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Abstract

We describe the exponential map from an infinite-dimensional Lie algebra to an infinite-
dimensional group of operators on a Hilbert space. Notions of differential geometry are intro-
duced for these groups. In particular, the Ricci curvature, which is understood as the limit of
the Ricci curvature of finite-dimensional groups, is calculated. We show that for some of these
groups the Ricci curvature is−∞.
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1. Introduction

The results of this article are inspired by our previous study of heat kernel measures
on infinite-dimensional Lie groups in[24–27]. The main tool in these papers was the
theory of stochastic differential equations in infinite dimensions. The present paper,
however, is entirely non-probabilistic. It is organized as follows: in Sections 2 and 3
we discuss the exponential map for a certain class of infinite-dimensional groups, and
in Sections 5 and 6 we introduce notions of Riemannian geometry for Hilbert–Schmidt
groups and compute the Ricci curvature for several examples.

1.1. Motivation: Wiener measures and geometry

In our previous papers we were concerned with a pair of infinite-dimensional Lie
groups,GCM ⊂ GW , related to each other in much the same way that the Cameron–
Martin Hilbert space,H1([0,1]), is related to Wiener space,C∗([0,1]): it is well
understood that the geometry of the Hilbert spaceH1([0,1]) ⊂ C∗([0,1]) controls
Wiener measure onC∗([0,1]), even thoughH1([0,1]) is a subspace of Wiener measure
zero. In the papers [24–27] we constructed an analog of Wiener measure on an infinite-
dimensional groupGW as the “heat kernel" (evaluated at the identity ofGW ) associated
with the Laplacian on the dense subgroupGCM . To this end one must choose an
inner product on the Lie algebra,gCM , of GCM in order to introduce a left invariant
Riemannian metric onGCM . The Lie algebragCM determines a Laplacian, whose heat
kernel measure actually lives on the larger groupGW . It can be shown that in general
GCM is a subgroup of measure zero. More features of this group have been discussed
in [25–27]. In these papers we constructed the heat kernel measure by probabilistic
techniques. We used a stochastic differential equation based on an infinite-dimensional
Brownian motion in the tangent space at the identity ofGW whose covariance is
determined by the inner product ongCM .
Just as in the case of the classical Cameron–Martin space, where the Sobolev norm

on H1([0,1]) is much stronger than the supremum norm onC([0,1]), so also the
norm ongCM must be much stronger than the natural norm on the tangent space at the
identity of GW in order for the heat kernel measure to live onGW . If GW is simply
the additive group,C∗([0,1]), andGCM is the additive groupH1([0,1]), then this heat
kernel construction reproduces the classical Wiener measure.
In this paper we address questions relating to the geometry ofGCM , with a view

toward eventual application to further understanding of the heat kernel measure onGW .
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On a finite-dimensional Riemannian manifold properties of the heat kernel measure are
intimately related to the Ricci curvature of the manifold, and in particular to lower
bounds on the Ricci curvature[55]. We are going to compute the Ricci curvature
for several classes of infinite-dimensional groups, in particular, for those groupsGCM
whose heat kernel measure onGW we have already proven the existence of in [24–27].
Our results show that the Ricci curvature is generally not bounded below, even in the
cases when we were able to construct the heat kernel measure onGW (e.g. for the
group SOHS). One of the implications of our results is that the methods used to
prove quasi-invariance of the heat kernel measure in the finite-dimensional case are
not applicable for the settings described in our earlier papers. We also compute the
Ricci curvature of groupsGW . All these groups are Hilbert–Schmidt groups which are
described below.

1.2. Hilbert–Schmidt groups as Lie groups and their Riemannian geometry

Denote byHS the space of Hilbert–Schmidt operators on a real separable Hilbert
spaceH. Let B(H) be the space of bounded operators onH, and let I be the identity
operator. Denote byGL(H) the group of invertible elements ofB(H). The general
Hilbert–Schmidt group isGLHS = GL(H) ∩ (HS + I ). In [24–27] we proved the
existence and some basic properties of the heat kernel measures on certain classical
subgroups ofGLHS , namely,SOHS and SpHS . The Lie algebras of these groups are
closed subspaces ofHS in the Hilbert–Schmidt norm. In the setting described above
GLHS , SOHS and SpHS are examples of the groupGW .
But the corresponding Cameron–Martin subgroups are, of necessity, only dense sub-

groups ofGW . They are determined by their tangent space,gCM , at the identity. In
order to get the corresponding heat kernel measure to live onGLHS , SOHS or SpHS ,
respectively, the tangent spacegCM must be given a Hilbert norm| · | which is much
stronger than the Hilbert–Schmidt norm. The result is that the commutator bracket of
operators may not be continuous in this norm. That is,|AB −BA|�C|A||B| may fail
for any constantC asA andB run overgCM . ConsequentlygCM may not really be a
Lie algebra. Rather, the commutator bracket may be only densely defined as a bilinear
map intogCM . In Section 4 we will give a class of examples of groups contained in
GLHS such thatgCM is not closed under the commutator bracket and in this sense is
not a Lie algebra. But in most of the examples we consider this is not the case.
In this paper we are going first to address the problem of the relation of the tangent

space,TI (GCM), to the Lie algebra structure of some dense subspace ofTI (GCM). As
in the case of classical Wiener space, where polygonal paths play a central technical
role in the work of Cameron and Martin, so also it seems to be unavoidable, for the
purposes of [24–27], to make use of a groupG ⊂ GCM which is in some sense dense
in GCM and which is itself a union of an increasing sequence of finite-dimensional
Lie groups:G = ⋃∞

n=1Gn, Gn ⊆ Gn+1. In Sections 2 and 3 all of our groups will be
taken to be subgroups ofGL(H) rather thanGLHS . Then the Lie algebra ofGn, gn,
is a finite-dimensional subspace ofB(H), and is closed under the commutator bracket.
Let g = ⋃∞

n=1 gn. Theng is a also a Lie algebra under the commutator bracket. Butg

cannot be complete in any norm in the infinite-dimensional case.
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Our goal in Sections2 and 3 is to study the completion,g∞, of g in some (strong)
Hilbert norm. In these sections we will assume that the completiong∞ actually em-
beds intoB(H) and that the commutator bracket is continuous in this norm. We will
characterize the group,GCM , generated by exp(g∞) in this case, and show that the
exponential map covers a neighborhood of the identity. These groups are examples
of so called Baker–Campbell–Hausdorff Lie groups (e.g. [20–22,50,38,49,57,58]). Let
us mention here that the question of whether the exponential map is a local diffeo-
morphism into an infinite-dimensional Lie group has a long history. Our treatment is
different in two major aspects. The first one is the choice of an inner product ong and
corresponding norm ong. As we mentioned earlier the heat kernel analysis onGLHS
forces us to choose an inner product ong which is different from the Hilbert–Schmidt
inner product. We will assume that the commutator bracket is continuous ong∞ in the
extended norm| · |, namely,|[x, y]|�C|x||y|, where the constantC is not necessarily
2. In most results on Banach–Lie groups this constant is assumed to be 2 (e.g. [4,34]).
Quite often the underlying assumption is thatg is a Banach algebra, and thatg is
complete. None of these is assumed in our case since we wish to deal with examples
without these restrictions.
In Sections 5 and 6 we will compute the Ricci curvature in two major cases: when the

norm ong is the Hilbert–Schmidt norm, and when it strongly dominates the Hilbert–
Schmidt norm. Then we will examine how the lower bound of the Ricci curvature
depends on the choice of the strong Hilbert norm. We will extend Milnor’s definitions
of curvature on Lie groups [39] to our infinite-dimensional context for this purpose.
Our results show that the Ricci curvature is generally not bounded below, and in some
cases is identically minus infinity.

