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Abstract

Tumor necrosis factor–related apoptosis-inducing li-

gand (TRAIL) can selectively kill tumor cells and, in

combination with other agents, could enhance tumor

therapy. We explored the combined therapeutic effects

of a secretable form of (S) TRAIL-induced apoptosis

and the downregulation of Bcl-2 in human gliomas.

We constructed a lentiviral delivery system: 1) for the

expression of short hairpin (sh) RNA to downregulate

Bcl-2 and for the expression of S-TRAIL to induce

apoptosis in glioma cells; and 2) to follow delivery

in vitro and the fate of tumors in real time in vivo.

We demonstrate that lentiviral-mediated simultaneous

downregulation of Bcl-2 and S-TRAIL–induced apop-

tosis leads to an increased expression of activated

caspase-3 and caspase-7, thus resulting in accel-

erated S-TRAIL–mediated apoptosis in glioma cells

in vitro. Using a highly malignant human glioma model

expressing EGFRvIII and firefly luciferase, we show

that the combined effect of Bcl-2 downregulation

and S-TRAIL–induced apoptosis results in complete

eradication of gliomas compared to S-TRAIL mono-

therapy. These results show that simultaneous trig-

gering of TRAIL-mediated death receptor pathway and

downregulation of Bcl-2 by shRNA leads to enhanced

eradication of gliomas and serves as a template in

developing and monitoring combination therapies for

the treatment of drug-resistant cancers.
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Introduction

Cancer cells are characterized by self-sufficiency in growth

signals, insensitivity to antigrowth signals, sustained angio-

genesis, tissue invasion andmetastasis, limitless replicative

potential, and evasion of apoptosis [1]. The molecular

mechanism of drug-induced apoptosis is associated with

mitochondrial dysfunction that is characterized by an in-

crease in mitochondrial membrane permeability and is reg-

ulated by Bcl-2 [2,3]. The overexpression of Bcl-2 in tumor

cells results in antiapoptotic effects triggered through the

extrinsic death receptor–dependent pathway [4], but not

the death receptor– independent pathway [5]. Targeted repres-

sion of Bcl-2 has the potential to facilitate tumor cell apoptosis

induced through a number of extrinsic apoptosis-inducing

agents, such as tumor necrosis factor– related apoptosis-

inducing ligand (TRAIL) [6,7], which offers one of the most

promising strategies in the field of death ligands and receptors.

Apoptosis initiated by TRAIL involves the binding of TRAIL

to death receptors DR4 and DR5, causing the intracellular

death domains of these receptors to trimerize [8–10]. Pre-

viously, we have engineered a secretable form of TRAIL (S-

TRAIL) consisting of an N-terminal fusion of the extracellular

domain of Flt3L, a ligand for Flt3 tyrosine kinase receptor, with

extracellular domain of TRAIL [9]. We have shown that

S-TRAIL has more potent apoptotic effects compared to TRAIL

itself, in addition to having a bystander effect for tumor cells

both in culture and in mouse models of glioma [10,11]. Recent

studies revealed that inhibitors of apoptosis (Bcl-2, XIAP, FLIP,

HDAC, or survivin) play an important role in mediating resis-

tance to the apoptotic effects of cytokines TRAIL and TNF-a in

melanoma cells [12,13]. Human gliomas overexpress Bcl-2,

which has been shown to induce complex changes in glioma

cell phenotype and protects glioma cells from various pro-

apoptotic stimuli [14,15].

A vital aspect to successful glioma therapy is to achieve

robust and prolonged transgene expression and to follow the

fate of tumors overtime. Recently, viral vectors have emerged

as an efficient method of integrating transgenes into the host

genome. In particular, lentiviral vectors have been used in

several studies to genetically modify cells ex vivo as these

viruses allow stable integration of transgenes into the host

genome irrespective of their state of division [16]. Several

approaches to imaging gene delivery and monitoring tumor

fate have been described [9,17,18]. Bioluminescent imaging
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offers high detection sensitivity, low background lumines-

cence from normal tissues, and rapid turnover of luciferase

substrates, making this method suited for temporal in vivo

imaging of gene expression [19].

