DISCRETE
 MATHEMATICS

On semi-planar Steiner quasigroups

M.H. Armanious, M.A. Elbiomy
Mathematics Department, Faculty of Science, Mansoura University, Mansoura, Egypt

Received 16 October 2006; received in revised form 25 December 2007; accepted 27 December 2007
Available online 4 March 2008

Abstract

A Steiner triple system (briefly ST) is in 1-1 correspondence with a Steiner quasigroup or squag (briefly SQ) [B. Ganter, H. Werner, Co-ordinatizing Steiner systems, Ann. Discrete Math. 7 (1980) 3-24; C.C. Lindner, A. Rosa, Steiner quadruple systems: A survey, Discrete Math. $21(1979) 147-181]$. It is well known that for each $n \equiv 1$ or $3(\bmod 6)$ there is a planar squag of cardinality n [J. Doyen, Sur la structure de certains systems triples de Steiner, Math. Z. 111 (1969) 289-300]. Quackenbush expected that there should also be semi-planar squags [R.W. Quackenbush, Varieties of Steiner loops and Steiner quasigroups, Canad. J. Math. 28 (1976) 1187-1198]. A simple squag is semi-planar if every triangle either generates the whole squag or the 9 -element squag. The first author has constructed a semi-planar squag of cardinality $3 n$ for all $n>3$ and $n \equiv 1$ or $3(\bmod 6)$ [M.H. Armanious, Semi-planar Steiner quasigroups of cardinality 3n, Australas. J. Combin. 27 (2003) 13-27]. In fact, this construction supplies us with semi-planar squags having only nontrivial subsquags of cardinality 9 . Our aim in this article is to give a recursive construction as $n \rightarrow 3 n$ for semi-planar squags. This construction permits us to construct semi-planar squags having nontrivial subsquags of cardinality >9. Consequently, we may say that there are semi-planar $\mathbf{S Q}\left(3^{m} n\right)$ s (or semi-planar $\mathbf{S T}\left(3^{m} n\right)$ s) for each positive integer m and each $n \equiv 1$ or $3(\bmod 6)$ with $n>3$ having only medial subsquags at most of cardinality $3^{\nu}\left(\operatorname{sub}-\mathbf{S T}(3)^{\nu}\right)$ for each $v \in\{1,2, \ldots, m+1\}$.

(c) 2008 Elsevier B.V. All rights reserved.

Keywords: Steiner triple system; Steiner quasigroup; Squag; Semi-planar triple systems; Semi-planar squag

1. Introduction

A Steiner quasigroup (or a squag) is a groupoid $\boldsymbol{Q}=(Q ;$.) satisfying the identities:

$$
x \cdot x=x, \quad x \cdot y=y \cdot x, \quad x \cdot(x \cdot y)=y
$$

A squag is called medial, if it satisfies the medial law:

$$
(x \cdot y) \cdot(z \cdot w)=(x \cdot z) \cdot(y \cdot w)
$$

A Steiner triple system (briefly triple system) \boldsymbol{P} is a pair $(P ; B)$, where P is a set of points and B is a set of 3element subsets of P called blocks such that for distinct points $p_{1}, p_{2} \in P$, there is a unique block $b \in B$ such that $\left\{p_{1}, p_{2}\right\} \subseteq b$. Triple systems are in $1-1$ correspondence with the squags [6,12].

The associated squag $\boldsymbol{Q}=(P ;$. $)$ with the triple system $\boldsymbol{P}=(P ; B)$ is defined by:

$$
x . x=x \quad \text { for all } x \in P \text { and for each pair }\{x, y\} \subseteq P, x \cdot y=z \text { if and only if }\{x, y, z\} \in B[6,11] .
$$

[^0]If the cardinality of P is equal to n, then $(P ; B)$ and $(P ;$.$) are called of order n$ (or of cardinality n), and briefly written $\mathbf{S T}(n)$ and $\mathbf{S Q}(n)$, respectively.

It is well known that the necessary and sufficient condition for an $\mathbf{S T}(n)$ to exist is that $n \equiv 1$ or $3(\bmod 6)[6,11]$. In fact, there is a $1-1$ correspondence between the subsquags (or sub-SQs) of the co-ordinatizing squag $\boldsymbol{Q}=(P ;$. and the subspaces (or sub-STs) of the underlying triple system $(P ; B)[6]$.

A subsquag $\boldsymbol{N}=(N ;$.$) of a squag \boldsymbol{Q}=(Q ;$.$) is called normal if and only if \boldsymbol{N}$ is a congruence class of $\boldsymbol{Q}[6,12]$. In the following theorem, Quackenbush [12] has given a necessary and sufficient condition for a large subsquag $N_{\mathbf{1}}$ of a finite squag \boldsymbol{Q} to be normal.

Theorem 1 ([12]). If $\boldsymbol{N}_{\mathbf{1}}=\left(N_{1} ;\right.$.) and $\boldsymbol{N}_{\mathbf{2}}=\left(N_{2} ;\right.$.) are two subsquags of a finite squag $\boldsymbol{Q}=(Q ;$.) such that $N_{1} \cap N_{2}=\varnothing$ and $|Q|=3\left|N_{1}\right|=3\left|N_{2}\right|$, then N_{i}; for $i=1,2$ and 3 are normal subsquags, where $N_{3}=\left(N_{3} ;.\right)$ and $N_{3}=Q-\left(N_{1} \cup N_{2}\right)$.

The author [3] has shown that there is a subsquag $\boldsymbol{N}_{\mathbf{1}}=\left(N_{1} ;.\right)$ of a finite squag $\boldsymbol{Q}=(Q ;$.$) with |Q|=3\left|N_{1}\right|$ and N_{1} is not normal. This means that a subsquag $N_{1}=\left(N_{1} ;.\right)$ of a finite squag $\boldsymbol{Q}=(Q ;$.$) with |Q|=3\left|N_{1}\right|$ is normal if and only if the set $Q-N_{1}$ can be divided into two subsquags of \boldsymbol{Q} of cardinality $\left|N_{1}\right|$.

Quackenbush [12] also proved that squags have permutable, regular, and Lagrangian congruences. Basic concepts of universal algebra and properties of squags can be found in $[4,6,7]$.

A squag is called simple if it has only the trivial congruences. Guelzow [8] and the author [2] have constructed examples of non-simple squags (and not medial, of course).

An ST is planer if it is generated by every triangle and contains a triangle. A planer $\mathbf{S T}(n)$ exists for each $n \geq 7$ and $n \equiv 1$ or $3(\bmod 6)[5]$. Quackenbush has also shown in the next theorem that the only non-simple finite planar squag has 9 elements.

Theorem 2 ([12]). Let $(Q ; B)$ be a planar $\mathbf{S T}(n)$ and let $\boldsymbol{Q}=(Q ;$.) be the corresponding squag. Then either \boldsymbol{Q} is simple or $n=9$.

Quackenbush [12] has expected that there should be semi-planar squags that are simple squags and each of whose triangles either generates the whole squag or the 9 -element subsquag. We observe that any planar squag (except of cardinality 9) is semi-planar and the inverse is not true.