1.3. Historical comments

We give references to the following mathematical literature addressing different fea-
tures of infinite-dimensional Lie groups and exponential maps. Our list is certainly not
complete, since the subject has been studied for many years. There are several reviews
on the subject (e.g. [4,33,40,46,51]). Possible non-existence of an exponential map is
addressed in [36,35,47]. Super Lie algebras of super Lie groups have been studied
in [2,3]. Direct and inductive limits of finite-dimensional groups and their Lie group
structures have been discussed in [1,23,22,44,41,43,42,45]. Our main tool in proving
that the exponential map is a local diffeomorphism is the Baker–Campbell–Dynkin–
Hausdorff formula. Note that in the terminology of Banach–Lie groups it means that
we prove that the groups we consider are Baker–Campbell–Hausdorff Lie groups (e.g.
[20–22,50,38,49,57,58]). Some of these articles also address the issue of completeness
of the space over which a Lie group is modeled. We show that under Completeness
Assumption 2.1 and Assumption 3.1 the Cameron–Martin groupGCM is complete in
the metric induced by the inner product ong. In addition, in Section 4 we show that
a natural completion of the infinite-dimensional Lie algebrag is not a Lie algebra in
general without these assumptions.
One of the main contributors to the field of connections between differential geome-

try and stochastic analysis is P. Malliavin, who wrote a survey on the subject in [37]. A
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book on stochastic analysis on manifolds has been written by E. Hsu[32]. In conclusion,
we refer to works of B. Driver, S. Fang, D. Freed, E. Hsu, D. Stroock, I. Shigekawa,
T. Wurzbacher et al. dealing with infinite-dimensional Riemannian geometry and its ap-
plications to stochastic analysis [5–7,13,12,8–11,16–18,30,31,28,29,48,52,54,53,55,56].
They mostly concern loop groups, path spaces, their central extensions, etc. In these
cases the Riemannian geometry on the infinite-dimensional manifold is induced by the
geometry of the space in which the loops or paths lie. The situation we consider is
quite different.

2. Completeness assumption and the definition of the Cameron–Martin group

In this section we study a Lie group associated with an infinite-dimensional Lie
algebra. The results of this section are not restricted to the Hilbert–Schmidt operators.
We begin with an informal description of the setting. Letg be a Lie subalgebra of
B(H), the space of bounded linear operators on a separable Hilbert spaceH. The
group under consideration is a subgroup ofGL(H), the group of invertible elements
of B(H). The spaceB(H) is the natural (infinite-dimensional) Lie algebra ofGL(H)
with the operator commutator as the Lie bracket.
We assume thatg is equipped with a Hermitian inner product(·, ·), and the corre-

sponding norm is denoted by| · |. In an infinite-dimensional settingg might not be
complete. We will always work with the situation wheng has a completion which is
a subspace ofB(H). But as we will see in Section 4, the most natural candidate for
such a completion ofg might not be closed under taking the Lie bracket. Similarly,
when we look at the Lie group corresponding to the infinite-dimensional Lie algebra
g, it might not be complete in the metric induced by the inner product on the Lie
algebra.
The infinite-dimensional Lie algebrag is described by finite-dimensional approxi-

mations. LetG1 ⊆ G2 ⊆ · · · ⊆ Gn ⊆ · · · ⊆ B(H) be a sequence of connected
finite-dimensional Lie subgroups ofGL(H). Denote bygn ⊆ B(H) their Lie algebras.
We will consider the Lie algebrag = ⋃∞

n=1 gn.

Assumption 2.1 (Completeness assumption). Throughout this section we assume that
there is a subspaceg∞ of B(H) such that the Lie algebrag is contained ing∞ and
the given inner product(·, ·) on g extends tog∞, which is complete with respect to
this inner product. We will abuse notation by using(·, ·) to denote the extended inner
product ong∞ and by | · | the corresponding norm. We also assume thatg is dense in
g∞ in the norm| · |.

We will discuss this assumption in more detail in Section4 in the case of the
Hilbert–Schmidt groups. In particular, we will show thatg∞ is not a Lie algebra in
some cases of particular interest.

Notation 2.2. Let C1
CM denote the space of pathsg : [0,1] → GL(H) such that

(1) g(s) is continuous in the operator norm,
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(2) ġ = dg
ds

exists inB(H) equipped with the operator norm,
(3) ġ is piecewise continuous in the operator norm,
(4) g′ = g−1ġ is in g∞, and g′ is piecewise continuous in the norm| · |.
Let

d(y, z) = inf
g

{∫ 1

0

∣∣∣g−1ġ

∣∣∣ ds} ,
where g runs overC1

CM with g(0) = y, g(1) = z. We setd(y, z) = ∞ if there is no
such path g. Note that d depends on the norm| · | on g.

Notation 2.3. GCM = {x ∈ B(H) : d(x, I ) <∞}.

Proposition 2.4. GCM is a group, and d is a left-invariant metric onGCM .

Proof. The proof for the first part is the same as for any finite-dimensional Lie
group. In particular, iff : [0,1] → GCM, f (0) = x, f (1) = y, x, y ∈ GCM , then
h(s) = y−1f (s) is a curve connectingy−1x and I, and

∣∣h−1ḣ
∣∣ = ∣∣f−1ḟ

∣∣. Therefore
d(y−1x, I ) = d(x, y), thusy−1x ∈ GCM . �

Definition 2.5. GCM is called the Cameron–Martin group.

3. The Cameron–Martin group and the exponential map

Assumption 3.1 (Continuity assumption on the Lie bracket). Throughout this section
we assume thatg∞ is closed under taking the commutator bracket, and that the com-
mutator bracket is continuous ong∞, that is, there isC > 0 such that

|[x, y]| �C |x| |y|

for all x, y ∈ g∞.

Remark 3.2. Assumption 3.1 is satisfied for any Banach algebra withC = 2. In
particular, it holds for the operator norm‖ · ‖ and the Hilbert–Schmidt norm| · |HS ,
but these are not the norms we are going to consider. The necessity to use the space
g∞ with the norm| · | is dictated by the needs of the heat kernel measure construction
carried out in [24–27].

Remark 3.3. Assumption3.1 implies that the operator adh is bounded ong∞, namely,
‖ad h‖�C|h| where the constantC is as in Assumption 3.1.

Theorem 3.4. If Assumption3.1 is satisfied, then the exponential map is a diffeomor-
phism from a neighborhood of0 in g∞ onto a neighborhood of I inGCM .
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As before letG1 ⊆ G2 ⊆ · · · ⊆ Gn ⊆ · · · ⊆ B(H) be a sequence of connected
finite-dimensional Lie subgroups ofGL(H).

