with $(S; B_S)$ the corresponding ST, then $(S; B_S - H \cup R)$ is a sub-ST of (Q; B) ((Q; B) is the ST associated with $3 \times Q_m$). As a consequence, the squag $S' = (S, \times)$ associated with $(S; B_S - H \cup R)$ is a subsquag of $3 \times Q_m$ containing A. Since $S \supset A$, it follows that S' is equal to $3 \times Q_m$. But the subsquag S in Q_{m+1} has the same set of points as the subsquag S' in $3 \times Q_m$. Because S differs only from S' in the binary operations '×' and '.'. This implies that S is equal to Q_{m+1} . So we may say that the only subsquag containing A is the whole squag Q_{m+1} .

Finally we may say that the semi-planar squag Q_{m+1} has only medial proper subsquags at most of cardinality $3^{\nu+1}$ for $\nu \leq m + 1$. This completes the proof of the first part of the theorem.

Now, we need only show that Q_{m+1} is a simple squag. Assume that Q_{m+1} has a proper congruence θ , since $[(x, i)]\theta$ is a subsquag of Q_{m+1} , then $[(x, i)]\theta$ must be a medial subsquag \cong SQ(3)^{ν'} with $\nu' - 1 \le \nu \le m + 1$. On the other hand, for any 3-element subsquag X of Q_{m+1} the set $[X]\theta$ forms a proper subsquag of Q_{m+1} and so forms a medial subsquag. Hence, if $\nu' - 1 = \nu = m + 1$, then $[(x, i)]\theta =$ SQ(3)^{m+2}. But we may choose a 3-element subsquag X satisfying that the subsquag $[X]\theta$ is of cardinality SQ(3)^{m+3}. This is a contradiction. Therefore, in light of the first part of the proof, we may deduce that $[(x, i)]\theta =$ SQ(3)^{ν'} with $\nu' \le \nu$ for some positive integer $\nu \le m + 1$.

If $[(x,i)]\theta = \mathbf{SQ}(3)^{\nu'}$ with $2 \le \nu' \le \nu$, so for $(a,1) \in A$, we have three cases: (a) $|[(a,1)]\theta \cap A| = 1$, (b) $|[(a,1)]\theta \cap A| = 3$ or (c) $A \subseteq [(a,1)]\theta$.

For case (a): $[A]\theta$ is a proper subsquag of Q_{m+1} , so $[A]\theta \cong \mathbf{SQ}(3)^{\nu'+2}$. According to the first part of the theorem if $\nu' = \nu = m$ or m + 1, it contradicts the preceding fact that the maximum cardinality of subsquags is 3^{m+1} . In general, for $2 \le \nu' \le \nu$, the subset $S_1 = \{(a_1, 1), (a_1, 2), (a_3, 3)\}$ forms a sub-SQ(3) $\subseteq A$, then $[S_1]\theta$ is a sub-SQ intersects A in S_1 which contradicts the result of Lemma 6.

For case (b): According to Lemma 6, we have $[(a_2, 1)]\theta \cap A = \{(a_2, 1), (a_2, 2), (a_2, 3)\}$. Again the set $B = (a_1, 1) \cdot [(a_2, 1)]\theta$ is a medial subsquag and \cong SQ(3)^{ν'}. But $(a_1, 1) \cdot \{(a_2, 1), (a_2, 2), (a_2, 3)\} = \{(a_3, 2), (a_3, 1), (a_1, 3)\} \subseteq B$ contradicts the result of Lemma 6 that $B \cap A$ must be equal to $\{(a_2, 1), (a_2, 2), (a_2, 3)\}$.

For case (c): $A \subseteq [(a, 1)]\theta$, but according to case (iv) of the first part we may say that $[(a, 1)]\theta$ is equal to A or Q_{m+1} . If $[(a, 1)]\theta$ is equal to A we choose $(b, 2) \notin A$, then $(b, 2) \cdot [(a, 1)]\theta$ is a sub-SQ(3)² i.e.; $(b, 2) \cdot [(a, 1)]\theta$ is a medial subsquag and so it is distributive. But $(b, 2) \cdot ((a_1, 1) \cdot (a_2, 1)) = (b, 2) \cdot (a_3, 2) = (c, 2)$ and $((b, 2) \cdot (a_1, 1)) \cdot ((b, 2) \cdot (a_2, 1)) = (c_1, 3) \cdot (c_2, 3) = (c_3, 3)$, which contradicts the fact that $(b, 2) \cdot [(a, 1)]\theta$ must be distributive. Consequently, these three cases (a), (b) and (c) are ruled out.

- If $|[(x, i)]\theta| = 3$, so for $(a, 1) \in A$, we have two essential cases:
- (I) $|[(a, 1)]\theta \cap A| = 1$, or (II) $|[(a, 1)]\theta \cap A| = 3$.