The triple system $\mathbf{S T}(n)$ associated with a semi-planar squag $\mathbf{S Q}(n)$ will also be called semi-planar (for much more precision it may be called semi-9-planar). In other words, one may say that a triple system $\mathbf{S T}(n)$ is semi-planar if the $\mathbf{S T}(n)$ has no proper a-normal subsystems (see [13]) (equivalently, the corresponding $\mathbf{S Q}(n)$ is simple) and each triangle generates a sub-ST(9) or the whole triple system $\mathbf{S T}(n)$.

Indeed, for $n=7,9,13,15$ there are only planar squags. In [1] the first author has constructed semi-planar squags of cardinality n for all $n>9$ and $n \equiv 3$ or $9(\bmod 18)$ having only nontrivial subsquags of cardinality 9 .

In this article, we give a recursive construction as $n \rightarrow 3 n$ for semi-planar squags. This construction permits us to construct semi-planar squags having nontrivial subsquags of cardinality >9. In fact, we may construct a semi-planar squag having only medial subsquags of cardinality 3^{m} for each finite positive integer m.

2. Construction of semi-planar squags of cardinality $3 n$

In this section we describe the construction of semi-planar squags given in [1]. Let $\boldsymbol{T}_{i}=\left(S_{i} ; B_{i}\right)$ be a triple system with $\boldsymbol{S}_{\boldsymbol{i}}=\left(S_{i} ;.\right)$ the corresponding squag for $i=1,2$. The direct product $\boldsymbol{T}_{\mathbf{1}} \times \boldsymbol{T}_{2}$ of the two triple systems can be obtained from the underlying triple system of the direct product squag $\boldsymbol{S}_{\mathbf{1}} \times \boldsymbol{S}_{\mathbf{2}}$ [6].

Let $\boldsymbol{T}_{\mathbf{0}}=\left(Q_{0} ; B_{0}\right)$ be a triple system of cardinality n, and let $Q_{0}=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. We consider the direct product $\boldsymbol{T}_{\mathbf{0}} \times \boldsymbol{C}_{\mathbf{3}}$, where $\boldsymbol{C}_{\mathbf{3}}$ is the $\mathbf{S T}(3)$ on the set $\{1,2,3\}$ and $\boldsymbol{I}_{\mathbf{3}}$ is its corresponding squag. The direct product $\boldsymbol{T}_{\mathbf{0}} \times \boldsymbol{C}_{\mathbf{3}}=\left(Q_{1} ; B_{1}\right)$ is formed by the usual tripling of ($Q_{0} ; B_{0}$). Namely, $\left(Q_{1} ; B_{1}\right)$ is an $\mathbf{S T}(3 n)$, where $Q_{1}=Q_{0} \times\{1,2,3\}$ and the set of triples B_{1} is obtained by:

$$
\begin{aligned}
B_{1} & =\left\{\left\{\left(a_{i}, 1\right),\left(a_{j}, 2\right),\left(a_{k}, 3\right)\right\} \mid\left\{a_{i}, a_{j}, a_{k}\right\} \in B_{0} \text { or } a_{i}=a_{j}=a_{k}\right\} \\
& \cup\left\{\left\{\left(a_{i}, i\right),\left(a_{j}, i\right),\left(a_{k}, i\right)\right\} \mid\left\{a_{i}, a_{j}, a_{k}\right\} \in B_{0} \& i \in\{1,2,3\}\right\} .
\end{aligned}
$$

We denote the squag $\left(Q_{0} ; \cdot \boldsymbol{0}\right)$ associated with $\boldsymbol{T}_{\mathbf{0}}$ by $\boldsymbol{Q}_{\mathbf{0}}$ and the squag $\mathbf{3} \times \boldsymbol{Q}_{\mathbf{0}}=\left(Q_{1} ; \times\right)=\boldsymbol{Q}_{\mathbf{0}} \times \boldsymbol{I}_{\mathbf{3}}$ associated with $\boldsymbol{T}_{\mathbf{1}} \times \boldsymbol{C}_{\mathbf{3}}:=\left(Q_{1} ; B_{1}\right)$.

Without loss of generality, we may assume that $A_{0}=\left\{a_{1}, a_{2}, a_{3}\right\}$ is a block of B_{0}, then the triple system ($Q_{0} ; B_{0}$) contains the subsystem $(A ; R)$, where $A=A_{0} \times C_{3}$ and the set of blocks R obtained by:

$$
\begin{aligned}
R & =\left\{\left\{\left(a_{1}, i\right),\left(a_{2}, i\right),\left(a_{3}, i\right)\right\}: i \in\{1,2,3\}\right\} \\
& \cup\left\{\{(x, 1),(x, 2),(x, 3)\}: x \in\left\{a_{1}, a_{2}, a_{3}\right\}\right\} \\
& \cup\left\{\{(x, i),(y, j),(z, k)\}:\{x, y, z\}=\left\{a_{1}, a_{2}, a_{3}\right\} \&\{i, j, k\}=\{1,2,3\}\right\} .
\end{aligned}
$$

Define on the subset A the set of triples H as follows:

$$
\begin{aligned}
H= & \left\{\left\{\left(a_{3}, 1\right),\left(a_{3}, 2\right),\left(a_{1}, 3\right)\right\},\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\},\left\{\left(a_{1}, 1\right),\left(a_{1}, 2\right),\left(a_{3}, 3\right)\right\},\right. \\
& \left\{\left(a_{3}, 1\right),\left(a_{2}, 2\right),\left(a_{1}, 1\right)\right\},\left\{\left(a_{3}, 2\right),\left(a_{2}, 3\right),\left(a_{1}, 2\right)\right\},\left\{\left(a_{1}, 3\right),\left(a_{2}, 1\right),\left(a_{3}, 3\right)\right\}, \\
& \left\{\left(a_{3}, 1\right),\left(a_{2}, 3\right),\left(a_{3}, 3\right)\right\},\left\{\left(a_{2}, 2\right),\left(a_{1}, 2\right),\left(a_{1}, 3\right)\right\},\left\{\left(a_{1}, 1\right),\left(a_{2}, 1\right),\left(a_{3}, 2\right)\right\}, \\
& \left.\left\{\left(a_{1}, 3\right),\left(a_{2}, 3\right),\left(a_{1}, 1\right)\right\},\left\{\left(a_{2}, 2\right),\left(a_{3}, 2\right),\left(a_{3}, 3\right)\right\},\left\{\left(a_{1}, 2\right),\left(a_{2}, 1\right),\left(a_{3}, 1\right)\right\}\right\} .
\end{aligned}
$$

Each of $(A ; R)$ and $(A ; H)$ are isomorphic to the affine plane over $\mathbf{G F}(3)$. Note that the block $\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$ is the only block lying in the intersection of R and H.