In this study, we have engineered S-TRAIL lentiviral

vectors and have tested the combined potential of down-

regulating Bcl-2 by lentiviral-mediated expression of shRNA

and by induction of apoptosis by S-TRAIL, released from

transduced cells in a highly malignant EGFRvIII glioma

model. Furthermore, we have employed noninvasive real-

time imaging to follow changes in glioma burden in vivo. To

our knowledge, this is the first study to show the effect of

downregulating Bcl-2 by lentiviral-mediated shRNA in human

gliomas and following the combined effect of S-TRAIL (re-

leased within tumors) and Bcl-2 downregulation in real time

in vivo. The mode of combined cancer therapy described in

this study has three important advantages: 1) the use of

glioma cells stably expressing shRNA; 2) the use of an en-

hanced apoptosis-inducing recombinant S-TRAIL with a by-

stander effect; and 3) real-time imaging of glioma burden

in vivo. This study should immensely help in developing

clinically relevant combination therapies in vivo.

Methods

Generation of Lentiviral Vectors

Short hairpin (sh) RNA plasmid constructs for Bcl-2 and

green fluorescent protein (GFP) were constructed in pSuper

vector (Oligoengine, Seattle, WA) to include the specific

19-bp target sequence for the shBcl-2 construct (5V-TGT-

GGATGACTGAGTACCTGA-3V) [14] and the shGFP con-

struct (5V-GAACGGCATCAAGGTGAAC-3V) [20] in front of

the H1 RNA polymerase III promoter, resulting in pSuper-

shBcl-2 and pSuper-shGFP. H1 promoter shBcl-2 or shGFP

fragments were amplified from pSuper vectors using poly-

merase chain reaction and cloned into CSCRW [derived from

CSCGW [21] lentiviral (LV) vector in which GFP sequences

were replaced by DsRed2 cDNA sequences], resulting in

LV-shBcl-2 and LV-shGFP lentiviral vectors. All constructs

were verified by sequencing secretable form of TRAIL

(S-TRAIL), which was created by fusing the coding se-

quences for the extracellular domain of Flt3L, and an iso-

leucine zipper with the N-terminal of TRAIL [9] was placed

under a Cytomegalovirus (CMV) promoter in a vector coex-

pressing GFP through an internal ribosomal entry sequence

(IRES), thus resulting in an LV-S-TRAIL construct. Similarly,

cDNA sequences for firefly luciferase (Fluc) were placed

under the CMV promoter in a vector coexpressing LacZ

through IRES, resulting in the LV-Fluc construct. For a de-

tailed description of lentivirus vector production, see Sena-

Esteves et al. [21]. In brief, lentiviral genome (CMVR8.91)

was transfected into 293T cells together with an envelope-

coding plasmid (VSVG) and vector constructs. LVs were

harvested 40 hours posttransfection and concentrated by

ultracentrifugation. Titers were determined on 293T cells as

transducing units using serial dilutions of vector stocks with

8 mg/ml polybrene (Sigma Chemical, St. Louis, MO).

Generation of shBcl-2–Expressing Glioma Cells

Human glioma lines U87, U-251, Gli36, and Gli36-EGFR-

vIII (stably expressing the mutant form of EGFR associated

with a high malignancy of this tumor type) [19,20] and 293T

cells were grown in Dulbecco’s modified Eagle’s medium

with 10% fetal bovine serum (Sigma) at 37jC in a humidified

atmosphere with 5% CO2 and 1% penicillin/streptomycin

(Invitrogen, Grand Island, NY). Different adherent glioma

cell lines were transduced with LV-shBcl-2 or LV-shGFP at

multiplicities of infection (MOI) ranging from 1 to 3, and the

cells were visualized for DsRed2 expression by fluorescence

microscopy. Transduction was carried out for 12 hours at

37jC in the presence of polybrene (8 mg/ml; Sigma). Bcl-2

levels were measured by Western blot analysis 5 days after

transduction, as described below. Gli36-EGFRvIII glioma

cells were also transduced with LV-Fluc at an MOI of 3;

72 hours later, cells were incubated in a medium containing

150 mg/ml D-luciferin (Biotium, Hayward, CA), and bio-

luminescence imaging was performed as described below.

