Solvability of a Nonlinear Two Point Boundary Value Problem at Resonance

Chung-Cheng Kuo*

Department of Mathematics, Fu Jen University, Taipei, Taiwan

Received May 16, 1995; revised April 11, 1997

1. INTRODUCTION

Let $k \in \mathbb{N}$ be fixed. We consider the boundary value problem

$$
\begin{align*}
 u'' + k^2 u + g(x, u) &= h & \text{in } (0, \pi), \\
 u(0) &= u(\pi) = 0,
\end{align*}
$$

where $h \in L^1(0, \pi)$ is given and $g: (0, \pi) \times \mathbb{R} \to \mathbb{R}$ is a Caratheodory function. That is, $g(x, u)$ is measurable in $x \in (0, \pi)$ for each $u \in \mathbb{R}$, continuous in $u \in \mathbb{R}$ for a.e. $x \in (0, \pi)$ and satisfies for each $r > 0$, there exists $a_r \in L^1(0, \pi)$ such that

$$
|g(x, u)| \leq a_r(x),
$$

for a.e. $x \in (0, \pi)$ and $|u| \leq r$.

Concerning the growth condition of the nonlinear term g, we assume that:

(H) There exist a constant $r_0 > 0$ and nonnegative functions p, $b \in L^1(0, \pi)$ such that

$$
\|p\|_{L^1} < 2k(k+1) \tan \frac{\pi}{2(k+1)},
$$

and for a.e. $x \in (0, \pi)$ and $|u| \geq r_0$

$$
|g(x, u)| \leq p(x) |u| + b(x).
$$

The solvability of the problem (1) has been extensively studied if p is assumed to be bounded, existence theorems for a solution to (1) are proved

* Research supported in part by the National Science Council of the Republic of China.

1

0022-0396/97 25.00

Copyright © 1997 by Academic Press

All rights of reproduction in any form reserved.
if \(p(x) \leq 2k + 1 \) for a.e. \(x \in (0, \pi) \) with strict inequality on a positive measurable subset of \((0, \pi)\) (see [2, 5]). Recently, Dancer and Gupta [4] has to give a solvability theorem for (1) under the growth condition (H) when \(k = 1 \) and satisfies

\[
\int_0^\pi h(x) \sin x \, dx = 0. \tag{5}
\]

The purpose of this paper is to extend the main result of Dancer and Gupta [4] when \(k = 1 \) and (5) is excluded, and improve the main theorem in Ha and Kuo [3] where it assumed that \(\|p\|_{L^1} \leq 2k \) and satisfies a Landesman–Lazer condition,

\[
\int_0^\pi h(x) v(x) \, dx < \int_{\pi > 0} g_+ (x) v(x) \, dx + \int_{\pi < 0} g_- (x) v(x) \, dx, \tag{6}
\]

where \(g_+ (x) = \lim_{x \to -\infty} \inf g(x, u), \quad g_- (x) = \lim_{x \to -\infty} \sup g(x, u) \) and \(v(x) = \pi \sin kx \) for \(\pi \in \mathbb{R} \setminus \{0\} \). To prove our results using a Lyapunov type inequality shown in Lemma 2 and the well-known Leray–Schauder continuation methods (see [1]).

In what follows we shall make use of the real Banach spaces \(L^p(0, \pi) \) and \(C^k[0, \pi] \) with the norms denoted by \(\|u\|_{L^p} \) and \(\|u\|_{C^k} \), respectively, and the Sobolev spaces \(W^{2, 1}(0, \pi) \) and \(H^1_0(0, \pi) \). By a solution of (1) we mean a function \(u \in W^{2, 1}(0, \pi) \cap H^1_0(0, \pi) \) satisfies the differential equation (1) a.e. on \((0, \pi)\). Finally, we note that for each \(u \in W^{2, 1}(0, \pi) \cap H^1_0(0, \pi) \),

\[
\int_0^\pi u(x) \sin kx = 0
\]

for all \(x \in (0, \pi) \), where

\[
G(x, \xi) = \sin kx (\xi \cos k\xi) / k - \left\{ \begin{array}{ll}
\cos kx (\sin k\xi) / k & \text{if } 0 \leq \xi \leq x \\
\sin kx (\cos k\xi) / k & \text{if } x \leq \xi \leq \pi.
\end{array} \right.
\]