Theorem 3.5. Suppose Assumption3.1 holds. Then the groupG∞ = ⋃∞
n=1Gn is dense

in GCM in the metric d, and the Cameron–Martin groupGCM is complete in the
metric d.

In order to prove the surjectivity of the exponential map onto a neighborhood of
the identity in the Cameron–Martin groupGCM , it is necessary to prove that, for
example, if x and y are small (in the norm| · |) elements ofg∞, then exey = ez

for some elementz in g∞. This makes it unavoidable to use some version of the
Baker–Campbell–Dynkin–Hausdorff (BCDH) formula (e.g. [14,15]).
We begin by proving several preliminary results. Most of these lemmas were first

proven in a somewhat different form in [25]. We give brief proofs here to make the
exposition complete. Lemma 3.8 and Proposition 3.7 are interesting in themselves. They
show, with the help of the BCDH formula, that log has a derivative with values in
g∞. The standard integral formula for the logarithm log(I + x) = ∫ 1

0 x(I + sx)−1ds,
although more useful in many contexts, does not easily yield values ing∞.

Notation 3.6. Let g ∈ C1
CM be such that‖g(t)− I‖ < 1 for any t ∈ [0,1]. Define the

logarithm of g by

h(t) = logg(t) =
∞∑
n=1

(−1)n−1

n
(g(t)− I )n.

Proposition 3.7 (The derivative of log as a series). Let A(t) = g(t)−1ġ(t), and for
any x ∈ g∞ define

F(x, t) = A(t)+ 1

2
[x,A(t)] −

∞∑
p=1

1

2(p + 2)p! [. . . [[x,A(t)],
p︷ ︸︸ ︷

x], . . . , x]. (3.1)

Then the series converges ing∞.

Proof. Indeed, by Assumption3.1

|F(x, t)| � |A(t)| + C|x||A(t)|
2

+
∞∑
p=1

1

2(p + 2)p!

∣∣∣∣∣∣[. . . [[x,A(t)],
p︷ ︸︸ ︷

x], . . . , x]
∣∣∣∣∣∣

� |A(t)| + C|x||A(t)|
2

+ |A(t)|
∞∑
p=1

Cp+1|x|p+1

2(p + 2)p! <∞,
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where C is the same constant as in Assumption3.1. In particular, this means that
F(x, t) ∈ g∞ for any x ∈ g∞ and any 0� t�1. �

Lemma 3.8 (The derivative of log). Let g ∈ C1
CM , h = logg, then

ḣ(t) = F(h, t), (3.2)

whereF(x, t) is defined by Eq.(3.1).

Proof. Indeed,h(t + s) = logg(t + s) = log(g(t)g(t)−1g(t + s)). Let

f (t, s) = log(g(t)−1g(t + s)).

Thenh(t+ s) = log(eh(t)ef (t,s)) = BCDH(h(t), f (t, s)), whereBCDH(x, y) is given
by the Baker–Campbell–Dynkin–Hausdorff formula forx, y ∈ g

BCDH(x, y)= log(expx expy)

=
∑
m

∑
pi,qi

(−1)m−1

m(
∑
i

pi+qi)
[. . .

p1︷ ︸︸ ︷
[x, x], . . . , x],

q1︷ ︸︸ ︷
y], . . . , y],

qm︷ ︸︸ ︷
. . . , y], . . . y]

p1!q1! . . . pm!qm! .

(3.3)

Note that

df (t, s)

ds
= lim
ε→0

f (t, s + ε)− f (t, s)
ε

=
∞∑
n=1

(−1)n−1

n

n∑
k=1

(g(t)−1g(t+s)−I )k−1g(t)−1ġ(t+s)
(
g(t)−1g(t+s)−I

)n−k
,

and therefore

df (t, s)

ds

∣∣∣∣
s=0

= g(t)−1ġ = A(t).

Note thatf (t,0) = 0, and therefore

ḣ(t)= lim
s→0

h(t + s)− h(t)
s

= lim
s→0

BCDH(h(t), f (t, s))− h(t)
s

=A(t)+ 1

2
[h(t), A(t)] + d

ds
|s=0

∑
p

(−1)1

2(p + 2)

[. . . [[h(t)f (s, t)],
p︷ ︸︸ ︷

h(t)], . . . , h(t)]
1!1!p!0!
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=A(t)+ 1

2
[h(t), A(t)] −

∞∑
p=1

1

2(p + 2)p! [. . . [[h(t), A(t)],
p︷ ︸︸ ︷

h(t)], . . . , h(t)]. �

Denote bydn the distance metric onGn corresponding to the norm| · | restricted to
the Lie algebragn, and define the metricd∞ = inf n dn. As before letG∞ = ⋃∞

n=1Gn.
ThenG∞ is a group contained in the Cameron–Martin groupGCM . Moreover, for any
x, y ∈ G∞ we haved(x, y)�d∞(x, y).

Lemma 3.9. Let 0 < L < ln 2/2C, where C is the same constant as in Assumption
3.1. Then there is a positive constant M such that∣∣d(I, ex)− |x|∣∣ �M|x|2,∣∣d∞(I, ex)− |x|∣∣ �M|x|2,

for any x ∈ g provided |x| < L.
Proof. First of all, the proof is the same for the metricsd and dn with the same
constants. We will show how to prove the estimate for the metricd. Joining I to ex

by the paths �→ esx , 0�s�1, we see that

d(I, ex)− |x|�
∫ 1

0
|e−sx ˙esx |ds − |x| = 0.

Now let g(s) and h(s) = logg(s) be as in Notation3.6. As before, letA(s) =
g−1(s)ġ(s), and therefore

A(s) = g−1(s)ġ(s)=
∞∑
k=0

(−adh)k(ḣ)

(k + 1)! = ḣ− [h, ḣ] + [h, [h, ḣ]]
2!

−[h, [h, [h, ḣ]]]
3! + · · ·

Then by Remark 3.3 for any smooth pathg(s) from I to ex

0� |x| − d(I, ex) =
∣∣∣∣
∫ 1

0
ḣ(s)ds

∣∣∣∣−
∫ 1

0

∣∣∣g−1(s)ġ(s)

∣∣∣ ds
�
∣∣∣∣
∫ 1

0
ḣ(s)ds

∣∣∣∣−
∣∣∣∣
∫ 1

0
g−1(s)ġ(s)ds

∣∣∣∣ �
∣∣∣∣
∫ 1

0
ḣ(s)− g−1(s)ġ(s)ds

∣∣∣∣
=
∣∣∣∣∣
∫ 1

0

∞∑
k=1

(−adh)k(ḣ)

(k + 1)! ds

∣∣∣∣∣ �
∞∑
k=1

Ck

(k + 1)!
∫ 1

0
|h(s)|k|ḣ(s)|ds,

where the constantC is the same as in Assumption 3.1. In particular, ifh(s) =
sx, 0�s�1, we have
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∣∣d(I, ex)− |x|∣∣ �
∞∑
k=1

Ck|x|k+1

(k + 1)!
∫ 1

0
skds� |x|2

∞∑
k=1

CkLk−1

(k + 1)!(k + 1)
.

Thus we can take

M =
∞∑
k=1

CkLk−1

(k + 1)!(k + 1)
.