S-TRAIL Western Blot Analysis, Enzyme-Linked

Immunosorbent Assay (ELISA), and Immunocytochemistry

Human Gli36-EGFRvIII glioma cells and 293T cells were

transduced with LV-S-TRAIL vector at an MOI of 1; 36 hours

later, a culture medium and the cells were harvested. Pro-

teins were isolated from harvested cells, resolved by sodium

dodecyl sulfate–polycrylamide gel electrophoresis (SDS-

PAGE), and immunoblotted with anti-TRAIL (ProScience,

Poway, CA) and anti–cleaved PARP (Cell Signaling, Bev-

erly, MA) antibodies. S-TRAIL concentration in the condi-

tioned culture medium was measured by ELISA with the

TRAIL Immunoassay Kit (Biosource International, Camarillo,

CA) according to the manufacturer’s protocol, using re-

combinant human TRAIL expressed in Escherichia coli as

a standard. Different glioma lines were plated in 96-well

plates with five replicate wells and incubated with varying

concentrations (0–250 ng/ml) of S-TRAIL obtained from

transduced 293T cells. Twenty-four hours later, glioma cell

viability was determined as described below. Gli36-EGFRvIII

glioma cells were incubated with 80 ng/ml S-TRAIL; 24 hours

later, cells were fixed, permeabilized, and incubated with a

cleaved caspase-3 antibody (1:100; Cell Signaling) for 1 hour

at 37jC. Cells were then washed and incubated with goat

anti–rabbit Alexa dye (540 nm)–conjugated secondary an-

tibody (Molecular Probes, Eugene, OR) for 1 hour, washed

again, mounted, and examined by fluorescence microscopy.

Cytochrome c and BH3-Interacting Domain Death Agonist

(BID) Immunoblotting

For assessing the combined effect of S-TRAIL and Bcl-2

downregulation, an S-TRAIL concentration of 40 ng/ml was

used. Gli36-EGFRvIII-shGFP and Gli36-EGFRvIII-shBcl-2

cells were incubated with S-TRAIL (40 ng/ml) for 24 hours,

and the total cytochrome c in mitochondrial fractions was ana-

lyzed by using cytochrome c assay kit (Calbiochem,

San Diego, CA) according to the manufacturer’s protocol.

Briefly, 5 � 106 of Gli36-EGFRvIII-shGFP and Gli36-

EGFRvIII-shBcl-2 cells with or without S-TRAIL treatment
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was harvested by centrifugation at 700g for 5 minutes. After

washes with phosphate-buffered saline (PBS), the cells

were resuspended in a 250-ml extraction buffer containing

a protease inhibitor mixture and dithiothreitol, and then incu-

bated on ice for 10 minutes, homogenized, and centrifuged

at 700g for 10 minutes at 4jC. Supernatant was collected

and further centrifuged at 10,000g for 30 minutes at 4jC.
Resulting supernatants were harvested and designated

as cytosolic fractions, and pellets were resuspended in an

appropriate buffer and designated as mitochondrial frac-

tions. Cytochrome c was analyzed using Western blot analy-

sis with cytochrome c monoclonal antibody (Calbiochem)

or control antibody against tubulin. Mitochondrial fractions

were resolved by SDS-PAGE, transferred to membranes,

and immunoblotted with rabbit anti-BID antibody (Cell Sig-

naling, Cambridge, MA).

Caspase-3/7 and Cell Viability Assay

Different glioma lines either expressing shBcl-2 or shGFP

were plated at 1 � 104 cells/well in 96-well plates with five

replicate wells for each condition. Cells were either left

untreated or treated with 40 ng/ml S-TRAIL for 24 hours,

and the metabolic activity of the cells was determined using a

luminescent adenosine triphosphate (ATP)–based assay

(CellTiter GLO; Promega, Madison, WI), according to the

manufacturer’s instructions. Results were read with a lumin-

ometer with a read time of 1 second/well. Glioma cells were

also plated as described above, incubated with 40 ng/ml

S-TRAIL for 24 hours, and analyzed using ApoONE Homo-

geneous Caspase 3/7 Assay (Promega), according to the

manufacturer’s instructions. Samples were read after 1 hour

of incubation with the caspase substrate, as described

above. S-TRAIL–treated cells were analyzed for viability

by luminescent ATP-based assay (CellTiter GLO; Promega)

24 hours later, as described above.