Using the replacement property by interchanging the two sets of blocks R and H in ($Q_{1} ; B_{1}$), then we get again an $\mathbf{S T}(3 n)=\left(Q_{1} ; \underline{B}_{1}\right)$, where $\underline{B}_{1}:=B_{1}-R \cup H[6,11]$. In fact, the sub-ST formed by the direct product of $\left\{a_{1}, a_{2}, a_{3}\right\}$ and $\{1,2,3\}$ is replaced with an isomorphic copy on the same set of points. We denote the squag associated with the $\mathbf{S T}(3 n)=\left(Q_{1} ; \underline{B}_{1}\right)$ by $\boldsymbol{Q}_{\mathbf{1}}=\mathbf{3} \otimes_{\boldsymbol{A}} \boldsymbol{Q}_{\mathbf{0}}=\left(Q_{1} ;.\right)$. Observe that the difference between the binary operations ' \times ' and '. ' depends only on the elements of A.

Theorem 3 ([1]). If $\boldsymbol{Q}_{\mathbf{0}}$ is a planar squag of cardinality n, then the constructed squag $\boldsymbol{Q}_{\mathbf{1}}=\mathbf{3} \otimes_{\boldsymbol{A}} \boldsymbol{Q}_{\mathbf{0}}$ is semi-planar of cardinality $3 n$ for all $n \neq 3$ or 9 and $n \equiv 1$ or $3(\bmod 6)$.

Moreover, in [1] an example of a semi-planar squag of cardinality 27 was given. According to Theorems 2 and 3, we may say that there is always a semi-planar $\mathbf{S Q}(3 n)$ for all $n>3$ and $n \equiv 1$, or $3(\bmod 6)$.

Also, according to the proof of Theorem 3 given in [1] we may directly deduce the following result.
Corollary 4. Any subsquag \boldsymbol{S} of the constructed semi-planar squag $\boldsymbol{Q}_{\mathbf{1}}=\mathbf{3} \otimes_{A} \boldsymbol{Q}_{\mathbf{0}}$ satisfies that:

1. If $|S \cap A|=3$, then $S \cap A=\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$.
2. If $S \supset A$, then $\boldsymbol{S}=\boldsymbol{Q}_{\mathbf{1}}$.
3. The only nontrivial subsquags of $\boldsymbol{Q}_{\mathbf{1}}=\mathbf{3} \otimes_{\boldsymbol{A}} \boldsymbol{Q}_{\mathbf{0}}$ are of cardinality 9 .

In the next section, we will discuss the following problem:
Is there a semi-planar squag having nontrivial subsquags of cardinality >9 ?

3. Recursive construction of semi-planar squags

According to Theorem 3 and Corollary 4, we may always assume that there is a semi-planar squag of cardinality n having only nontrivial subsquags of cardinality 9 , for all $n>9$ and $n \equiv 3$ or $9(\bmod 18)$. In other words, the subsquags of the constructed semi-planar squag Q_{1} are exactly of cardinality $1,3,9$ and n. In the next theorem we generalize the results of Theorem 3 and Corollary 4 to construct semi-planar squags of cardinality $3^{m} n$ for $n>3$ and $n \equiv 1$ or 3 $(\bmod 6)$ having only medial subsquags at most of cardinality 3^{ν} for each $v=1,2, \ldots$ or $m+1$ and for each positive integer m. If a squag \boldsymbol{Q} has only medial subsquags of cardinality $3^{v^{\prime}}$ for each $v^{\prime} \leq v$ (i.e.; all subsquags are medial with the maximum cardinality 3^{ν}), we will say that \boldsymbol{Q} is a squag with sub- $\mathbf{S Q}(3)^{\nu}$ s.

We note that if $\boldsymbol{Q}_{\mathbf{0}}$ is planar, then each sub- $\mathbf{S Q}(3)$ of $\boldsymbol{Q}_{\mathbf{0}}$ is only covered by the whole squag $\boldsymbol{Q}_{\mathbf{0}}$, this means that each sub-SQ(3) of a planar squag $\boldsymbol{Q}_{\mathbf{0}}$ is a maximal subsquag in $\boldsymbol{Q}_{\mathbf{0}}$. We attempt in the next lemma to show that the constructed semi-planar $\boldsymbol{Q}_{\mathbf{1}}=\mathbf{3} \otimes_{A} \boldsymbol{Q}_{\mathbf{0}}$ has a sub- $\mathbf{S Q}(3)=\boldsymbol{A}_{\mathbf{1}}$ satisfying that the only subsquag covering $\boldsymbol{A}_{\mathbf{1}}$ is $\boldsymbol{Q}_{\mathbf{1}}$.

Lemma 5. Let $\boldsymbol{Q}_{\mathbf{0}}$ be a planar squag of cardinality $n \neq 9$, then the constructed semi-planar squag $Q_{\mathbf{1}}=\mathbf{3} \otimes_{\boldsymbol{A}} \boldsymbol{Q}_{\mathbf{0}}$ has a maximal sub-SQ(3); i.e. $\boldsymbol{Q}_{\mathbf{1}}$ has a sub-SQ(3) covered only by $\boldsymbol{Q}_{\mathbf{1}}$.

Proof. Let $A_{1}=\left\{\left(a_{1}, 1\right),(b, 1),(c, 1)\right\}$ be a subsquag in $\boldsymbol{Q}_{\mathbf{1}}=\mathbf{3} \otimes_{\boldsymbol{A}} \boldsymbol{Q}_{\mathbf{0}}$ with $b, c \notin A_{0}=\left\{a_{1}, a_{2}, a_{3}\right\}$. We want to prove that the only subsquag containing A_{1} is $\boldsymbol{Q}_{\mathbf{1}}$.

Assume that there is a subsquag $S \supset A_{1}$. Then we have two cases:
(i) $S \cap A$ has more than one element or (ii) $S \cap A=\left\{\left(a_{1}, 1\right)\right\}$, where $\boldsymbol{A}_{\mathbf{0}}$ is a subsquag in $\boldsymbol{Q}_{\mathbf{0}}$ and $\boldsymbol{A}=\boldsymbol{A}_{\mathbf{0}} \times \boldsymbol{I}_{\mathbf{3}}$ is given as in the construction $\boldsymbol{Q}_{\mathbf{1}}=\mathbf{3} \otimes_{\boldsymbol{A}} \boldsymbol{Q}_{\mathbf{0}}$.

For the case (i): We may say that $|S \cap A|=3$ or 9 . But we have $\left(a_{1}, 1\right) \in S \cap A$, hence if $|S \cap A|=3$, then $S \cap A$ is a sub-SQ $(3) \neq\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$ contradicting Corollary 4 that the only possible case with the condition $|S \cap A|=3$ is $S \cap A=\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$.

If $|S \cap A|=9$, then $S \supseteq A$, moreover $S \supset A_{1}$, hence $|S|>9$. Again, according to Corollary 4, the only subsquag containing A with cardinality >9 is the whole squag, hence $S=3 \otimes_{A} Q_{0}$.

For the second case (ii) $S \cap A=\left\{\left(a_{1}, 1\right)\right\}$: Since $S \supset A_{1}$, there is an element $(x, i) \in S-A_{1}$. Hence we have 3 possible cases:
(1) $(x, i)=(x, 1)$,
(2) $(x, i)=(x, 2)$ or
(3) $(x, i)=(x, 3)$.