For case (I): Choose a block $X \in H - \{(a_2, 1), (a_2, 2), (a_2, 3)\}$, the subsquag $[X]\theta$ is an **SQ**(9) and $[X]\theta \cap A$ is a block $\in H - \{(a_2, 1), (a_2, 2), (a_2, 3)\}$, which contradicts the result of Lemma 6.

Case (II) tends to $[(a, 1)]\theta \cap A = [(a, 1)]\theta$, then θ_A is a nontrivial congruence on the sub-**SQ**(9) = A. Then we may choose $(a_i, j) \in A - \{(a_2, 1), (a_2, 2), (a_2, 3)\}$, so $[(a_i, j)]\theta \in H - \{(a_2, 1), (a_2, 2), (a_2, 3)\}$. By choosing a block X satisfying $X \cap A = (a_i, j)$, hence $[X]\theta$ is an **SQ**(9) containing a block in the set $H - \{(a_2, 1), (a_2, 2), (a_2, 3)\}$. That contradicts again the result of Lemma 6.

Therefore, the constructed squag $Q_{m+1} = 3 \otimes_A Q_m$ is simple. This completes the proof of the theorem. \Box

Now, we may say that the planar squag Q_0 is semi-planar with sub-SQ(3)s and has a sub-SQ(3) = A_0 covered by Q_0 (indeed each sub-SQ(3) covered by Q_0). According to Theorem 3, Corollary 4 and Lemma 5, the constructed squag $Q_1 = 3 \otimes_A Q_0$ is semi-planar with sub-SQ(3)²s and has a sub-SQ(3) = A_1 covered by Q_1 . To complete the requirements of the mathematical induction we have to prove that if the squag Q_m is semi-planar with sub-SQ(3)^vs for some positive integer $v \le m + 1$ and has a sub-SQ(3) = A_m covered by Q_m , then the constructed $Q_{m+1} = 3 \otimes_A Q_m$ is semi-planar with sub-SQ(3)^{v+1}s and has also a sub-SQ(3) = A_{m+1} covered by Q_{m+1} . The first part is already established by Theorem 7 and the second part will be proven in the next theorem.

Theorem 8. Let Q_m be a semi-planar squag with sub-SQ(3)^vs for some v = 1, 2, ..., m + 1 having a sub-SQ(3) = A_m covered by Q_m . Then the constructed semi-planar squag $Q_{m+1} = 3 \otimes_A Q_m$ has also a sub-SQ(3) = A_{m+1} covered by Q_{m+1} .

Proof. Let $A_m = \{a_1, a_2, a_3\}$ be a sub-SQ(3) of Q_m covered only by Q_m . Also, let A be the set $A_m \times \{1, 2, 3\}$ of Q_{m+1} . According to Theorem 7, the construction $Q_{m+1} = 3 \otimes_A Q_m$ is a semi-planar squag having sub-SQ(3)^{ν +1}s. Consider the subsquag $A_{m+1} = \{(a_1, 1), (b, 2), (c, 3)\}$ of Q_{m+1} with b and $c \notin A_m$. We will show that the only subsquag containing A_{m+1} is Q_{m+1} .

Suppose *S* be a subsquag of Q_{m+1} containing A_{m+1} . We have three cases:

(i) $S \cap A = A$, (ii) $|S \cap A| = 3$ or (iii) $S \cap A = \{(a_1, 1)\}$.

Case (i) $S \cap A = A$ means that $S \supset A$, according to the result of case (iv) of the proof of Theorem 7 that Q_{m+1} is the only subsquag containing A, hence $S = Q_{m+1}$.

Case (ii) $|S \cap A| = 3$, according to Lemma 6 we have $S \cap A = \{(a_2, 1), (a_2, 2), (a_2, 3)\}$, which contradicts that $(a_1, 1) \in S \cap A$. Hence, this case is ruled out.

For the case (iii): If $S \cap A = \{(a_1, 1)\}$, then *S* is a subsquag of $3 \times Q_m$ and also of Q_{m+1} . Assume that |S| > 3. According to Theorem 7, $S \cong SQ(3)^{\nu'+1}$ for $1 \le \nu' \le \nu \le m+1$. Let $P_1(S)$ and $P_2(S)$ be the projections of *S* on the first and second components, respectively. Then $P_1(S) \cong SQ(3)^{\nu'}$ for $\nu' \le \nu$ and $P_2(S) = \{1, 2, 3\}$. Note that *S* contains more than one element with second component i = 1, 2 or 3. Similar to the proof of case (ii) of the preceding theorem, we may say that $S \cong SQ(3)^{\nu'+1} = SQ(3)^{\nu'} \times \{1, 2, 3\}$, where $SQ(3)^{\nu'+1}$ is a subsquag of both $3 \times Q_m$ and Q_{m+1} . Also, we have $P_1(S) \cap P_1(A) = \{a_1\}$, so $S \cap A = \{(a_1, 1), (a_1, 2), (a_1, 3)\}$, which is impossible. Because of $S \cap A = \{(a_1, 1)\}$ and also the result of Lemma 6 says that the set $\{(a_1, 1), (a_1, 2), (a_1, 3)\}$ does not form a subsquag of Q_{m+1} . Therefore, this case is also ruled out.