Tumor Models and Glioma Implantations

Athymic nude mice (nu/nu, 6–7 weeks old; Charles River

Laboratories, Wilmington, MA) were anesthetized by an

intraperitoneal injection of a mix of ketamine (1.6 mg/mice)

and xylazine (240 mg/mice) in saline. For correlation studies,

different concentrations of Gli36-EGFRvIII-Fl cells (ranging

from 5 � 104 to 5 � 106; n = 2 tumors for each cell number)

were implanted subcutaneously, and the mice were imaged

for Fluc activity 24 hours later, as described below. For

assessing the effect of Bcl-2 downregulation and S-TRAIL

on glioma proliferation, we employed our previously devel-

oped model of assessing the bystander effect of S-TRAIL

released within the tumor [10]. Gli36-EGFRvIII-shBcl-2-Fluc

or Gli36-EGFRvIII-shGFP-Fluc glioma cells (Gli36-EGFR-

vIII-Fl cells transduced with either LV-shBcl-2 or LV-shGFP)

in midlog phase were harvested by trypsinization, and single-

cell suspensions were transduced with LV-S-TRAIL at an

MOI of 1 for 6 hours at 37jC. S-TRAIL–transduced cells

were washed with PBS, and mice were implanted with:

1) Gli36-EGFRvIII-Fl-shBcl-2; 2) Gli36-EGFRvIII-Fl-shGFP;

3) a mix of 1.5� 106 of S-TRAIL–transduced cells and 6.0�
106 of Gli36-EGFRvIII-Fl-shBcl-2 cells; and 4) a mix of 1.5 �

106 of S-TRAIL–transduced cells and 6.0 � 106 of Gli36-

EGFRvIII-Fl-shGFP cells, in the two opposite flanks of the

mice (n = 10 tumors in each case). Three days after glioma

cell implantations, mice were imaged for Fluc activity, as

described below. All animal protocols were approved by an

institutional review board.

Bioluminescence Imaging in Culture and In Vivo

Fluc-bearing glioma cells were incubated with 150 mg/ml

D-luciferin and assayed for luciferase activity using a liquid

nitrogen charged cooled device (CCD; Roper Scientific,

Trenton, NJ). Mice were given an intraperitoneal injection

of D-luciferin (4.5 mg/25 g body weight; prepared in 150 ml
of saline) and imaged for Fluc activity for 1 minute after

D-luciferin administration using a cryogenically cooled high-

efficiency CCD camera system (Roper Scientific). Mice were

imaged for Fluc activity on the fourth, sixth, and eighth days

after tumor implantation. Postprocessing and visualization

were performed as described previously [22].

Tissue Processing and Immunohistochemistry

Two hours following the last luciferase imaging session,

mice were sacrificed, tumor tissues were fixed in 10% buff-

ered formalin and embedded in paraffin, and 6-mm sec-

tions were cut on a cryostat (CM 3000; Leica Microsystems

[Wetzlar, Germany]). The sections were dehydrated in xy-

lene and ethanol then immersed in PBS, and caspase-3

staining was performed according to the manufacturer’s pro-

tocol using caspase-3 immunostaining kit (Cell Signaling).

Immunostained sections were also stained with hematoxylin

and eosin.

Statistical Analysis

Data are expressed as mean ± SEM and were analyzed

by either Student’s t test or analysis of variance (after

Bartlett’s test of homogeneity of variance), followed by

Newman-Keuls correction for multiple comparisons. Differ-

ences were considered significant at P < .05.