For the case (1): Since $(x, 1) \notin A_{1}$, it follows that $x \notin\left\{a_{1}, b, c\right\}$. Hence S contains the 4-element subset $\left\{(x, 1),\left(a_{1}, 1\right),(b, 1),(c, 1)\right\}$, this means that $|S|=9$ or $S=\mathbf{3} \otimes_{\boldsymbol{A}} \boldsymbol{Q}_{\mathbf{0}}$. But $|S|=9$ means that the number of elements of the first components of \boldsymbol{S} is greater than 3 , which contradicts the fact that $\boldsymbol{Q}_{\mathbf{0}}$ is planar. Then $\boldsymbol{S}=\mathbf{3} \boldsymbol{\otimes}_{\boldsymbol{A}} \boldsymbol{Q}_{\mathbf{0}}$.

Case (2): For $(x, i)=(x, 2)$, we have two cases $x \notin\left\{a_{1}, b, c\right\}$ or $x \in\left\{a_{1}, b, c\right\}$. If $x \notin\left\{a_{1}, b, c\right\}$, then S contains the 4 distinct elements $\left\{(x, 2),\left(a_{1}, 1\right),(b, 1),(c, 1)\right\}$. Hence the set of the first components $\mathbf{P}_{\mathbf{1}}(\boldsymbol{S})$ of \boldsymbol{S} forms a subsquag of cardinality >4 of $\boldsymbol{Q}_{\mathbf{0}}$. Since $\boldsymbol{Q}_{\mathbf{0}}$ is planar, it follows that $\mathbf{P}_{1}(\boldsymbol{S})=\boldsymbol{Q}_{\mathbf{0}}$. Hence $\boldsymbol{S}=\mathbf{3} \boldsymbol{Q}_{\boldsymbol{A}} \boldsymbol{Q}_{\mathbf{0}}$ for the same reason given in the preceding case.

If $x \in\left\{a_{1}, b, c\right\}$, then $x=b$ or c because of $(x, i) \in S-A_{1}$ and $S \cap A=\left\{\left(a_{1}, 1\right)\right\}$. But $x=b$ or c tends to $(b, 2) \cdot(c, 1)=\left(a_{1}, 3\right)$ or $(c, 2) \cdot(b, 1)=\left(a_{1}, 3\right) \in S$ which contradicts the assumption that $S \cap A=\left\{\left(a_{1}, 1\right)\right\}$.

The same discussion holds for the case (3): $(x, i)=(x, 3)$. Then the only possible case for a subsquag \boldsymbol{S} containing the block $\left\{\left(a_{1}, 1\right),(b, 1),(c, 1)\right\}$ is the whole squag $\mathbf{3} \boldsymbol{\otimes}_{\boldsymbol{A}} \boldsymbol{Q}_{\mathbf{0}}$. This completes the proof.

Note that we may prove the same result if we choose $A_{1}=\left\{\left(a_{1}, 1\right),(b, 2),(c, 3)\right\}$ with $b, c \notin A_{0}=\left\{a_{1}, a_{2}, a_{3}\right\}$.
For $n=9$, the author [1] has constructed an example of a semi-planar $\mathbf{S Q}(27)$. It is also easy to find a sub$\mathbf{S Q}(3)=\boldsymbol{A}_{\mathbf{1}}$ covered by the whole squag $\mathbf{S Q}(27)$.

In the next theorem we assume that $\boldsymbol{Q}_{\boldsymbol{m}}$ is a semi-planar squag and $\mathbf{3} \times \boldsymbol{Q}_{\boldsymbol{m}}:=\left(Q_{\boldsymbol{m}+\mathbf{1}} ; \times\right)$ is the direct product squag $\boldsymbol{Q}_{\boldsymbol{m}} \times \boldsymbol{I}_{\mathbf{3}}$. For any sub-SQ(3)= $\boldsymbol{A}_{\boldsymbol{m}}$ of $\boldsymbol{Q}_{\boldsymbol{m}}$ the set $A=A_{m} \times I_{3}$ forms a sub-SQ(9) in $\mathbf{3} \times \boldsymbol{Q}_{\boldsymbol{m}}=\left(\boldsymbol{Q}_{\boldsymbol{m}+\mathbf{1}} ; \times\right)$. Consider the same subsystems $(A ; R)$ and $(A ; H)$ exactly as in the construction $\boldsymbol{Q}_{\mathbf{1}}=\mathbf{3} \otimes_{\boldsymbol{A}} \boldsymbol{Q}_{\mathbf{0}}$. So the construction $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}=\mathbf{3} \otimes_{\boldsymbol{A}} \boldsymbol{Q}_{\boldsymbol{m}}$ is still a squag (but not necessarily be semi-planar). Indeed, if we choose a sub-SQ(3) $=\boldsymbol{A}_{\boldsymbol{m}}=$ $\left\{a_{1}, a_{2}, a_{3}\right\}$ of $\boldsymbol{Q}_{\boldsymbol{m}}$ satisfying that $\boldsymbol{A}_{\boldsymbol{m}}$ is only covered by the whole squag $\boldsymbol{Q}_{\boldsymbol{m}}$, then we will show in the next two theorems that the constructed squag $\boldsymbol{Q}_{\boldsymbol{m + 1}}=\mathbf{3} \otimes_{\boldsymbol{A}} \boldsymbol{Q}_{\boldsymbol{m}}$ is semi-planar and preserves the first two properties as in Corollary 4.

Lemma 6. Assume that $\boldsymbol{Q}_{\boldsymbol{m}}$ is a semi-planar squag having a sub-SQ(3) $\boldsymbol{A}_{\boldsymbol{m}}=\left\{a_{1}, a_{2}, a_{3}\right\}$ covered only by $\boldsymbol{Q}_{\boldsymbol{m}}$. Let \boldsymbol{S} be a subsquag of the constructed squag $\boldsymbol{Q}_{\boldsymbol{m}+\mathbf{1}}=\mathbf{3} \otimes_{\boldsymbol{A}} \boldsymbol{Q}_{\boldsymbol{m}}$, It follows that if $|S \cap A|=3$, then $S \cap A=\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$.

Proof. Let $\boldsymbol{S} \cap \boldsymbol{A}$ be a 3-element subsquag $\neq\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$. We will show that any other choice of $S \cap A$ leads to a contradiction. The intersection $S \cap A$ belongs to one of two essential cases.

$$
\begin{aligned}
\text { First, let } S \cap A= & \left\{\left(a_{1}, 1\right),\left(a_{2}, 2\right),\left(a_{3}, 1\right)\right\},\left\{\left(a_{1}, 3\right),\left(a_{2}, 1\right),\left(a_{3}, 3\right)\right\}, \\
& \left\{\left(a_{1}, 2\right),\left(a_{2}, 3\right),\left(a_{3}, 2\right)\right\},\left\{\left(a_{1}, 1\right),\left(a_{2}, 1\right),\left(a_{3}, 2\right)\right\} \text { or } \\
& \left\{\left(a_{1}, 2\right),\left(a_{2}, 1\right),\left(a_{3}, 1\right)\right\} .
\end{aligned}
$$

In this case, the set of the second components of the elements of $S \cap A$ is a 2-element subset of $\{1,2,3\}$. But one can easily see that the set of second components of the elements of $S-A$ consists of $\{1,2,3\}$ for any choice of $S \cap A$.