Note that the above proof would go through fordn, wheren is such thatx ∈ gn.Thus the
statement of Lemma3.10 holds ford replaced byd∞ with the same constantM. �

Corollary 3.10. By choosingh(s) = sy + (1− s)x for 0�s�1 in the above proof we
have that

∣∣d(ex, ey)− |x − y|∣∣ �M|x − y|2,∣∣d∞(ex, ey)− |x − y|∣∣ �M|x − y|2,

for any x, y ∈ g provided |x| < L and |y| < L.
Lemma 3.11. Let g ∈ C1

CM . Suppose that

g(0) = I, ‖g(t)− I‖ < 1 for any t ∈ [0,1] and | logg(1)| < L,

where L is the same as in Corollary3.10.Then there is a sequencegn ∈ Gn such that
lim
n→∞ d(gn, g(1)) = 0.

Proof. As before leth(s) = logg(s). Note that by Proposition 3.7h(t) ∈ g∞. Therefore
there arehn ∈ gn such that|h(1) − hn| −→

n→∞0. Let gn = ehn . By Corollary 3.10 we

have

d(eh(1), gn)�C2|h(1)− hn| −→
n→∞0.

By a direct calculation we haveeh(t) = g(t). �

Proposition 3.12. Suppose Assumption3.1 holds, then

d(x, y) = d∞(x, y)

for any x, y ∈ G∞.
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Proof. Both metricsd and d∞ are left-invariant onG∞, therefore we can assume
that x = I . As we pointed out earlier, for anyy ∈ G∞ we haved(I, y)�d∞(I, y).
Therefore we only need to prove thatd∞(I, y)�d(I, y) for any y ∈ G∞.
Denoted(I, y) = D. For anyε′ > 0 there is a pathg(s) ∈ C1

CM such thatg(0) =
I, g(1) = y and

D�
∫ 1

0
|g−1(s)ġ(s)|ds�D + ε′.

Denoteε = ∫ 1
0 |g−1(s)ġ(s)|ds −D. Let m > 1,m ∈ N. There existtk,0 = t0 < t1 <

· · · tm−1 < tm = 1, k = 0,1, . . . , m such that

∫ tk+1

tk

|g−1(s)ġ(s)|ds = D + ε
m

and | logy−1
k+1yk|�L,

where yk = g(tk) and L < min{ln 2/2C,1/M}. Note that in generalyk is in the
Cameron–Martin groupGCM , not in the groupG∞. By Lemma 3.11 there exist
xk ∈ G∞ such thatd(yk, xk) < ε/m. By applying Corollary 3.10 twice we have
that

d∞(xk, xk+1) � | logx−1
k+1xk| +M| logx−1

k+1xk|2

� d(xk, xk+1)+ 2M| logx−1
k+1xk|2�d(xk, xk+1)+ 2M| logy−1

k+1yk|2.

Corollary 3.10 also implies that

| logy−1
k+1yk| −M| logy−1

k+1yk|2�d(yk, yk+1)�
D + ε
m

,

and sinceL < 1/M

| logy−1
k+1yk|�

D + ε
m(1−ML).

Thus

d∞(xk, xk+1) � d(xk, xk+1)+ 2M

(
D + ε
m

)2

� d(xk, yk)+ d(yk, yk+1)+ d(yk+1, xk+1)+ 2M

(
D + ε
m

)2

� d(yk, yk+1)+ 2ε

m
+ 2M

(
D + ε
m

)2
�D + ε

m
+ 2ε

m
+ 2M

(
D + ε
m

)2
.
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Finally,

d∞(I, y)�m
(
D + ε
m

+ 2ε

m
+ 2M

(
D + ε
m

)2)
= D + 3ε + 2M(D + ε)2

m
.

Recall thatD = d(I, y), and ε andm are arbitrary. �

Theorem3.4 now is a direct consequence of Lemmas 3.8 and 3.10 which imply
that the exponential and logarithmic functions are well-defined and differentiable in
neighborhoods of the identity and zero, respectively.

Proof of Theorem 3.5. First of all, G∞ ⊆ GCM sinceGn ⊆ GCM for all n. Let
g ∈ G∞, k ∈ GCM , and suppose we have a pathg(t) : [0,1] → GCM, g(t) ∈
C1
CM, g(0) = g, g(1) = k. Without a loss of generality we can assume that‖g(t)−g‖ <

1, d(logk, logg) < L, where L is the same as in Lemma 3.10. Otherwise the path
logg(t) can be divided into a finite number of subpaths satisfying the condition. Lemma
3.11 implies that for anyε > 0 there ism ∈ G∞ such thatd(m, g−1k) < ε. Then

d(m, g−1k) = d(gm, k) < ε.

Note that gm ∈ G∞, and therefore we have shown that elements ofGCM can be
approximated by elements ofG∞. �

4. Is g∞ a Lie algebra?

As in the previous section, letH be a separable Hilbert space,B(H) be the space
of bounded operators onH, and I be the identity operator. Here we restrict ourselves
to the case of the Hilbert–Schmidt groups. ByHS we denote the space of Hilbert–
Schmidt operators onH. The spaceHS is equipped with the Hilbert–Schmidt inner
product (·, ·)HS . Let GL(H) be the group of invertible elements ofB(H). Then a
Hilbert–Schmidt group is a closed subgroup ofGL(H) such thatA− I ∈ HS for any
A ∈ G. Note that the set{A ∈ GL(H) : A− I ∈ HS} is a group.
In Section3 we considered a sequence of finite-dimensional groupsGn. Suppose

now that in additionGn ⊂ I + HS. Then their Lie algebras satisfygn ⊂ HS. As
before we assume that the infinite-dimensional Lie algebrag = ⋃∞

n=1 gn is equipped
with a Hermitian inner product(·, ·), and the corresponding norm is denoted by| · |.
Throughout this section we assume the following modified version of Assumption 2.1.

Assumption 4.1 (Hilbert–Schmidt completeness assumption). There is a subspaceg∞
of HS such that the Lie algebrag is contained ing∞ and the given inner product(·, ·)
on g extends tog∞, which is complete with respect to this inner product. As before
we will abuse notation by using(·, ·) to denote the extended inner product ong∞ and
by | · | the corresponding norm. We assume thatg is dense ing∞ in the norm| · |.
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Remark 4.2. In our earlier papers we assumed that(·, ·)g∞ is given by (x, y)g∞ =
(x,Q−1y)HS , where Q is a one-to-one nonnegative trace class operator onHS for
which eachgn is an invariant subspace. The assumption thatQ is trace-class assures
that the heat kernel measure constructed in our previous work[24–27] actually lives in
HS+ I . In the present paper we do not assume thatQ is trace-class unless it is stated
explicitly. Moreover, we do not use the operatorQ, but rather describe the assumptions
on Q in terms of an orthonormal basis ofg∞.
In the next statement we use the fact that we can view an element ofHS as an

infinite matrix A = {aij }∞i,j=1 such that the sum
∑
i,j |aij |2 is finite. Then eij , the

matrices with 1 at theij th place and 0 at all other places, form an orthonormal basis of
HSwith the inner product(·, ·)HS . Let us describe an example of the setting introduced
above. Namely, letg∞ be the vector space generated by the orthonormal basis�ij =
�ij eij , (i, j) ∈ A ⊆ N × N for some �ij > 0. Then the inner product ong∞ is
determined by(�ij , �km)g∞ = (eij , ekm)HS . It turns out thatg∞ might not be a Lie
algebra.