This means that the only possible case for $S \supseteq A_{m+1}$ is $S \supseteq A$. So we go back to the result of case (i) that S must be equal to Q_{m+1} . This completes the proof of the lemma. \Box

According to the 1–1 correspondence between squags and triple systems, we may say that there are semi-planar $TS(3^m n)$ s having only subsystems $\cong ST(3)^{\nu}s$ for each positive integer $\nu \le m + 1$ and for each possible number n ($n \ne 9$ and $n \equiv 1$ or 3 (mod 6)). These triple systems satisfy that each triangle generates a sub-ST(9) or the whole triple system and whose corresponding squag is simple.

For n = 9, the author [1] has constructed an example of semi-planar squag of cardinality 27. Also, it easy to find a sub-**SQ**(3) = A_1 covered by the whole squag, so we may apply Lemma 6, Theorems 7 and 8 to get a semi-planar squag of cardinality 81 having only medial subsquags of cardinality 3³ at most. Equivalently, there are three semi-planar **ST**(81)s with subsystems \cong **ST**(3)^{ν} s for $\nu = 1, 2$ and 3.

Finally, one may say that there is a semi-planar $SQ(3^m n) := Q_{m,\nu}$ for all n > 3 and $n \equiv 1$ or 3 (mod 6) and each positive integer *m* with medial subsquags of maximum cardinality 3^{ν} for each positive integer $\nu \le m + 1$.

Quackenbush [12] proved that the variety V(Q) generated by a simple planar squag Q has only two subdirectly irreducible squags Q and the 3-element squag SQ(3) and then V(Q) covers the smallest nontrivial subvariety (the class of all medial squags).

Similarly, if $Q_{m,\nu} = \mathbf{SQ}(3^m n)$ is a semi-planar squag having only medial subsquags of cardinality 3^{ν} at most, then one can prove that the variety $\mathbf{V}(Q_{m,\nu})$ generated by $Q_{m,\nu}$ has only two subdirectly irreducible squags $Q_{m,\nu}$ and the 3-element squag $\mathbf{SQ}(3)$. And hence we deduce the same result that each semi-planar squag $Q_{m,\nu}$ with sub- $\mathbf{SQ}(3)^{\nu}$ s for each positive integer $\nu \leq m + 1$ generates a variety $\mathbf{V}(Q_{m,\nu})$ which covers also the smallest nontrivial subvariety (the class of all medial squags).

Hall [9] constructed a Steiner triple system in which each triangle generates a sub-**ST**(9), such a class is called Hall triple systems. The corresponding squags of such class is the class of distributive squags. Klossik [10] gave a construction of distributive squags as a vector space over **GF**(3) of dimension ≥ 4 . Using the interchange property to inject a distributive subsquag **SQ**(3^{ν}) instead of a medial sub-SQ(3^{ν} , we get a construction of a squag having distributive subsquags but not medial. Consequently, we are faced with the question:

Is there a semi-planar squag having distributive (not medial) subsquags?

References

- [1] M.H. Armanious, Semi-planar Steiner quasigroups of cardinality 3n, Australas. J. Combin. 27 (2003) 13–27.
- [2] M.H. Armanious, S.F. Tadros, N.M. Dhshan, Subdirectly irreducible squags of cardinality 3n, Ars Combin. 64 (2002) 199–210.
- [3] M.H. Armanious, Subsquags and normal subsquags, Ars Combin. 59 (2001) 241–243.
- [4] R.H. Bruck, A Survey of Binary Systems, Springer-Verlag, Berlin, Heidelberg, New York, 1971.
- [5] J. Doyen, Sur la structure de certains systems triples de Steiner, Math. Z. 111 (1969) 289-300.
- [6] B. Ganter, H. Werner, Co-ordinatizing Steiner systems, Ann. Discrete Math. 7 (1980) 3-24.
- [7] G. Gratzer, Universal Algebra, 2nd ed., Springer-Verlag, New York, Heidelberg, Berlin, 1979.
- [8] A.J. Guelzow, Representation of finite nilpotent squags, Discrete Math. 154 (1996) 63-76.
- [9] M. Hall Jr., Automorphism of Steiner triple systems, IBM J. 5 (1960) 460-472.
- [10] S. Klossek, Kommutative Spiegelungsraume, Mitt. Math. Sem. Univ. Giessen 117 (1975).
- [11] C.C. Lindner, A. Rosa, Steiner quadruple systems: A survey, Discrete Math. 21 (1979) 147-181.
- [12] R.W. Quackenbush, Varieties of Steiner loops and Steiner quasigroups, Canad. J. Math. 28 (1976) 1187-1198.
- [13] R.W. Quackenbush, Nilpotent block design I: Basic concepts for Steiner triple and quadruple systems, J. Combin. Des. 7 (1999) 157–171.