Let $\{i, j, k\}=\{1,2,3\}$ and let the maximum number of distinct elements of S, having second components i, be equal to r. Let the values of second components of the sub-SQ(3) of $S \cap A$ be i, i and j. If (y, k) $\in S-A$, then the product of any element (x, i) of S by (y, k) gives an element of S having a second component j; i.e. $(x, i) \cdot(y, k)=(z, j)$. This means that S contains exactly r elements having second components equal to j. Also, let $(y, j) \in S-A$, then the product $(x, i) \cdot(y, j)=(z, k)$, which means that S contains also r distinct elements having second components equal to k. Accordingly, we may deduce that S consists exactly of an r-element subset of
pairs with second components i, an r-element subset of pairs with second components j and an r-element subset of pairs with second components k.

Since the second components of $S \cap A$ are i, i and j, each of the r-element subsets of S with second components j or k forms a subsquag of S. According to Theorem 1, the third r-element subset of S with second component equal to i must be a subsquag of S, contradicting the choice that $S \cap A=\left\{\left(a_{1}, i\right),\left(a_{2}, i\right),\left(a_{3}, j\right)\right\}$. Therefore, this case is ruled out.

$$
\begin{aligned}
\text { Next, let } S \cap A= & \left\{\left(a_{1}, 1\right),\left(a_{1}, 2\right),\left(a_{3}, 3\right)\right\},\left\{\left(a_{3}, 1\right),\left(a_{2}, 3\right),\left(a_{3}, 3\right)\right\}, \\
& \left\{\left(a_{2}, 2\right),\left(a_{1}, 2\right),\left(a_{1}, 3\right)\right\},\left\{\left(a_{1}, 1\right),\left(a_{2}, 3\right),\left(a_{1}, 3\right)\right\}, \\
& \left\{\left(a_{3}, 1\right),\left(a_{3}, 2\right),\left(a_{1}, 3\right)\right\} \text { or }\left\{\left(a_{2}, 2\right),\left(a_{3}, 2\right),\left(a_{3}, 3\right)\right\} .
\end{aligned}
$$

For any choice of $S \cap A$, the set of second components of the elements of $S \cap A$ is the set $\{1,2,3\}$ or a 2-element subset of $\{1,2,3\}$. But one can directly see that the set of second components of the elements of $S-A$ consists of all elements of $\{1,2,3\}$. Also, the index set of the first components of any choice of $S \cap A$ is a 2-element subset of $\{1,2$, 3\}.

Let $\{i, j, k\}=\{1,2,3\}$ and let $S \cap A=\left\{\left(a_{i}, l\right),\left(a_{i}, n\right),\left(a_{j}, m\right)\right\}$ with $l \neq n$ and $l, n, m \in\{1,2,3\}$.
Let $(b, l) \in S-A$ and $(b, l) \times\left(a_{i}, l\right)=(b, l) .\left(a_{i}, l\right)=(c, l)$, then $(b, l) \times\left(a_{i}, n\right)=(b, l) .\left(a_{i}, n\right)=(c, k)$ with $\{l, n, k\}=\{1,2,3\}$. Hence $(c, l) \times(c, k)=(c, l) .(c, k)=(c, n)$ and accordingly $(c, n) \times(b, l)=(c, n) .(b, l)=$ $\left(a_{i}, k\right) \in S$. On the other side, we have $\left(a_{i}, k\right) \in A$ contradicting the choice that $S \cap A=\left\{\left(a_{i}, l\right),\left(a_{i}, n\right),\left(a_{j}, m\right)\right\}$ and $\{l, n, k\}=\{1,2,3\}$. We will get the same contradiction, if we choose (b, n) or $(b, k) \in S-A$ instated of (b, l). Therefore, the second possible case of $S \cap A$ is also ruled out.

This means that the only possible case for a subsquag S of $\boldsymbol{Q}_{\boldsymbol{m + 1}}$ with $|S \cap A|=3$ is $S \cap A=$ $\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$. This completes the proof of the lemma.

The next theorem permits us to construct semi-planar squags of cardinality $3^{m} n$ for $n \neq 3$ or 9 and each $n \equiv 1,3$ $(\bmod 6)$ with subsquags $\cong \mathbf{S Q}(3)^{\nu}$ for all positive integers m and v with $v \leq m+1$.

Theorem 7. Let $\boldsymbol{Q}_{\boldsymbol{m}}$ be a semi-planar squag of cardinality $3^{m} n$ with sub-SQ(3) ${ }^{\nu}$ s for some $v=1,2, \ldots$ or $m+1$. Also, let $\boldsymbol{Q}_{\boldsymbol{m}}$ have a sub- $\mathbf{S Q}(3)=\boldsymbol{A}_{\boldsymbol{m}}$ covered by $\boldsymbol{Q}_{\boldsymbol{m}}$. Then the constructed squag $\boldsymbol{Q}_{\boldsymbol{m}+1}=\mathbf{3} \boldsymbol{\otimes}_{\boldsymbol{A}} \boldsymbol{Q}_{\boldsymbol{m}}$ is semi-planar of cardinality $3^{m+1} n$ with sub-SQ(3) ${ }^{v+1}$ s for all possible values $n \neq 3$ or 9 and $n \equiv 1,3(\bmod 6)$.
Proof. Let \boldsymbol{S} be a subsquag of $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}$ and S has more than one element. First we have to prove that \boldsymbol{S} is a sub-SQ(3) ${ }^{\boldsymbol{v + 1}}$ or $\boldsymbol{S}=\boldsymbol{Q}_{\boldsymbol{m}+\mathbf{1}}$. Let $A_{m}=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $A=A_{m} \times \boldsymbol{C}_{\mathbf{3}}=\left\{a_{1}, a_{2}, a_{3}\right\} \times\{1,2,3\}$. And choose the two sets of triples R and H that are defined exactly as in the construction $\boldsymbol{Q}_{\mathbf{1}}=\mathbf{3} \otimes_{A} \boldsymbol{Q}_{\mathbf{0}}$.