Proposition 4.3. There exists a sequence of positive numbers�ij such thatg∞ is not
a Lie algebra.

Proof. Let �ij = �ji for any i, j , andx, y ∈ g∞ be such that

x =
∞∑
l=0

xl(�3l+1,3l+2 − �3l+2,3l+1), y =
∞∑
l=0

yl(�3l+1,3l+3 − �3l+3,3l+1).

Then

[x, y] =
∑
l,n

xlyn[�3l+1,3l+2 − �3l+2,3l+1, �3n+1,3n+3 − �3n+3,3n+1]

= −
∑
l

xlyl
�3l+1,3l+2�3l+1,3l+3

�3l+2,3l+3
(�3l+2,3l+3 − �3l+3,3l+2).

Thus

|[x, y]|2 =
∑
l

x2l y
2
l

�23l+1,3l+2�
2
3l+1,3l+3

�23l+2,3l+3

.

Let xl = yl = �3l+1,3l+2 = �3l+1,3l+3 = al and�3l+2,3l+3 = bl , whereal andbl are,2-
sequences. Then|[x, y]|2 = ∑

l a
8
l b

−2
l = ∞ if, for example,al = 1/l and bl = 1/l4.

�
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The next result shows that there exist inner products such that Continuity Assumption
3.1 on the Lie bracket is satisfied.

Theorem 4.4. Suppose�i,j = �i�j , i, j ∈ N, then for anyx, y ∈ g∞

|[x, y]|�2 sup
i

�2i |x||y|.

Proof. Let x =
∞∑
i,j=1

xi,j�ij and y =
∞∑

k,m=1
yk,m�km. Then

xy =
∑

i,j,m
xi,j yj,m

�i,j�j,m
�i,m

�im

and therefore

|xy|2 =
∑
i,m


∑

j

xi,j yj,m
�i,j�j,m

�i,m


2

=
∑
i,m


∑

j

xi,j yj,m�2j


2

�
∑
i,j

x2i,j�
2
j

∑
k,m

y2k,m�2k. �

Corollary 4.5. If �i,j = �i�j , i, j ∈ N, and {�i}∞i=1 ∈ ,p for any p > 0, then
Assumption3.1 on the Lie bracket is satisfied. In particular, if p = 2, then the operator
Q mentioned in Remark4.2 is trace-class.

5. Riemannian geometry of the Hilbert–Schmidt groups: definitions and
preliminaries

The goal of the next two sections is to see if there exists a natural Lie algebra
for GCM and an inner product on it such that the Ricci curvature is bounded from
below. The first obstacle in answering such a question is the absence of geometric
definitions. We chose to follow the work of Milnor for finite-dimensional Lie groups in
[39]. There he described the Riemannian geometry of a Lie group with a Riemannian
metric invariant under left translation. One of his aims was to see how the choice of
an orthonormal basis of the (finite-dimensional) Lie algebra determines the curvature
properties of the corresponding Lie group. This is exactly the question we study, but in
infinite dimensions: how the choice of the inner product ong changes the Riemannian
geometry of the groupGCM . We consider general norms ong which are diagonal in
a certain sense. This allows us to compute the Ricci curvature in two important cases:
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the first case is when the norm ong is the Hilbert–Schmidt norm, and the second one
is when the norm ong is determined by a nonnegative trace class operator onHS.
The latter assumption assures that the corresponding heat kernel measure constructed
in our previous work[24–27] actually lives inHS + I . We use finite-dimensional
approximations tog to define the sectional and Ricci curvatures. Our results show that
for the general, orthogonal and upper triangular Hilbert–Schmidt algebras the Ricci
curvature generally is not bounded from below. Moreover, for the upper triangular
Hilbert–Schmidt algebra the Ricci curvature is identically minus infinity.
Let g be an infinite-dimensional Lie algebra equipped with an inner product(·, ·).

We assume thatg is complete. By Theorem 4.4 this is the case for all examples we
consider later in this section.

Definition 5.1. The Levi–Civita connection∇x is defined by

(∇xy, z) = 1
2(([x, y], z)− ([y, z], x)+ ([z, x], y))

for any x, y, z ∈ g.
Definition 5.2. (1) TheRiemannian curvature tensor Ris defined by

Rxy = ∇[x,y] − ∇x∇y + ∇y∇x, x, y ∈ g.

(2) For any orthogonalx, y in g

K(x, y) = (Rxy(x), y)

is called thesectional curvature.
(3) Let {�i}∞i=1 be an orthonormal basis ofg, N be finite. Then

RN(x) =
N∑
i=1

K(x, �i ) =
N∑
i=1

(Rx�i (x), �i )

is the truncated Ricci curvature.
(4) Let N be finite, then

R̂N (x) =
N∑
i=1

R�i x(�i )

is the truncated self-adjoint Ricci curvature or transformation.

The self-adjoint Ricci transformation is a convenient computational tool. First of all,

RN(x) = (R̂N (x), x).



260 M. Gordina / Journal of Functional Analysis 227 (2005) 245–272

Then, if {�i}dimgi=1 is an orthonormal basis which diagonalizesR̂, that is,R̂N (�i ) = ai�i ,
then

RN(x) =
N∑
i=1

aix
2
i , x =

dimg∑
i=1

xi�i .

The numbersai are called the principal Ricci curvatures.
As in Section4, let {eij }∞i,j=1 be the standard basis of the space of Hilbert–Schmidt

operatorsHS. The Lie bracket for these basis elements can be written as

[eij , ekm] = �j,keim − �i,mekj

where�ln is Kronecker’s symbol. As before, we study a subspaceg∞ of HS generated
by an orthonormal basis�ij = �i�j eij for some�i > 0, (i, j) ∈ A ⊆ N × N.

6. Ricci curvature

The main results of this section are Theorems6.1, 6.8 and 6.10. For the skew-
symmetric and triangular infinite matrices, the orthonormal basis we use actually di-
agonalizes the truncated self-adjoint Ricci curvature. Then the results of this section
show that if we define the Ricci curvature as the limit of the truncated Ricci curvature
as the dimension goes to∞, it is not bounded from below. Moreover, for the upper
triangular matrices the Ricci curvature is identically negative infinity.

6.1. General Hilbert–Schmidt algebra

Let {�i}∞i=1 be a bounded sequence of strictly positive numbers. In this section we
consider the infinite-dimensional Lie algebrag∞ generated by the orthonormal basis
�ij = �i�j eij . Then g∞ is a Lie subalgebra ofglHS . Recall that if the sequence
{�i}∞i=1 is bounded, then by Theorem 4.4, Continuity Assumption 3.1 is satisfied for
the corresponding norm ong∞.

Theorem 6.1. (1) Let N > maxi, j , then the truncated Ricci curvature is

RNij = RN(�ij ) = 1

4

(
6�i,j�

4
i − 4�i,j�

4
i N − 2�4i N − 2�4jN + 2

N∑
m=1

�4m

)
.