Results

The plasmid constructs used to generate lentivirus vectors

(LVs) in this study are diagrammed in Figure 1A. To deter-

mine the transduction efficiency of these LVs, 293Tand Gli36

glioma cells were transduced and visualized for DsRed2 and

GFP fluorescence. The presence of 90% to 95% DsRed2-

positive and GFP-positive glioma cells revealed the high

transduction efficiency of LVs (Figure 1B). Gli36-EGFRvIII

human glioma cells were transduced with LV-S-TRAIL;

24 hours after transduction, total protein was isolated from

tumor cells, fractionated by denaturing SDS-PAGE, and

immunoblotted using antiserum against TRAIL. Immuno-

reactive proteins corresponding to the size of S-TRAIL were

present in the respective LV-S-TRAIL–transduced cells and

not in control vector–transduced cells (Figure 2A). Quanti-

tation of TRAIL in the cell supernatant confirmed the se-

cretion of 230 ng/106 cells per 24 hours by glioma cells

transduced with LV-S-TRAIL, with no significant amounts
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produced by nontransduced or control vector–transduced

cells (Figure 2B). Cell viability assays on different glioma cell

lines treated with varying concentrations of S-TRAIL re-

vealed that both Gli36 and Gli36-EGFRvIII are more sus-

ceptible to S-TRAIL–mediated cell killing than are U251 and

U87 glioma cells (Figure 2C). Immunocytochemistry and

immunoblotting with antibodies detecting cleaved caspase-

3 (Figure 2D) and cleaved PARP (Figure 2A) respectively

revealed that lentivirally expressed S-TRAIL induced apop-

tosis in glioma cells. These results show that TRAIL secreted

by lentiviral-transduced cells is active and can induce apop-

tosis in glioma cells in culture.

To test whether shBcl-2 could effectively knock down

protein levels of Bcl-2 in glioma cells, Gli36-EGFRvIII glioma

cells were transduced with LV-shBcl-2 and control LV-shGFP,

with MOI ranging from 1 to 3, and the levels of Bcl-2 protein

were then determined by immunoblotting after 5 days of

transduction using antiserum against Bcl-2. Immunoreactive

proteins corresponding to the size of Bcl-2 were present in the

respective LV-shGFP–transduced cells and not in LV-shBcl-

2–transduced cells (Figure 3A). The other well-established

glioma lines U87 and U251 showed a similar downregulation

of Bcl-2 when transduced with shBcl-2 lentiviral vectors

(Figure 3B). Viability assays revealed a 25% to 30% reduc-

tion in cell viability over a 24-hour period in cells expressing

shBcl-2 compared to glioma cells expressing shGFP (Fig-

ure 3C). As all the glioma lines tested showed a similar

decrease in cell viability, we used Gli36-EGFRvIII glioma cells

for further studies, as EGFRvIII expression in gliomas has

been previously reported to enhance tumor growth [23]. Next,

we investigated whether the combined effect of S-TRAIL and

Bcl-2 downregulation would influence the viability of glioma

cells in culture. Gli36-EGFRvIII glioma cells were transduced

with LV-S-TRAIL with an MOI of 1; 24 hours later, the medium

was collected and quantified by ELISA. Both shGFP and

shBcl-2–expressing glioma cells were incubated with a me-

dium from LV-S-TRAIL–transduced cells (40 ng /ml) and

assessed for caspase-3 activity, cytochrome c release, BID

cleavage, and cell viability. At 24 hours, a significantly higher

(P < .02) caspase-3/7 activity was assessed in shBcl-2–

expressing glioma cells compared to shGFP-expressing cells

(Figure 4A). A considerably reduced expression of the 22-kDa

BID protein indicating its cleavage was observed in S-TRAIL–

treated shBcl-2–expressing cells than in shGFP-expressing

glioma cells (Figure 4B). Higher levels of cytochrome c were

Figure 1. shRNA, S-TRAIL, and Fluc lentiviral vectors. (A) A self-inactivating

lentiviral system based on HIV-1 (CS-CG) [36] was used to construct vectors

(i) expressing shRNAagainst humanBcl-2 andGFP underHI RNA polymerase

III promoter andDsRed2 under theCMVpromoter; and (ii) expressing S-TRAIL

or Fluc under the CMV promoter with an IRES sequence followed by GFP and

LacZ, respectively. (B) Human glioma, Gli36-EGFRvIII, U251, and U87 cells

transduced in culture with LV-shBcl-2 and 293T cells transduced with LV-S-

TRAIL at an MOI of 1 were visualized for DsRed2 or GFP fluorescence.

Original magnification, �10 (B).