In general, there are only four essential cases for the relation between the subsquags \boldsymbol{S} and \boldsymbol{A} :
(i) $S \subseteq A$,
(ii) $|S \cap A|=0,1$ or $S \cap A=\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$
(iii) $|S \cap A|=3$,
(iv) $A \subset S$.
(i) If $S \subseteq A$, then S is a sub-SQ(3) or a sub-SQ(9).
(ii) If $|S \cap A|=0,1$ or $S \cap A=\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$, then \boldsymbol{S} is a subsquag in $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}$ so also in $\mathbf{3} \times \boldsymbol{Q}_{\boldsymbol{m}}=$ $\boldsymbol{Q}_{\boldsymbol{m}} \times\{1,2,3\}$, hence the set of first components of \boldsymbol{S} is a subsquag of $\boldsymbol{Q}_{\boldsymbol{m}}$. But in these three cases given in (ii), the set of first components of $S \neq \boldsymbol{Q}_{\boldsymbol{m}}$ because the number of elements of the first component of $S \cap A<3$. Hence the set of the first components of \boldsymbol{S} forms a medial subsquag at most of cardinality 3^{v} of $\boldsymbol{Q}_{\boldsymbol{m}}$ for some positive integer $v \leq m+1$. Also, the second projection $\mathbf{P}_{\mathbf{2}}(\boldsymbol{S})$ consists of one element or three elements, then we may say that $\boldsymbol{S} \cong \mathbf{S Q}(3)^{\nu}$ or $\mathbf{S Q}(3)^{\nu} \times\{1,2,3\}=\mathbf{S Q}(3)^{\nu+1}$ of $\mathbf{3} \times \boldsymbol{Q}_{\boldsymbol{m}}$ and so also of $\boldsymbol{Q}_{\boldsymbol{m}+\mathbf{1}}$.
(iii) According to the above lemma, we may say directly that $S \cap A=\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$. Then we get the same result as in the preceding case.
(iv) Note that the sub-SQ(3) $\boldsymbol{A}_{\boldsymbol{m}}=\left\{a_{1}, a_{2}, a_{3}\right\}$ is covered by $\boldsymbol{Q}_{\boldsymbol{m}}$. So $\boldsymbol{A}=\boldsymbol{A}_{\boldsymbol{m}} \times \boldsymbol{I}_{\mathbf{3}}$ is a sub-SQ(9) of $\mathbf{3} \times \boldsymbol{Q}_{\boldsymbol{m}}$ satisfying that the only subsquag containing A is $\mathbf{3} \times \boldsymbol{Q}_{\boldsymbol{m}}$.

Let $\boldsymbol{S}=(S ;$.$) be a subsquag satisfying S \supset A$ and with $\left(S ; B_{S}\right)$ the corresponding $\mathbf{S T}$, then $\left(S ; B_{S}-H \cup R\right)$ is a sub-ST of $(Q ; B)\left((Q ; B)\right.$ is the $\mathbf{S T}$ associated with $\left.\mathbf{3 \times} \boldsymbol{Q}_{\boldsymbol{m}}\right)$. As a consequence, the squag $\boldsymbol{S}^{\prime}=(S, \times)$ associated with $\left(S ; B_{S}-H \cup R\right)$ is a subsquag of $\mathbf{3} \times \boldsymbol{Q}_{\boldsymbol{m}}$ containing A. Since $S \supset A$, it follows that \boldsymbol{S}^{\prime} is equal to $\mathbf{3} \times \boldsymbol{Q}_{\boldsymbol{m}}$. But the subsquag \boldsymbol{S} in $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}$ has the same set of points as the subsquag \boldsymbol{S}^{\prime} in $\mathbf{3} \times \boldsymbol{Q}_{\boldsymbol{m}}$. Because \boldsymbol{S} differs only from
\boldsymbol{S}^{\prime} in the binary operations ' \times ' and '. '. This implies that \boldsymbol{S} is equal to $\boldsymbol{Q}_{\boldsymbol{m}+\mathbf{1}}$. So we may say that the only subsquag containing A is the whole squag $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}$.

Finally we may say that the semi-planar squag $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}$ has only medial proper subsquags at most of cardinality $3^{\nu+1}$ for $v \leq m+1$. This completes the proof of the first part of the theorem.

Now, we need only show that $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}$ is a simple squag. Assume that $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}$ has a proper congruence θ, since $[(x, i)] \theta$ is a subsquag of \boldsymbol{Q}_{m+1}, then $[(x, i)] \theta$ must be a medial subsquag $\cong \mathbf{S Q}(3)^{v^{\prime}}$ with $v^{\prime}-1 \leq v \leq m+1$. On the other hand, for any 3-element subsquag X of $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}$ the set [$\left.X\right] \theta$ forms a proper subsquag of $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}$ and so forms a medial subsquag. Hence, if $v^{\prime}-1=v=m+1$, then $[(x, i)] \theta=\mathbf{S Q}(3)^{m+2}$. But we may choose a 3 -element subsquag X satisfying that the subsquag $[X] \theta$ is of cardinality $\mathbf{S Q}(3)^{m+3}$. This is a contradiction. Therefore, in light of the first part of the proof, we may deduce that $[(x, i)] \theta=\mathbf{S Q}(3)^{v^{\prime}}$ with $v^{\prime} \leq v$ for some positive integer $v \leq m+1$.

If $[(x, i)] \theta=\mathbf{S Q}(3)^{\nu^{\prime}}$ with $2 \leq \nu^{\prime} \leq \nu$, so for $(a, 1) \in A$, we have three cases: (a) $|[(a, 1)] \theta \cap A|=1$, (b) $|[(a, 1)] \theta \cap A|=3$ or (c) $A \subseteq[(a, 1)] \theta$.

For case (a): $[A] \theta$ is a proper subsquag of $\boldsymbol{Q}_{\boldsymbol{m + 1}}$, so $[A] \theta \cong \mathbf{S Q}(3)^{\nu^{\prime}+2}$. According to the first part of the theorem if $v^{\prime}=v=m$ or $m+1$, it contradicts the preceding fact that the maximum cardinality of subsquags is 3^{m+1}. In general, for $2 \leq \nu^{\prime} \leq v$, the subset $S_{1}=\left\{\left(a_{1}, 1\right),\left(a_{1}, 2\right),\left(a_{3}, 3\right)\right\}$ forms a sub-SQ(3) $\subseteq A$, then $\left[\boldsymbol{S}_{\mathbf{1}}\right] \theta$ is a sub-SQ intersects A in $\boldsymbol{S}_{\mathbf{1}}$ which contradicts the result of Lemma 6.

For case (b): According to Lemma 6, we have $\left[\left(a_{2}, 1\right)\right] \theta \cap A=\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$. Again the set $B=\left(a_{1}, 1\right) \cdot\left[\left(a_{2}, 1\right)\right] \theta$ is a medial subsquag and $\cong \mathbf{S Q}(3)^{\nu^{\prime}}$. But $\left(a_{1}, 1\right) \cdot\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}=$ $\left\{\left(a_{3}, 2\right),\left(a_{3}, 1\right),\left(a_{1}, 3\right)\right\} \subseteq B$ contradicts the result of Lemma 6 that $B \cap A$ must be equal to $\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$.

For case (c): $A \subseteq[(a, 1)] \theta$, but according to case (iv) of the first part we may say that $[(a, 1)] \theta$ is equal to \boldsymbol{A} or $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}$. If $[(a, 1)] \theta$ is equal to \boldsymbol{A} we choose $(b, 2) \notin A$, then $(b, 2) \cdot[(a, 1)] \theta$ is a sub- $\mathbf{S Q}(3)^{2}$ i.e.; $(b, 2) \cdot[(a, 1)] \theta$ is a medial subsquag and so it is distributive. But $(b, 2) \cdot\left(\left(a_{1}, 1\right) \cdot\left(a_{2}, 1\right)\right)=(b, 2) \cdot\left(a_{3}, 2\right)=(c, 2)$ and $\left((b, 2) \cdot\left(a_{1}, 1\right)\right) \cdot\left((b, 2) \cdot\left(a_{2}, 1\right)\right)=\left(c_{1}, 3\right) \cdot\left(c_{2}, 3\right)=\left(c_{3}, 3\right)$, which contradicts the fact that $(b, 2) \cdot[(a, 1)] \theta$ must be distributive. Consequently, these three cases (a), (b) and (c) are ruled out.