(2) Suppose that{�i}∞i=1 ∈ ,2. Then

lim
N→∞R

N(�ij ) = 1

2
lim
N→∞

(
−�4i N − �4jN +

N∑
m=1

�4m

)
= −∞,
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if i �= j .

lim
N→∞R

N(�ii ) = 1

2
lim
N→∞

(
3�4i − 4�4i N +

N∑
m=1

�4m

)
= −∞.

(3) For the Hilbert–Schmidt inner product, the truncated Ricci curvature is

RNij = 1
2(3�i,j − 2�i,jN −N).

This theorem is a direct consequence of the following results. First of all, note that
the Lie bracket can be written as

[�ij , �km] = �j,k�
2
j�im − �i,m�2i �kj ,

where�l,n is Kronecker’s symbol. Denote∇ab = ∇�ab , then:

Lemma 6.2.

∇ab�cd = 1
2(�b,c�

2
b�ad − �a,d�

2
a�cb − �a,c�

2
d�db + �b,d�

2
c�ac

+ �b,d�
2
a�ca − �a,c�

2
b�bd).

Proof.

(∇ab�cd , �ef )= 1
2

(
([�ab, �cd ], �ef )− ([�cd , �ef ], �ab)+ ([�ef , �ab], �cd)

)
= 1

2(�b,c�
2
b(�ad , �ef )− �a,d�

2
a(�cb, �ef )− �d,e�

2
d(�cf , �ab)

+ �c,f �2c(�ed , �ab)+ �f,a�
2
f (�eb, �cd)− �e,b�

2
e(�af , �cd))

= 1
2(�b,c�e,a�f,d�

2
b − �a,d�e,c�f,b�

2
a − �a,c�e,d�f,b�

2
d

+ �b,d�e,a�f,c�
2
c + �b,d�e,c�f,a�

2
a − �a,c�f,d�e,b�

2
b). �

Lemma 6.3.

Rij,km�ij

= 1
4(3�j,k�j,m�2i �

2
j�ii + 2�i,k�j,m(�

4
i + �4j )�ij + 2�i,m�j,k�

2
i �

2
j�ij

+2�i,k�j,m�2i �
2
j�ji + 3�i,k�i,m�2i �

2
j�jj

−�i,m�2i �
2
k�ik − 2�i,j�i,m�2i �

2
k�ik + �i,m�4i �ki − 2�i,j�i,m�4i �ki

−4�i,k�
4
i �im + �i,k�

4
j�im + �i,k�

4
m�im − 2�i,j�i,k�

4
i �im − �i,k�

2
i �

2
m�mi
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−2�i,j�i,k�
2
i �

2
m�mi − �j,m�2j�

2
k�jk + �j,m�4i �kj + �j,m�4k�kj − 4�j,m�4j�kj

+�j,k�
4
j�jm − �j,k�

2
j�

2
m�mj ).

Proof. The Riemannian curvature tensor applied to�ij is

R�ij�km�ij =Rij,km�ij = ∇[�ij ,�km]�ij − ∇ij∇km�ij + ∇km∇ij�ij
= �j,k�

2
j∇im�ij − �i,m�2i∇kj�ij − ∇ij∇km�ij + ∇km∇ij�ij

= 1
2�j,k�

2
j (�i,m�2i �ij − �i,j�

2
i �im − �2j�jm − �2m�mj + 2�m,j�

2
i �ii )

−1
2�i,m�2i (�

2
i �ki + �2k�ik + �j,i�

2
j�kj − �k,j�

2
k�ij − 2�i,k�

2
j�jj )

−1
2∇ij (�i,m�2m�kj−�k,j�

2
k�im−�i,k�

2
j�jm

+�m,j�
2
i �ki+�m,j�

2
k�ik−�i,k�

2
m�mj )

+1
2∇km(�2i �ii + �2i �ii + �i,j�

2
j�ij − �i,j�

2
i �ij − 2�2j�jj ). �

Lemma 6.4. The sectional curvature is

K(�ij , �km)= (Rij,km�ij , �km)

= 1
4(6�i,k�i,m�j,k�j,m�4i + 2�i,k�j,m�4i + 2�i,k�j,m�4j − 2�i,k�i,m�k,m�4i

+ �i,m�4i − 2�i,j�i,m�4i − 4�i,k�
4
i + �i,k�

4
j + �i,k�

4
m

−2�i,j�i,k�
4
i − 2�j,k�j,m�m,k�

4
j

+ �j,m�4i + �j,m�4k − 4�j,m�4j + �j,k�
4
j ).

Proof.

(Rij,km�ij , �km)= 1
4(3�i,k�i,m�j,k�j,m�2i �

2
j + 2�i,k�j,m�4i + 2�i,k�j,m�4j

+2�i,k�i,m�j,k�j,m�2i �
2
j + 2�i,k�i,m�j,k�j,m�2i �

2
j

+3�i,k�i,m�j,k�j,m�2i �
2
j

−�i,k�i,m�k,m�2i �
2
k − 2�i,j�i,k�i,m�k,m�2i �

2
k + �i,m�4i − 2�i,j�i,m�4i

−4�i,k�
4
i + �i,k�

4
j + �i,k�

4
m − 2�i,j�i,k�

4
i − �i,k�i,m�m,k�

2
i �

2
m

−2�i,j�i,k�i,m�m,k�
2
i �

2
m



M. Gordina / Journal of Functional Analysis 227 (2005) 245–272 263

−�j,k�j,m�k,m�2j�
2
k + �j,m�4i + �j,m�4k − 4�j,m�4j + �j,k�

4
j

−�j,k�j,m�m,k�
2
j�

2
m)

= 1
4(6�i,k�i,m�j,k�j,m�4i + 2�i,k�j,m�4i + 2�i,k�j,m�4j − 2�i,k�i,m�k,m�4i

+�i,m�4i − 2�i,j�i,m�4i − 4�i,k�
4
i + �i,k�

4
j + �i,k�

4
m − 2�i,j�i,k�

4
i

−2�j,k�j,m�m,k�
4
j

+�j,m�4i + �j,m�4k − 4�j,m�4j + �j,k�
4
j ). �

6.2. Orthogonal Hilbert–Schmidt algebra

Note that bij = (eij − eji)/
√
2, i < j is an orthonormal basis for the space of

skew-symmetric Hilbert–Schmidt operatorssoHS . Let {�i}∞i=1 be a bounded sequence
of strictly positive numbers. In this section we consider the infinite-dimensional Lie
algebrag∞ generated by the orthonormal basis�ij = �i�j bij . Recall that if the sequence
{�i}∞i=1 is bounded, then by Theorem4.4, Continuity Assumption 3.1 is satisfied for
the corresponding norm ong∞.
In what follows the convention is that�ij = 0, if i�j . The Lie bracket for these

basis elements can be written as

[�ij , �km] = 1√
2
(�j,k�

2
j�im + �j,m�2j (�ki − �ik)+ �i,k�

2
i (�mj − �jm)− �i,m�2i �kj ).

We begin with several computational lemmas.

Lemma 6.5.