Figure 2. S-TRAIL– induced apoptosis and bystander effect in human glioma

cells. (A) Gli36-EGFRvIII glioma cells were transduced with LV-S-TRAIL

vector or control vector bearing only IRES-GFP under the CMV promoter;

24 hours after transduction, the cells were harvested, and proteins were

resolved by SDS-PAGE and immunoblotted with antibodies against TRAIL

and anti – cleaved PARP. Lane 1: S-TRAIL– transduced cell lysates. Lane 2:

Control vector – transduced cell lysates. (B) Immunoreactive S-TRAIL protein

concentration in the medium of transduced cells, as determined by ELISA.

(C) Different glioma lines were plated in 96-well plates with five replicate wells

and incubated with varying concentrations (0–250 ng/ml) of S-TRAIL for

24 hours, and glioma cell viability was determined by using a luminescent

ATP-based assay. (D) Gli36-EGFRvIII glioma cells were incubated with

80 ng/ml S-TRAIL; 24 hours later, immunohistochemistry was performed with

anti –cleaved caspase-3 antibody: (a) S-TRAIL– incubated cells, and (b)

control-incubated cells. Original magnification, �20 (B).

438 Combined shBcl-2 and S-TRAIL Therapy Kock et al.

Neoplasia . Vol. 9, No. 5, 2007



present in mitochondrial fractions of untreated shBcl-2 glioma

cells compared to S-TRAIL–treated shBcl-2 glioma cells

(Figure 4C). Furthermore, cell viability in shBcl-2–expressing

and shGFP-expressing gliomas treated with S-TRIAL was

significantly lower (P < .02) in shBcl-2–expressing cells than

in shGFP cells (Figure 4D). These results strongly suggest

that downregulation of Bcl-2 sensitizes EGFRvIII-expressing

glioma cells to S-TRAIL–mediated apoptosis.

To monitor the therapeutic efficacy of S-TRAIL in vivo,

Gli36-EGFRvIII cells were transduced with LV-Fluc, and the

resulting Gli36-EGFRvIII-Fl cells were shown to retain the

same proliferative capacity as Gli36-EGFRvIII glioma cells

(Figure 5A). Different concentrations of Gli36-EGFRvIII-Fl

cells (ranging from 5 � 104 to 5 � 106) were implanted sub-

cutaneously, and mice were imaged for Fluc activity 24 hours

later. Bioluminescent signal correlated linearly with the

number of implanted Gli36-EGFRvIII-Fl cells in the ranges

tested (Figure 5B), thus allowing the quantification of cells

in vivo in mouse models of glioma. To demonstrate the effect

of Bcl-2 downregulation on S-TRAIL–mediated apoptosis

in vivo, we also transduced Gli36-EGFRvIII-Fl–expressing

shGFP or shBcl-2 glioma cells in culture with LV-S-TRAIL,

mixed 20% of LV-S-TRAIL–transduced cells with 80% of

Gli36-EGFRvIII-Fl cells, and implanted them subcutaneously

into nude mice. The combined effect of Bcl-2 downregula-

tion and S-TRAIL secreted by transduced cells on tumor

growth was followed by Fluc bioluminescence imaging on

days 4, 6, and 8 after implantation (Figure 5C). A signifi-

cant decrease in Fluc signal was seen as early as day 4 (P <

.02) in shBcl-2–downregulated gliomas; on day 8, the

tumors were eradicated in shBcl-2–downregulated gliomas

compared to shGFP-downregulated controls treated with

S-TRAIL. The results show that downregulation of Bcl-2

and subsequent S-TRAIL treatment result in a substantial

decrease in tumor growth compared to implanted tumors

with intact Bcl-2 (Figure 5D).

To verify whether S-TRAIL induced the upregulation

of caspase-3 in glioma cells, we also performed cleaved

caspase-3 staining on shBcl-2 and control tumor sections. A

majority of glioma cells in the periphery of the tumor were

cleaved caspase-3–positive (Figure 6, A–D), indicating the

induction of apoptosis by secreted S-TRAIL from the 20%

LV-S-TRAIL– implanted cells. Immunostaining revealed a

higher number of cleaved caspase-3–positive cells in Bcl-2–

downregulated gliomas than in control gliomas (Figure 6E).