If $|[(x, i)] \theta|=3$, so for $(a, 1) \in A$, we have two essential cases:
(I) $|[(a, 1)] \theta \cap A|=1, \quad$ or \quad (II) $|[(a, 1)] \theta \cap A|=3$.

For case (I): Choose a block $X \in H-\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$, the subsquag $[X] \theta$ is an $\mathbf{S Q}(9)$ and $[X] \theta \cap A$ is a block $\in H-\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$, which contradicts the result of Lemma 6 .

Case (II) tends to $[(a, 1)] \theta \cap A=[(a, 1)] \theta$, then θ_{A} is a nontrivial congruence on the sub- $\mathbf{S Q}(9)=\boldsymbol{A}$. Then we may choose $\left(a_{i}, j\right) \in A-\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$, so $\left[\left(a_{i}, j\right)\right] \theta \in H-\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$. By choosing a block X satisfying $X \cap A=\left(a_{i}, j\right)$, hence $[X] \theta$ is an $\mathbf{S Q}(9)$ containing a block in the set $H-\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$. That contradicts again the result of Lemma 6.

Therefore, the constructed squag $\boldsymbol{Q}_{\boldsymbol{m}+\mathbf{1}}=\mathbf{3} \otimes_{\boldsymbol{A}} \boldsymbol{Q}_{\boldsymbol{m}}$ is simple. This completes the proof of the theorem.
Now, we may say that the planar squag Q_{0} is semi-planar with sub-SQ(3)s and has a sub-SQ(3) $=A_{0}$ covered by $\boldsymbol{Q}_{\mathbf{0}}$ (indeed each sub-SQ(3) covered by $\boldsymbol{Q}_{\mathbf{0}}$). According to Theorem 3, Corollary 4 and Lemma 5, the constructed squag $\boldsymbol{Q}_{\mathbf{1}}=\mathbf{3} \otimes_{A} \boldsymbol{Q}_{\mathbf{0}}$ is semi-planar with sub-SQ(3) ${ }^{2}$ s and has a sub-SQ(3) $=\boldsymbol{A}_{\mathbf{1}}$ covered by $\boldsymbol{Q}_{\mathbf{1}}$. To complete the requirements of the mathematical induction we have to prove that if the squag Q_{m} is semi-planar with sub-SQ(3) ${ }^{\nu}$ s for some positive integer $v \leq m+1$ and has a sub- $\mathbf{S Q}(3)=\boldsymbol{A}_{\boldsymbol{m}}$ covered by $\boldsymbol{Q}_{\boldsymbol{m}}$, then the constructed $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}=\mathbf{3} \otimes_{\boldsymbol{A}} \boldsymbol{Q}_{\boldsymbol{m}}$ is semi-planar with sub-SQ(3) ${ }^{\nu+1}$ s and has also a sub- $\mathbf{S Q}(3)=\boldsymbol{A}_{\boldsymbol{m}+\boldsymbol{1}}$ covered by $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}$. The first part is already established by Theorem 7 and the second part will be proven in the next theorem.

Theorem 8. Let $\boldsymbol{Q}_{\boldsymbol{m}}$ be a semi-planar squag with sub-SQ(3) ${ }^{\nu}$ s for some $v=1,2, \ldots, m+1$ having a sub$\mathbf{S Q (3)}=\boldsymbol{A}_{\boldsymbol{m}}$ covered by $\boldsymbol{Q}_{\boldsymbol{m}}$. Then the constructed semi-planar squag $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}=\mathbf{3} \otimes_{\boldsymbol{A}} \boldsymbol{Q}_{\boldsymbol{m}}$ has also a sub$\mathbf{S Q}(3)=\boldsymbol{A}_{\boldsymbol{m}+\mathbf{1}}$ covered by $\boldsymbol{Q}_{\boldsymbol{m}+\mathbf{1}}$.

Proof. Let $A_{m}=\left\{a_{1}, a_{2}, a_{3}\right\}$ be a sub-SQ(3) of $\boldsymbol{Q}_{\boldsymbol{m}}$ covered only by $\boldsymbol{Q}_{\boldsymbol{m}}$. Also, let A be the set $A_{m} \times\{1,2,3\}$ of $\boldsymbol{Q}_{\boldsymbol{m}+\mathbf{1}}$. According to Theorem 7, the construction $\boldsymbol{Q}_{\boldsymbol{m + 1}}=\mathbf{3} \otimes_{A} \boldsymbol{Q}_{\boldsymbol{m}}$ is a semi-planar squag having sub-SQ(3) ${ }^{\nu+1} \mathrm{~s}$. Consider the subsquag $A_{m+1}=\left\{\left(a_{1}, 1\right),(b, 2),(c, 3)\right\}$ of $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}$ with b and $c \notin A_{m}$. We will show that the only subsquag containing A_{m+1} is $\boldsymbol{Q}_{\boldsymbol{m}+\mathbf{1}}$.

Suppose \boldsymbol{S} be a subsquag of $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}$ containing A_{m+1}. We have three cases:
(i) $S \cap A=A$,
(ii) $|S \cap A|=3$ or
(iii) $S \cap A=\left\{\left(a_{1}, 1\right)\right\}$.

Case (i) $S \cap A=A$ means that $\boldsymbol{S} \supset A$, according to the result of case (iv) of the proof of Theorem 7 that $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}$ is the only subsquag containing A, hence $\boldsymbol{S}=\boldsymbol{Q}_{\boldsymbol{m + 1}}$.

Case (ii) $|\boldsymbol{S} \cap A|=3$, according to Lemma 6 we have $S \cap A=\left\{\left(a_{2}, 1\right),\left(a_{2}, 2\right),\left(a_{2}, 3\right)\right\}$, which contradicts that $\left(a_{1}, 1\right) \in \boldsymbol{S} \cap A$. Hence, this case is ruled out.