2. EXISTENCE THEOREMS

First, we state the following lemma, which is a modification of [4, Lemma 3]. Its proof can be obtained in analogy to [4, Lemma 3], and so is omitted.
Lemma 1. Let $a, b \in \mathbb{R}$, $a < b$, $b - a \leq \pi/k$ and let p be a nonnegative function in $L^1(a, b)$. Assume that $u \in W^{2, 1}(a, b) \cap H^1_0(a, b)$ is a nontrivial solution of the boundary value problem

$$u''(x) + k^2 u(x) + p(x) u(x) = 0 \quad \text{in} \ (a, b), \quad u(a) = u(b) = 0,$$

then $\int_a^b p(x) \, dx \geq 2k \cot(k/2)(b - a)$.

In order, we prove in the following lemma a Lyapunov type inequality which is an extension of [4, Theorem 2] to the case $k \geq 2$ and is also an improvement of [3, Lemma 1] from $\|p\|_{L^1} \leq 2k$ to $\|p\|_{L^1} < 2k(k + 1) \tan(\pi/2(k + 1))$.

Lemma 2. Let $k \in \mathbb{N}$ and let p be a nonnegative function in $L^1(0, \pi)$ such that $\|p\|_{L^1} < 2k(k + 1) \tan(\pi/2(k + 1))$. Assume that $u \in W^{2, 1}(0, \pi) \cap H^1_0(0, \pi)$ is a nontrivial solution of the problem

$$u''(x) + k^2 u(x) + p(x) u(x) = 0 \quad \text{in} \ (0, \pi), \quad u(0) = u(\pi) = 0.$$

Then $p(x) = 0$ a.e. $x \in (0, \pi)$, or equivalently $u = \beta \sin kx$ for some $\beta \in \mathbb{R}$, $\beta \neq 0$.

Proof. Step I: u has at most finite zeros in $(0, \pi)$. If not, then there exist $2(k + 1)$ zeros $a_i, b_i \in (0, \pi)$ such that $a_i < b_i < a_{i+1} < b_{i+1}$ for all $i = 1, 2, 3, ..., k$ and $\sum_{i=1}^{k+1} (b_i - a_i) \leq \pi/k$; it follows from Lemma 1 that

$$\|p\|_{L^1} = \int_0^\pi p(x) \, dx$$

$$\geq \sum_{i=1}^{k+1} \int_{a_i}^{b_i} p(x) \, dx \geq \sum_{i=1}^{k+1} 2k \cot\left(\frac{k}{2}(b_i - a_i)\right)$$

$$\geq 2k(k + 1) \cot\left(\frac{k}{2} \frac{\sum_{i=1}^{k+1} (b_i - a_i)}{k + 1}\right)$$

$$\geq 2k(k + 1) \cot\left(\frac{k\pi}{2(k + 1)}\right)$$

$$= 2k(k + 1) \tan\left(\frac{\pi}{2(k + 1)}\right)$$

because $\cot x$ is a convex decreasing function on $(0, \pi/2)$. We obtain a contradiction.
Step II: \(b - a \leq \pi/k \) for any two continuous zeros \(a, b \) of \(u \) in \([0, \pi]\). If not, by taking the inner product of (8) with \(\sin(\pi/(b-a))(x-a) \) in \(L^2(a,b) \) we have

\[
\int_a^b \left[k^2 - \left(\frac{\pi}{b-a} \right)^2 \right] u(x) \sin \frac{\pi}{b-a} (x-a) \, dx
+ \int_a^b p(x) u(x) \sin \frac{\pi}{b-a} (x-a) \, dx = 0,
\]

so that \(u(x) \sin(\pi/(b-a))(x-a) = 0 \) because of \(p(x) \geq 0, k^2 - (\pi/(b-a))^2 > 0 \) and \(u(x) \sin(\pi/(b-a))(x-a) \) has a fixed sign on \((a, b)\); hence \(u(x) = 0 \) on \((a, b)\) which contradicts the fact that \(u \) has only finite zeros in \((0, \pi)\).