∇ab�cd = 1

2
√
2
(�2b�b,c�a,d + �2b�b,d(�c,a − �a,c)+ �2a�a,c(�d,b − �b,d)− �2a�a,d�c,b

−�2d�a,c�d,b − �2d(�b,c�a,d − �a,c�b,d)− �2c(�b,d�c,a − �a,d�c,b)+ �2c�b,d�a,c

+�2a�b,d�c,a + �2b(�a,c�d,b − �a,d�c,b)+ �2a(�b,c�a,d − �b,d�a,c)

−�2b�a,c�b,d).

Proof.

(∇ab�cd , �ef )= 1

2
√
2
(((�b,c�

2
b�ad + �b,d�

2
b(�ca − �ac)

+�a,c�
2
a(�db − �bd)− �a,d�

2
a�cb), �ef )

−(�d,e�2d�cf + �d,f �2d(�ec − �ce)



264 M. Gordina / Journal of Functional Analysis 227 (2005) 245–272

+�c,e�
2
c(�f d − �df )− �c,f �2c�ed , �ab)

+(�f,a�2f �eb + �f,b�
2
f (�ae − �ea)

+�e,a�
2
e(�bf − �f b)− �e,b�

2
e�af , �cd))

= 1

2
√
2
(�2b�a,e�b,c�d,f + �2b�b,d(�c,e�a,f − �a,e�c,f )

+�2a�a,c(�d,e�b,f − �d,f �b,e)

−�2a�a,d�b,f �c,e − �2d�a,c�b,f �d,e − �2d�d,f (�a,e�b,c − �a,c�b,e)

−�2c�c,e(�a,f �b,d − �a,d�b,f )+ �2c�a,e�b,d�c,f

+�2a�a,f �b,d�c,e + �2b�b,f (�a,c�e,d − �e,c�a,d)

+�2a�a,e(�b,c�d,f − �c,f �b,d)− �2b�a,c�b,e�d,f ). �

Lemma 6.6. The Riemannian curvature tensor applied to�ij is

Rij,km�ij = 1
8 �j,m�2j (�

2
i − 3�2j + 3�2k)�k,j + 1

8 �i,k�
2
i (−3�2i + �2j + 3�2m)�i,m

− 1
4�i,m�2i (−�2j + �2i − �2k)�k,i + 1

8 �i,m(−�2i + �2j − �2k)(�
2
i + �2j − �2k)�k,i

+ 1
4 �j,k�

2
j (�

2
i − �2j + �2m)�j,m + 1

8 �j,k

×(−�2i + �2j + �2m)(−�2i − �2j + �2m)�j,m.

Proof.

R�ij�km�ij =Rij,km�ij = 1√
2
�j,k�

2
j∇im�ij + 1√

2
�j,m�2j∇(�ki−�ik)�ij

+ 1√
2
�i,k�

2
i∇(�mj−�jm)�ij − 1√

2
�i,m�2i∇kj�ij − ∇ij∇km�ij

= 1
4�j,k�

2
i �

2
j�j,m − 1

4�j,k�
4
j�j,m + 1

4�j,k�
2
j�

2
m�j,m

+ 1√
2
�j,m�2j∇(�ki−�ik)�ij + 1√

2
�i,k�

2
i∇(�mj−�jm)�ij − 1√

2
�i,m�2i∇kj�ij

− 1

2
√
2
(+�2m�i,m∇ij�k,j + �2m�m,j∇ij (�i,k − �i,k)+ �2k�i,k∇ij (�j,m − �m,j )

− �2k�k,j∇ij�i,m − �2j�i,k∇ij�j,m − �2j (�i,m∇ij�k,j
− �i,k∇ij�m,j )−�2i (�m,j∇ij�i,k−�k,j∇ij�i,m)+�2i �m,j∇ij�i,k
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+ �2k�m,j∇ij�i,k + �2m(�i,k∇ij�j,m − �k,j∇ij�i,m)
+ �2k(�i,m∇ij�k,j − �m,j∇ij�i,k)− �2m�i,k∇ij�m,j ). �

Lemma 6.7. The sectional curvature is

K(�ij , �km)= (Rij,km�ij , �km)

= 1
8 �j,m�2j (�

2
i − 3�2j + 3�2k)+ 1

8 �i,k�
2
i (−3�2i + �2j + 3�2m)

+ 1
4 �i,m�2i (�

2
j − �2i + �2k)+ 1

8 �i,m(−�2i + �2j − �2k)(�
2
i + �2j − �2k)

+ 1
4�j,k�

2
j (�

2
i − �2j + �2m)+ 1

8�j,k(−�2i + �2j + �2m)(−�2i − �2j + �2m).

The third part of the following theorem says that the principal Ricci curvatures for
soHS can tend to either∞ or −∞ as the dimensionN → ∞ depending on the choice
of the scaling{�i}∞i=1.

Theorem 6.8. Let N > maxi, j . Then:
(1) The truncated Ricci curvature is

RNij = 1

8
(−4�2i �

2
j − 5(�2i − �2j )

2)N + 3

8
(�2i + �2j )

m=N∑
m=1

�2m + 1

4

m=N∑
m=1

�4m.

(2) For the Hilbert–Schmidt inner product the truncated Ricci curvature is

RNij = N

2
.

(3) The truncated self-adjoint Ricci curvature is diagonal in the basis{�km}. Let {akm}
be its principal Ricci curvatures, that is, R̂N (�km) = akm�km. Then if {�i}∞i=1 ∈ ,2,
the principal Ricci curvatures have the following asymptotics asN → ∞:

akm = ANkm + N

8
(2�2k − 3�2m)(�

2
m − �2k),

whereANkm → A <∞ as N → ∞.

Proof. (1)

RNij =
k,m=N∑
k,m=1

(Rij,km�ij , �km)
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=
k=N∑
k=1

1

8
�2j (�

2
i − 3�2j + 3�2k)+

1

8
�i,k�

2
i

(
−3�2i N + �2jN + 3

m=N∑
m=1

�2m

)

+1

4
�2i (�

2
j − �2i + �2k)+

1

8
(−�2i + �2j − �2k)(�

2
i + �2j − �2k)

+1

4
�j,k�

2
j

(
�2i N − �2jN +

m=N∑
m=1

�2m

)

+1

8
�j,k

(
(�2i − �2j )(�

2
i + �2j )N − 2�2i

m=N∑
m=1

�2m +
m=N∑
m=1

�4m

)

+1

8
(6�2i �

2
j − 5�4i − 5�4j )N + 3

8
(�2i + �2j )

m=N∑
m=1

�2m + 1

4

m=N∑
m=1

�4m.

(2) follows from (1).
(3) Let k < m < N ; then the truncated self-adjoint Ricci curvature is

R̂N (�km)=
∑

i<j�N
Rij,km�ij =

N∑
j=1

j−1∑
i=1

Rij,km�ij

=
k∑
j=1

j−1∑
i=1

Rij,km�ij +
m∑

j=k+1

j−1∑
i=1

Rij,km�ij +
N∑

j=m+1

j−1∑
i=1

Rij,km�ij .