For the case (iii): If $\boldsymbol{S} \cap A=\left\{\left(a_{1}, 1\right)\right\}$, then \boldsymbol{S} is a subsquag of $\mathbf{3} \times \boldsymbol{Q}_{\boldsymbol{m}}$ and also of $\boldsymbol{Q}_{\boldsymbol{m}+\mathbf{1}}$. Assume that $|\boldsymbol{S}|>3$. According to Theorem 7, $\boldsymbol{S} \cong \mathbf{S Q}(3)^{\nu^{\prime}+1}$ for $1 \leq v^{\prime} \leq v \leq m+1$. Let $\mathbf{P}_{\mathbf{1}}(S)$ and $\mathbf{P}_{\mathbf{2}}(S)$ be the projections of S on the first and second components, respectively. Then $\mathbf{P}_{\mathbf{1}}(\boldsymbol{S}) \cong \mathbf{S Q}(3)^{\nu^{\prime}}$ for $v^{\prime} \leq v$ and $\mathbf{P}_{\mathbf{2}}(S)=\{1,2,3\}$. Note that \boldsymbol{S} contains more than one element with second component $i=1,2$ or 3 . Similar to the proof of case (ii) of the preceding theorem, we may say that $\boldsymbol{S} \cong \mathbf{S Q}(3)^{v^{\prime}+1}=\mathbf{S Q}(3)^{\nu^{\prime}} \times\{1,2,3\}$, where $\mathbf{S Q}(3)^{v^{\prime}+1}$ is a subsquag of both $\mathbf{3} \times \boldsymbol{Q}_{\boldsymbol{m}}$ and $\boldsymbol{Q}_{\boldsymbol{m}+\mathbf{1}}$. Also, we have $\mathbf{P}_{\mathbf{1}}(S) \cap \mathbf{P}_{\mathbf{1}}(A)=\left\{a_{1}\right\}$, so $S \cap A=\left\{\left(a_{1}, 1\right),\left(a_{1}, 2\right),\left(a_{1}, 3\right)\right\}$, which is impossible. Because of $S \cap A=\left\{\left(a_{1}, 1\right)\right\}$ and also the result of Lemma 6 says that the set $\left\{\left(a_{1}, 1\right),\left(a_{1}, 2\right),\left(a_{1}, 3\right)\right\}$ does not form a subsquag of $\boldsymbol{Q}_{\boldsymbol{m}+\boldsymbol{1}}$. Therefore, this case is also ruled out.

This means that the only possible case for $\boldsymbol{S} \supseteq A_{m+1}$ is $\boldsymbol{S} \supseteq A$. So we go back to the result of case (i) that \boldsymbol{S} must be equal to $\boldsymbol{Q}_{\boldsymbol{m + 1}}$. This completes the proof of the lemma.

According to the $1-1$ correspondence between squags and triple systems, we may say that there are semi-planar $\mathbf{T S}\left(3^{m} n\right)$ s having only subsystems $\cong \mathbf{S T}(3)^{\nu}$ s for each positive integer $v \leq m+1$ and for each possible number n $(n \neq 9$ and $n \equiv 1$ or $3(\bmod 6))$. These triple systems satisfy that each triangle generates a sub-ST(9) or the whole triple system and whose corresponding squag is simple.

For $n=9$, the author [1] has constructed an example of semi-planar squag of cardinality 27. Also, it easy to find a sub-SQ(3) $=A_{1}$ covered by the whole squag, so we may apply Lemma 6 , Theorems 7 and 8 to get a semiplanar squag of cardinality 81 having only medial subsquags of cardinality 3^{3} at most. Equivalently, there are three semi-planar $\mathbf{S T}(81)$ s with subsystems $\cong \mathbf{S T}(3)^{\nu}$ s for $v=1,2$ and 3 .

Finally, one may say that there is a semi-planar $\mathbf{S Q}\left(3^{m} n\right):=\boldsymbol{Q}_{\boldsymbol{m}, v}$ for all $n>3$ and $n \equiv 1$ or $3(\bmod 6)$ and each positive integer m with medial subsquags of maximum cardinality 3^{ν} for each positive integer $v \leq m+1$.

Quackenbush [12] proved that the variety $\mathbf{V}(\boldsymbol{Q})$ generated by a simple planar squag \boldsymbol{Q} has only two subdirectly irreducible squags Q and the 3-element squag $\mathbf{S Q}(3)$ and then $\mathbf{V}(Q)$ covers the smallest nontrivial subvariety (the class of all medial squags).

Similarly, if $\boldsymbol{Q}_{\boldsymbol{m}, v}=\mathbf{S Q}\left(3^{m} n\right)$ is a semi-planar squag having only medial subsquags of cardinality 3^{ν} at most, then one can prove that the variety $\mathbf{V}\left(\boldsymbol{Q}_{\boldsymbol{m}, v}\right)$ generated by $\boldsymbol{Q}_{\boldsymbol{m}, v}$ has only two subdirectly irreducible squags $\boldsymbol{Q}_{\boldsymbol{m}, v}$ and the 3 -element squag $\mathbf{S Q}(3)$. And hence we deduce the same result that each semi-planar squag $\boldsymbol{Q}_{\boldsymbol{m}, v}$ with sub-SQ(3) ${ }^{\nu} \mathrm{s}$ for each positive integer $v \leq m+1$ generates a variety $\mathbf{V}\left(\boldsymbol{Q}_{\boldsymbol{m}, v}\right)$ which covers also the smallest nontrivial subvariety (the class of all medial squags).

Hall [9] constructed a Steiner triple system in which each triangle generates a sub-ST(9), such a class is called Hall triple systems. The corresponding squags of such class is the class of distributive squags. Klossik [10] gave a construction of distributive squags as a vector space over $\mathbf{G F}(3)$ of dimension ≥ 4. Using the interchange property to inject a distributive subsquag $\mathbf{S Q}\left(3^{\nu}\right)$ instead of a medial sub- $\mathrm{SQ}(3)^{\nu}$, we get a construction of a squag having distributive subsquags but not medial. Consequently, we are faced with the question:

Is there a semi-planar squag having distributive (not medial) subsquags?

References

[1] M.H. Armanious, Semi-planar Steiner quasigroups of cardinality 3n, Australas. J. Combin. 27 (2003) 13-27.
[2] M.H. Armanious, S.F. Tadros, N.M. Dhshan, Subdirectly irreducible squags of cardinality 3n, Ars Combin. 64 (2002) 199-210.
[3] M.H. Armanious, Subsquags and normal subsquags, Ars Combin. 59 (2001) 241-243.
[4] R.H. Bruck, A Survey of Binary Systems, Springer-Verlag, Berlin, Heidelberg, New York, 1971.
[5] J. Doyen, Sur la structure de certains systems triples de Steiner, Math. Z. 111 (1969) 289-300.
[6] B. Ganter, H. Werner, Co-ordinatizing Steiner systems, Ann. Discrete Math. 7 (1980) 3-24.
[7] G. Gratzer, Universal Algebra, 2nd ed., Springer-Verlag, New York, Heidelberg, Berlin, 1979.
[8] A.J. Guelzow, Representation of finite nilpotent squags, Discrete Math. 154 (1996) 63-76.
[9] M. Hall Jr., Automorphism of Steiner triple systems, IBM J. 5 (1960) 460-472.
[10] S. Klossek, Kommutative Spiegelungsraume, Mitt. Math. Sem. Univ. Giessen 117 (1975).
[11] C.C. Lindner, A. Rosa, Steiner quadruple systems: A survey, Discrete Math. 21 (1979) 147-181.
[12] R.W. Quackenbush, Varieties of Steiner loops and Steiner quasigroups, Canad. J. Math. 28 (1976) 1187-1198.
[13] R.W. Quackenbush, Nilpotent block design I: Basic concepts for Steiner triple and quadruple systems, J. Combin. Des. 7 (1999) 157-171.

[^0]: E-mail address: m.armanious@excite.com (M.H. Armanious).