Step III: \(u \) has at most \(k - 1 \) zeros in \((0, \pi)\). In particular, \(u \) has no zeros in \((0, \pi)\) when \(k = 1 \). If not, we choose continuous zeros \(x_0, x_1, x_2, \ldots, x_k, x_{k+1} \) of \(u \) in \([0, \pi]\), \(x_0 < x_1 < \cdots < x_{k+1} \), then \(\Delta x_i = x_i - x_{i-1} \leq \pi/k, i = 1, 2, 3, \ldots, k + 1 \), so that

\[
\int_0^\pi p(x) \, dx \geq \sum_{i=1}^{k+1} \int_{x_{i-1}}^{x_i} p(x) \, dx
\geq 2k \sum_{i=1}^{k+1} \cot \frac{k}{2} \Delta x_i
\geq 2(k + 1) \cot \frac{k}{2(k+1)} (\Delta x_1 + \Delta x_2 + \cdots + \Delta x_{k+1})
\geq 2(k + 1) \cot \frac{k\pi}{2(k+1)} = 2(k + 1) \tan \frac{\pi}{2(k+1)}
\]

which contradicts the assumption that \(\|p\|_1 < 2(k + 1) \tan(\pi/2(k + 1)) \).

Step IV: \(u \) has exactly \((k - 1)\) zeros in \((0, \pi)\). If not, then there exists \(s \in \mathbb{N}, s < k \) such that \(x_0 = 0, x_1, x_2, \ldots, x_{s-1} \), \(x_s = \pi \) are all zeros of \(u \) in \([0, \pi]\); it follows from Step II that

\[
\pi = \sum_{i=1}^s x_i - x_{i-1} \leq \sum_{i=1}^s \frac{\pi}{k} = \frac{s\pi}{k} \leq \frac{k\pi}{k} = \pi.
\]

We obtain a contradiction.
Step V: $x_i = i\pi/k, i = 0, 1, 2, 3, ..., k$ are all zeros of u in $[0, \pi]$. Indeed, if $x_0 = 0, x_1, x_2, ..., x_k = \pi$ are all zeros of u in $[0, \pi]$. Using Step II, $Ax_i = x_i - x_{i-1} \leq \pi/k, i = 1, 2, ..., k$, we have

$$\pi = \sum_{i=1}^{k} Ax_i$$

if and only if $Ax_i = \frac{\pi}{k}, i = 1, 2, ..., k$.

or equivalently, $x_i = i\pi/k, i = 0, 1, 2, ..., k$.

Step VI: $p(x) = 0$ a.e. on $(0, \pi)$ or equivalently,

$$v = \beta \sin kx$$

for some $\beta \in \mathbb{R}, \beta \neq 0$.

By taking the inner product in $L^2(x_{i-1}, x_i)$ of (9) with $\sin kx$ we have

$$0 = \int_{x_{i-1}}^{x_i} [u^\prime(x) + k^2u(x)] \sin kx \, dx + \int_{x_{i-1}}^{x_i} p(x) u(x) \sin kx \, dx$$

$$= \int_{x_{i-1}}^{x_i} p(x) u(x) \sin kx \, dx,$$

for all $i = 1, 2, 3, ..., k$. Consequently, $p(x) = 0$ a.e. on (x_{i-1}, x_i) for each $i = 1, 2, 3, ..., k$ because of p is nonnegative on $(0, \pi)$ and $u(x) \sin kx$ has no change of the sign on (x_{i-1}, x_i) for all $i = 1, 2, 3, ..., k$.

Remark. $k\pi < 2k(k+1) \tan(\pi/2(k+1)) \leq 4k$ for all $k \in \mathbb{N}$.

By slightly modifying the proof of [2, Lemma 2.2], the following lemma can be obtained. Before stating the lemma, we introduce some notations. For $v \in W^{2,1}(0, \pi) \cap H^1_0(0, \pi)$, v into a sine series $v = \sum_{n=1}^{\infty} b_n \sin nx$, we write $v = v^+ + v^0 + v^-$ and $v^+ = v^0 + v^- \in W^{2,1}(0, \pi) \cap H^1_0(0, \pi)$ are defined by

$$v^+ = \sum_{n=1}^{\infty} b_n \sin nx, \quad v^0 = b_k \sin kx$$

and

$$v^- = \begin{cases} \sum_{n=1}^{k-1} b_n \sin nx & \text{if } k \geq 2 \\ 0 & \text{if } k = 1. \end{cases}$$