Discussion

In this study, we have engineered lentiviral vectors with

shRNA, apoptosis-inducing agents, and in vivomarker genes,

and we have shown that downregulation of antiapoptotic

Bcl-2 enhances apoptosis mediated by S-TRAIL in a malig-

nant model of glioma both in vitro and in vivo. Furthermore,

we demonstrate that the enhanced apoptosis-inducing

ability in Bcl-2–downregulated gliomas can be followed in

real time by bioluminescence imaging in live animals.

There is emerging evidence that supports the role of key

proteins in controlling cell proliferation, apoptosis, and an-

giogenesis in the pathogenesis and progression of cancer

[24]. Among these proteins, Bcl-2 has been regarded as a

potential therapeutic target on the basis of its ability to disrupt

apoptosis and to confer resistance to chemotherapy and

radiotherapy in cancer cells [12,25–28]. Human glioma cells

express a variety of antiapoptotic and proapoptotic Bcl-2

family proteins [29], and overexpression of Bcl-2 has been

shown to induce complex changes in glioma cell phenotype

in that it not only protects glioma cells from various pro-

apoptotic stimuli [30] but also enhances their motility [31]. We

Figure 4. Combined effect of the downregulation of Bcl-2 and S-TRAIL on

glioma cells. (A) Gli36-EGFRvIII glioma cells expressing shBcl-2 or shGFP

were treated with 40 ng/ml TRAIL; 24 hours later, caspase-3 and caspase-7

activity was determined by using ApoONE Homogeneous Caspase 3/7 Assay.

(B) S-TRAIL– treated cells were harvested, and proteins were resolved by

SDS-PAGE and immunoblotted with anti-BID antibody. (C) Cytochrome c

assays were performed on S-TRAIL– treated cells by isolating mitochondrial

fractions resolving the proteins by SDS-PAGE and immunoblotting by anti –

cytochrome c antibody. (D) Gli36-EGFRvIII glioma cells expressing shBcl-2

or shGFP were treated with 40 ng/ml TRAIL; 16 hours later, cell viability was

determined by using a luminescent ATP-based assay (*P < .02).

Figure 3. Downregulation of Bcl-2 using lentiviral-delivered shRNA against

Bcl-2. (A) Gli36-EGFRvIII glioma cells were transduced with LV-shBcl-2 or

LV-shGFP with different MOI ranging from 1 to 3, and cells were harvested

5 days after transduction. Proteins were resolved by SDS-PAGE and

immunoblotted with anti –Bcl-2 and anti –a-tubulin antibodies. (B) U87 and

U251 glioma cells were transduced with LV-shBcl-2 or LV-shGFP at an MOI of

3 and harvested after 5 days. Proteins were resolved and blotted as in (A). (C)

Different glioma lines were plated; 24 hours later, cell viability was determined

using a luminescent ATP-based assay.
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have employed shRNA to inhibit Bcl-2 gene expression as

they show features superior to those of antibodies and

inhibitors, in part because they are easily applicable to their

target, including intracellular factors and even transcription

factors. Furthermore, they promise potent gene inhibition

with exquisite selectivity, even down to the level of single-

nucleotide polymorphisms [32]. Our Bcl-2 immunoblotting

results reveal that there is no downregulation of Bcl-2 at an

MOI of 1; with higher MOI, this downregulation is specific

and significant, and influences the proliferation capacity of

the cells. Our findings on the effect of S-TRAIL on Bcl-2–

downregulated glioma cells are in line with those of other

studies showing the added effect of Bcl-2 downregulation with

chemotherapy in vitro and in vivo in other cell types, including

non-Hodgkin’s lymphoma, Epstein-Barr virus–associated

lymphoproliferative disease, malignant melanoma, prostate

carcinoma, renal carcinoma, non–small cell lung carcinoma,

breast carcinoma, and gastric carcinoma [3].

The use of death ligands for tumor therapy in animal

models supports their potential for use in the clinical setting.

