Note

2-Colored Triangles in Edge-Colored Complete Graphs

D. T. Busolini

Mathematics Group, The Hatfield Polytechnic, P.O. Box 109, College Lane, Hatfield, Herts, U.K.

Communicated by the Editors
January 15, 1976

If each edge of complete graph K_n is colored with one of k colors then it contains a triangle having two colors if $k < 1 + n^{1/2}$. The result is best possible when n is the square of a prime.

Let each of the edges of the finite complete graph K_n be colored with one of k colors. We call a subgraph I_n of K_n a triangle and say it is monochromatic, bichromatic, polychromatic according to whether it has 1, 2, 3 colors. Sufficient conditions for the existence of monochromatic and polychromatic triangles appear in [1] and [2, 3], respectively. Here we prove Theorem 1 and give an example to show that the theorem is best possible in certain cases.

Theorem 1. If $2 \leq k < 1 + n^{1/2}$ then K_n has a bichromatic triangle.

Proof. Suppose K_n has no bichromatic triangle. Let x be a vertex with the maximum possible number t of edges incident with it of the same color, which is color 1 say. By counting edges at x we have $kt \geq n - 1$. Let Y be the set of vertices adjacent to x with edges of color 1. Then every edge of the complete subgraph K_{t+1} with vertex set $\{x\} \cup Y$ has color 1. Since $k \geq 2$ we have $R = K_n \setminus K_{t+1}$ nonempty. Let r be a fixed vertex of R. Then edges of the form $\{r, z\}$ where $z \in \{x\} \cup Y$ do not have color 1, for otherwise we contradict the definition of t. Furthermore all such edges have different colors, so $k \geq t + 2$. From the two inequalities we get

$$(k - (1 + n^{1/2}))(k - (1 - n^{1/2})) \geq 0$$

and the theorem follows.
EXAMPLE. Let $n = p^2$ and $k = p + 1$ where p is a prime. Let the vertices of K_n be x_{ij} for $1 \leq i, j \leq p$. Make edge $\{x_{ij}, x_{rs}\}$ color $p + 1$ if $i = r$ but color c if $i \neq r$, $1 \leq c \leq p$, and $c(i - r) = j - s \pmod{p}$. When the vertices are set out in a matrix (x_{ij}) it can be seen that this graph has no bichromatic triangle.

The following result is due to D. E. Daykin and is an easy application of Turán's theorem.

Theorem 2. If each of the edges of K_{n+1}^{p+1} is colored with one of $t + 1$ colors then there is a subgraph K_{t+1} with $\leq t$ colors.

References