(10)
3. Let \(\{ p_n \} \) be a sequence in \(L^1(0, \pi) \) such that \(p_n(x) \geq 0 \) for a.e. \(x \in (0, \pi) \) and for all \(n \in \mathbb{N} \), and \(p_n \to 0 \) weakly in \(L^1(0, \pi) \). Then there exists a constant \(\delta > 0 \) such that for all \(v \in W^{2,1}(0, \pi) \cap H_0^1(0, \pi) \)

\[
\int_0^\pi (v^+ + (k^2 + p_n(x)) v^-) (v^- + v^0 - v^+) \, dx \geq \delta \| v^+ \|_{H^1}^2
\]

(11)

for \(n \) large enough.

Theorem 4. Let \(g: (0, \pi) \times \mathbb{R} \to \mathbb{R} \) be a Carathéodory function satisfying (H). If there exist \(c, d \in L^1(0, \pi) \) such that for a.e. \(x \in (0, \pi) \) and all \(u \geq r_0 \)

\[
c(x) \leq g(x, u),
\]

(12)

and for a.e. \(x \in (0, \pi) \) and all \(u \leq -r_0 \)

\[
g(x, u) \leq d(x),
\]

(13)

then the problem (1) is solvable for any \(h \in L^1(0, \pi) \) provided that (6) holds.

Proof. Let \(\alpha \in \mathbb{R} \) be fixed, \(0 < \alpha < k \). We consider the boundary value problems

\[
u'' + k^2 u + (1 - t) \alpha u + \alpha g(x, u) = \alpha h \quad \text{in} \quad (0, \pi), \quad u(0) = u(\pi) = 0
\]

(14)

for \(0 \leq t \leq 1 \). Then the problem (14) has only a trivial solution when \(t = 0 \), and becomes the original problem (1) when \(t = 1 \). To apply the Leray–Schauder degree theory, it suffices to show that there exists \(R_0 > 0 \) such that \(|u|_{C^0} < R_0 \) for all possible solutions \(u \) of (14) and \(0 < t < 1 \). We first note that there exist \(e \in L^1(0, \pi) \) and Caratheodory functions \(g_1, g_2: (0, \pi) \times \mathbb{R} \to \mathbb{R} \) such that for a.e. \(x \in (0, \pi) \) and all \(u \in \mathbb{R} \)

\[
g = g_1 + g_2, \quad 0 \leq u g_1(x, u), \quad |g_1(x, u)| \leq p(x) |u| \quad \text{and} \quad |g_2(x, u)| \leq e(x).
\]

(15)

This may be done by defining

\[
g_1(x, u) = \begin{cases}
\min \{ g(x, u) + e(x), p(x) u \} \, \theta(u) & \text{if} \quad u \geq 0 \\
\max \{ g(x, u) - e(x), p(x) u \} \, \theta(u) & \text{if} \quad u \leq 0,
\end{cases}
\]

\[
g_2 = g - g_1 \quad \text{and} \quad e(x) = \max \{ a_1(x), b(x), |c(x)|, |d(x)| \},
\]

where \(\theta: \mathbb{R} \to \mathbb{R} \) is a continuous function such that for \(u \in \mathbb{R}, \ 0 \leq \theta \leq 1, \ \theta(u) = 0 \) for \(|u| \leq r_0 \)\) and \(\theta(u) = 1 \) for \(|u| \geq 2r_0 \). To show that solutions of (14) for \(0 < t < 1 \) have an a priori bound in \(C[0, \pi] \), we argue by contradiction and suppose that
there exist a sequence \(\{ u_n \} \) in \(W^{2,1}(0, \pi) \cap H^1_0(0, \pi) \) and a corresponding sequence \(\{ t_n \} \) in \((0, 1)\) such that \(u_n \) is a solution of (14) when \(t = t_n \) and

\[\| u_n \|_C \geq n \text{ for all } n \in \mathbb{N}. \]