Thus

R̂N (�km)= 1

8

k∑
j=1

j−1∑
i=1

s�j,m�2j (�
2
i − 3�2j + 3�2k)�k,j

+2�j,k�
2
j (�

2
i − �2j + �2m)�j,m + �j,k(−�2i + �2j + �2m)(−�2i − �2j + �2m)�j,m

+
m∑

j=k+1

j−1∑
i=1

Rij,km�ij +
N∑

j=m+1

j−1∑
i=1

Rij,km�ij

= 1

8

[
k−1∑
i=1

2�2k(�
2
i − �2k + �2m)+ (−�2i + �2k + �2m)(−�2i − �2k + �2m)

+�2m(�
2
k − 3�2m + 3�2k)+

m∑
j=k+1

�2k(−3�2k + �2j + 3�2m)
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+
m−1∑

i=1,i �=k
�2m(�

2
i − 3�2m + 3�2k)+

N∑
j=m+1

�2k(−3�2k + �2j + 3�2m)

+
N∑

j=m+1

−2�2m(−�2j + �2m − �2k)+ (−�2m + �2j − �2k)(�
2
m + �2j − �2k)


 �k,m

= 1

8

[
k−1∑
l=1

2�2k(�
2
l − �2k + �2m)+ (�2l − �2k − �2m)(�

2
l + �2k − �2m)

+
N∑

l=k+1

�2k(�
2
l − 3�2k + 3�2m)+

m−1∑
l=1

�2m(�
2
l + 3�2k − 3�2m)

+
N∑

l=m+1

−2�2m(−�2l − �2k + �2m)+ (�2l − �2k − �2m)(�
2
l − �2k + �2m)

]
�k,m

= 1

8

[
(k − 1)(3�2k + �2m)− 3(m− 1)�2m(−�2k + �2m)

+(N − k)(�2k(−3�2k + 3�2m))+ (N −m)(−�2k − 3�2m)(−�2k + �2m)

+
k−1∑
l=1

(2�2k�
2
l + �4l − 2�2m�2l )+

N∑
l=k+1

�2k�
2
l

+
m−1∑
l=1

�2m�2l +
N∑

l=m+1

�2l (2�
2
m + �2l − 2�2k)

]
�k,m. �

6.3. Upper triangular Hilbert–Schmidt algebra

As before let{�i}∞i=1 be a bounded sequence of strictly positive numbers. In this sec-
tion we consider the infinite-dimensional Lie algebrag∞ generated by the orthonormal
basis�ij = �i�j eij , i < j . In this caseg∞ is a Lie subalgebra ofhHS . Recall that if
the sequence{�i}∞i=1 is bounded, then by Theorem4.4, Continuity Assumption 3.1 is
satisfied for the corresponding norm ong∞.
The Lie bracket is

[�ij , �km] = �j,k�
2
j�im − �i,m�2i �kj , i < j, k < m.
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Denote∇ab = ∇�ab ; then as for the general algebra with the convention that�ij = 0
if i�j

∇ab�cd=1
2

(
�b,c�

2
b�ad−�a,d�

2
a�cb − �a,c�

2
d�db + �b,d�

2
c�ac + �b,d�

2
a�ca−�a,c�

2
b�bd

)
.

Lemma 6.9. The Riemannian curvature tensor applied to�ij is

R�ij�km�ij = 1
4(2�i,k�j,m�4i �ij + 2�i,k�j,m�4j�ij − 3�i,m�4i �ki − 3�j,k�

4
j�jm

+ �i,k�
4
j�im + �i,k�

4
m�im + �j,m�4i �kj + �j,m�4k�kj ).

The sectional curvature is

(Rij,km�ij , �km)

= 1
4(2�i,k�j,m�4i + 2�i,k�j,m�4j − 3�i,m�4i − 3�j,k�

4
j

+�i,k�
4
j + �i,k�

4
m + �j,m�4i + �j,m�4k).

Proof. The Riemannian curvature tensor applied to�ij is

R�ij�km�ij =Rij,km�ij

= �j,k�
2
j∇im�ij − �i,m�2i∇kj�ij − ∇ij∇km�ij + ∇km∇ij�ij

= 1
2(−�j,k�

4
j�jm − �i,m�4i �ki)+ 1

4(+2�i,k�j,m�4i �ij + 2�i,k�j,m�4j�ij

− �i,m�4i �ki − �j,k�
4
j�jm + �i,k�

4
j�im

+�i,k�
4
m�im + �j,m�4i �kj + �j,m�4k�kj )

= 1
4(2�i,k�j,m�4i �ij + 2�i,k�j,m�4j�ij − 3�i,m�4i �ki − 3�j,k�

4
j�jm

+�i,k�
4
j�im + �i,k�

4
m�im + �j,m�4i �kj + �j,m�4k�kj ). �

The third part of the following theorem says that the principal Ricci curvatures
for hHS tend to−∞ as the dimensionN → ∞. This can interpreted as the Ricci
curvature being−∞. Note that the condition on the scaling{�i}∞i=1 ∈ ,2 corresponds
to the condition we assumed in[24–27]. We needed this condition to construct a heat
kernel measure living inHS + I . This means that such a measure exists even though
the Ricci curvature is−∞.
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Theorem 6.10.Let N > maxi, j then
(1) the truncated Ricci curvature is

RNij =
k,m=N∑
k,m=1

(Rij,km�ij , �km)

= 1

4


(4− 3i + j)�4i + (2+ 3j − i − 2N)�4j +

N∑
l=i+1

�4l +
j−1∑
l=1

�4l


 .

For the Hilbert–Schmidt inner product the truncated Ricci curvature

RNij = 1
4(5− 5i + 5j −N).

(2) The truncated self-adjoint Ricci curvature is diagonal in the basis{�km}. Let {akm}
be its principal Ricci curvatures, that is, R̂N (�km) = akm�km. Then if {�i}∞i=1 ∈ ,2,
the principal Ricci curvatures have the following asymptotics asN → ∞

akm =
(
BNkm − N

2
�4m

)
�k,m,

whereBNkm → Bkm <∞ as N → ∞.

Proof. (1) follows directly from the previous lemmas. (2) Letk < m < N , then the
truncated adjoint Ricci curvature is

R̂N (�km)=
∑

i<j�N
Rij,km�ij =

N∑
j=1

j−1∑
i=1

Rij,km�ij

=
k∑
j=1

j−1∑
i=1

Rij,km�ij +
m∑

j=k+1

j−1∑
i=1

Rij,km�ij +
N∑

j=m+1

j−1∑
i=1

Rij,km�ij .

R̂N (�km)=
∑

i<j�N
Rij,km�ij =

N∑
j=1

j−1∑
i=1

Rij,km�ij

=
k∑
j=1

j−1∑
i=1

Rij,km�ij +
m∑

j=k+1

j−1∑
i=1

Rij,km�ij +
N∑

j=m+1

j−1∑
i=1

Rij,km�ij

= (−3k +m+ 4)

4
�4k�km + (2− k − 2N + 3m)

4
�4m�km + 1

4

N∑
l=k+1

�4l �km
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+ 1

4

m−1∑
l=1

�4l �km

=BNkm�km − N

2
�4m�km. �

Corollary 6.11. Suppose{�i}∞i=1 ∈ ,2. Then for large N

R̂N (�km) = bNkm�km,

where bNkm → −∞ as N → ∞. This can be described as the Ricci curvature being
negative infinity for anyx ∈ g.
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