TRAIL, a type II transmembrane protein, has become an

attractive molecule for the treatment of cancers because of

its potential to specifically kill tumor cells [8,33]. For effi-

cient tumor therapy, it is important that the tumor cells

producing the therapeutic protein not only undergo apop-

tosis by themselves but also induce apoptosis in surrounding

cells. For this purpose, we have engineered a secretable

version of TRAIL [9] and have shown that this form of TRAIL

(S-TRAIL) has more potent apoptotic effects both in vitro

and in vivo [9,10,34]. In this study, we have treated Bcl-2–

downregulated gliomas with S-TRAIL and have shown that

these gliomas have a significantly enhanced induction of

apoptosis both in culture and in vivo. We [10,19,22] and

others [35–37] have shown that intratumoral delivery of

TRAIL has antitumor activity but requires multiple injec-

tions to have an antitumor effect [22]. To circumvent the

use of multiple injections and to quantify the subtle changes

in tumor growth in S-TRAIL–treated gliomas expressing

shBcl-2, we implanted a mix of a defined number of LV-S-

TRAIL–transduced glioma cells and nontransduced cells.

LV-S-TRAIL–transduced cells produce S-TRAIL within the

tumor and induce apoptosis in surrounding tumor cells. The

production of S-TRAIL within the tumor allows to quanti-

tate differences between Bcl-2–downregulated and control

GFP-downregulated gliomas in vivo. In this study, we have

shown that 20% of TRAIL-expressing cells in gliomas is able

to significantly reduce tumor burden in Bcl-2–downregulated

gliomas in vivo.

The limited availability of noninvasive imaging methods

to monitor molecular events has been one of the main

Figure 5. Enhanced S-TRAIL– induced apoptosis in Bcl-2–downregulated gliomas in vivo. (A) Gli36-EGFRvIII and Gli36-EGFRvIII-Fl cells were grown in culture,

and growth over time was compared. (B) Different concentrations of Gli36-EGFRvIII-Fl cells were implanted subcutaneously; 24 hours later, mice were injected

intraperitoneally with D-luciferin and imaged for Fluc activity, and the co-relation between the number of implanted cells and photon intensity was plotted. (C) Mice

bearing subcutaneous gliomas: (i) Gli36-EGFRvIII-Fl-shGFP, (ii) Gli36-EGFRvIII-Fl-shBcl-2, (iii) Gli36-EGFRvIII-Fl-shGFP-S-TRAIL, and (iv) Gli36-EGFRvIII-Fl-

shBcl-2-S-TRAIL were injected intraperitoneally with D-luciferin and imaged for Fluc activity on days 4, 6, and 8 after implantation. One representative mouse from

each group is shown, and each image represents a scan time of 1 minute. A pseudocolor image represents the spatial distribution of photon counts produced by

active luciferase within the tumor (D). Fluc bioluminescence intensity of tumors over time, given as the average of tumors in 10 animals, is shown (*P < .02).
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limitations in testing the efficacy of various tumor therapy

paradigms. In our previous studies, we have shown that we

can quantify glioma burden in vivo using noninvasive bio-

luminescence imaging [22,34]. In the present study, we

further demonstrate the sensitivity of luciferase-based bio-

luminescence imaging and show that we can follow the effect

of S-TRAIL on Bcl-2–downregulated gliomas in real time,

thus allowing us to quantify the combined effects of Bcl-2

downregulation and the induction of apoptosis by S-TRAIL.

Furthermore, the presence of activated caspase-3–positive

cells reveals the induction of apoptosis in gliomas through

the S-TRAIL–mediated pathway. Most of the glioma is

necrotic, except for cells in the tumor border that are still

undergoing apoptosis and those cells to which the anti–

cleaved caspase-3 antibody binds. The apoptotic process is

a dynamic continuum of specific molecular events, and it

is difficult to quantitate significant changes in caspase-3

activation between shBcl-2–downregulated and shGFP-

downregulated gliomas at a particular time point.

In conclusion, we show that downregulation of Bcl-2 using

lentivirally delivered shRNA enhances the apoptosis of gli-

oma cells by S-TRAIL both in vitro and in vivo. The enhanced

apoptosis in Bcl-2–downregulated gliomas can be moni-

tored in real time by bioluminescence imaging in live ani-

mals. The engineering of clinically approved viral vectors

expressing regulatable versions of S-TRAIL and shBcl-2 will

be highly useful in tuning up this therapeutic approach.
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