Let \(v_n = u_n/\| u_n \|_C \). Then \(\| v_n \|_C = 1 \) and

\[v_n^*(x) + k^2 v_n(x) + (1 - t_n) \pi v_n(x) + t_n m_n(x) v_n(x) = h_n(x) \quad \text{in} \ (0, \pi), \]

\[v_n(0) = v_n(\pi) = 0, \tag{16} \]

where

\[m_n(x) = \begin{cases} g_1(x, u_n(x))/u_n(x) & \text{if } u_n(x) \neq 0 \\ 0 & \text{if } u_n(x) = 0, \end{cases} \]

\[0 \leq m_n(x) \leq p(x) \quad \text{for a.e. } x \in (0, \pi) \tag{17} \]

and \(h_n(x) = t_n\{h(x) - g_2(x, u_n(x))\}/\| u_n \|_C \). By (15), (17) and the Dunford–Pettis theorem (see [1]), the sequence \(\{ m_n \} \) has a subsequence convergent weakly in \(L^1(0, \pi) \) and \(h_n \to 0 \) in \(L^1(0, \pi) \) as \(n \to \infty \), and then using the boundedness of \(\{ p, v_n \} \) in \(L^1(0, \pi) \) and the compactness of (7) we have that \(\{ v_n^1 \} \) has a subsequence convergent in \(C[0, \pi] \), where

\[p_n(x) = (1 - t_n) \pi + t_n m_n(x) \text{ for all } n \in \mathbb{N} \text{ and a.e. } x \in (0, \pi). \]

Since \(\{ v_n^0 \} \) is bounded in a one-dimensional subspace of \(C[0, \pi] \), we may assume that \(\{ v_n \} \) is convergent in \(C[0, \pi] \). From (16) it follows that \(\{ v_n^0 \} \) is dominated by a function in \(L^1(0, \pi) \). Since \(v_n^0 \) vanishes somewhere in \((0, \pi)\), the sequence \(\{ v_n^0 \} \) is equicontinuous and uniformly bounded on \([0, \pi]\) and so by the Ascoli theorem that \(\{ v_n^0 \} \) has a subsequence convergent in \(C[0, \pi] \). We may assume without loss of generality that \(m_n \to m \) weakly in \(L^1(0, \pi) \), \(t_n \to t \), and \(v_n \to v \) in \(C^1[0, \pi] \). It follows from the Mazur theorem that \(0 \leq m(x) \leq p(x) \) for a.e. \(x \in (0, \pi) \). By (7) and (16) we have

\[v^*(x) + k^2 v(x) + [(1 - t_0) \pi + t_0 m(x)] v(x) = 0 \quad \text{in} \ (0, \pi), \]

\[u(0) = u(\pi) = 0. \tag{18} \]

Clearly, \(\| v \|_C = 1 \). Since \(0 < \pi < k < (1/\pi) \) \(2k(k + 1) \tan \pi/2(k + 1) \) and \(\| m \|_L^1 \leq \| p \|_L^1 < 2k(k + 1) \tan \pi/2(k + 1) \), it follows from Lemma 2 that \((1 - t_0) \pi + t_0 m(x) = 0 \) a.e. \(x \in (0, \pi) \), and consequently \(t_0 = 1, m(x) = 0 \) a.e. \(x \in (0, \pi) \) and \(v = \beta \sin kx \) for some \(\beta \neq 0 \).

Obviously, \(\{ v_n^0 \} \) also converges to \(v = \beta \sin kx \) in \(C^1[0, \pi] \). Taking the inner product of (14) with \(v_n^0 \) in \(L^2(0, \pi) \) when \(u = u_n \) and \(t = t_n \), we have

\[t_n \int_0^\pi g(x, u_n(x)) v_n^0(x) \, dx \]

\[\leq (1 - t_0) \int_0^\pi u_n(x) v_n^0(x) \, dx + t_n \int_0^\pi g(x, u_n(x)) v_n^0(x) \, dx \]

\[= t_n \int_0^\pi h(x) v_n^0(x) \, dx \tag{19} \]
for n large enough. Moreover, using $v_n \to v$ in $C[0, \pi]$ and $|u_n|_{C^0} \geq n$ we have $u_n(x) \to \infty$ if $v(x) > 0$, and $u_n(x) \to -\infty$ if $v(x) < 0$. We assume for the moment that \{\{ g(x, u_n(x)) v_n^0(x) \}\} is bounded from below by a function in $L^1(0, \pi)$ for a.e. $x \in (0, \pi)$ and n large enough. Applying the Fatou lemma to the inequality

$$
\int_{\{v_n^0 \geq 0\}} g(x, u_n(x)) v_n^0(x) \, dx + \int_{\{v_n^0 < 0\}} g(x, u_n(x)) v_n^0(x) \, dx
$$

we have

$$
= \int_{0}^{\pi} g(x, u_n(x)) v_n^0(x) \, dx < \int_{0}^{\pi} h(x) v_n^0(x) \, dx
$$

we have

$$
= \int_{\{v_n^0 \geq 0\}} g(x, u_n(x)) v_n^0(x) \, dx + \int_{\{v_n^0 < 0\}} g(x, u_n(x)) v_n^0(x) \, dx
$$

$$
\leq \liminf_{n \to \infty} \int_{\{v_n^0 \geq 0\}} g(x, u_n(x)) v_n^0(x) \, dx
$$

$$
+ \liminf_{n \to \infty} \int_{\{v_n^0 < 0\}} g(x, u_n(x)) v_n^0(x) \, dx
$$

$$
= \liminf_{n \to \infty} \int_{\{v_n^0 \geq 0\}} g(x, u_n(x)) v_n^0(x) \, dx
$$

$$
+ \liminf_{n \to \infty} \int_{\{v_n^0 < 0\}} g(x, u_n(x)) v_n^0(x) \, dx
$$

$$
\leq \liminf_{n \to \infty} \int_{0}^{\pi} g(x, u_n(x)) v_n^0(x) \, dx
$$

$$
\leq \int_{0}^{\pi} h(x) v(x) \, dx,
$$

which contradicts the condition (6).
It remains to prove that \(\{ g(x, u_n(x)) v_n(x) \} \) is bounded from below by a function in \(L^1(0, \pi) \) for a.e. \(x \in (0, \pi) \) and \(n \) large enough. By Lemma 3, it follows from (16) that there exists \(\delta > 0 \) such that

\[
\delta \| v_n \|_{H^1}^2 \leq \int_0^\pi h_n(x)(v_n^-(x) + v_n^0(x) - v_n^+(x)) \, dx
\]

\[
\leq \| h_n \|_{L^1} \| v_n^- + v_n^0 - v_n^+ \|_C
\]

\[
\leq 1/\| u_n \|_C \left(\| h \|_{L^1} + \| e \|_{L^1} \right) \| v_n^- + v_n^0 - v_n^+ \|_C.
\] (20)

Since \(v_n^0 \to v \) in \(C[0, \pi] \), \(v_n^- \to 0 \) in \(H^1_0(0, \pi) \), so that both \(v_n^- \) and \(v_n^+ \) are convergent to zero in \(H^1_0(0, \pi) \) and hence by the compact imbedding of \(H^1_0(0, \pi) \) into \(C[0, \pi] \) we also have for \(x \in [0, \pi] \)

\[
\| u_n \|_C \| v_n^+(x) \|_2 \leq \| u_n \|_C \| v_n^+ \|_2 \leq C_1 \| u_n \|_C \| v_n^+ \|_H \leq C_1 C_2 = C_3
\]

for some constants \(C_1, C_2, C_3 \geq 0 \) independent of \(n \). We may assume that \(\{ \| v_n^+ \|_C \} \) is also bounded by \(C_3 \). Then

\[
u_n(x) v_n^+(x) \geq -\| u_n \|_C \| v_n^+(x) - v_n^0(x) \|_2 / 2
\]

\[
= -\| u_n \|_C \| v_n^+(x) \|_2 / 2 \geq - C_3 / 2
\]

and so

\[
g(x, u_n(x)) v_n^0(x) = \left[g_1(x, u_n(x))/u_n(x) \right] u_n(x) v_n^0(x) + g_2(x, u_n(x)) v_n^0(x)
\]

\[
\geq (C_3 / 2) p(x) - C_3 e(x)
\]

for a.e. \(x \in (0, \pi) \) and \(n \) large enough. This completes the proof of the theorem.

REFERENCES

3. C. W. Ha and C. C. Kuo, On the solvability of a two-point boundary value problem at resonance II, in press.