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We investigated the localization of the spinorial field in a braneworld built as a warped product between
a 3-brane and a 2-cycle of the resolved conifold. This scenario provides a geometric flow that controls
the singularity at the origin and changes the properties of the fermion in this background. Furthermore,
due the cylindrical symmetry according to the 3-brane and a smoothed warp factor, this geometry can
be regarded as a near brane correction of the string-like branes. This geometry allows a normalizable and
well-defined massless mode whose decay and value on the brane depend on the resolution parameter.
For the Kaluza–Klein modes, resolution parameter also controls the height of the barrier of the volcano
potential.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

The Randall–Sundrum model changed the way we understand
the universe by allowing the space–time to have infinite extra di-
mensions [1,2]. In spite of the localization of the gravity on the
3-brane, the gauge and fermion fields are not trapped in this
model [3]. One way to overcome this issue is to extend the RS
model to higher dimensions [4].

In six dimensions, a static space–time with an infinite extra
dimension and cylindrical symmetry is the so-called string-like
model [4–12]. This model have the advantage of localize the
massless mode of both fermions [5] and gauge [6] fields on the
brane coupled with only the gravity. Furthermore, the correction
to the gravitational potential is less than in RS model [7]. How-
ever, due the conical behavior near the brane, the string-like model
has the problem of find non-zero induced field equations on the
brane [13].

Another important property of the string-like model is the re-
lationship between physics and geometry. Indeed, the geometry
of the transverse manifold, as its deficit angle, is related to the
mass-tension of the string-brane [4,7,10]. This effect motivated us
to study how the fields on these models are affected by some ge-
ometrical flow in the extra dimensions.

We performed this task choosing as a parameter dependent
transverse manifold a 2-cycle of the so-called resolved conifold.
This smooth six-dimensional space whose parameter a controls the
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singularity on the tip of the cone is a special internal Calabi–Yau
space of string-theory [14–21]. Thus, it is possible continuously to
pass from a smooth to a singular manifold varying the parame-
ter a. This geometrical resolution flow is also used in an extension
of the AdS/CFT correspondence [17,20,22–24].

The study of the behavior of the fields on braneworlds with
a resolved transverse conifold was addressed before in the liter-
ature. For the gravitational field, in a 10-dimensional space–time,
the massless mode is located around the origin and the KK spec-
trum has an exponential decay [21]. In a six-dimensional set-up,
we have shown that the scalar field has massless and massive
modes trapped to the brane [25]. Moreover, the resolution flow
changes the properties of the volcano potential for the KK modes,
as the width of the well and the height of the barrier [25].

In this Letter we have used a different warp factor, firstly stud-
ied in [26], and that possess a Z2 symmetry. This warp function
satisfies the required regularity conditions, what renders this ge-
ometry as a smooth extension of the string-like scenario. This ge-
ometry represents a positive tension brane embedded in a space–
time with negative cosmological constant [25]. Furthermore, for
tiny values of a the components of the stress-energy tensor sat-
isfy the weak and strong energy condition what extends the thin
string-like model [7,11]. On the other hand, for a �= 0, the 3-brane
can be regarded as a brane embedded in a 4-brane with a compact
extra dimension whose radius is the resolution parameter. This en-
able us to realize the RS1 model as a limit of the six-dimensional
non-compact scenario.

Once studied the geometry we turned our attention to the
behavior of a massless spinorial field minimally coupled in this
scenario. For the massless mode, it turned out that this mode is
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normalizable provided there is a background gauge vector field, as
done in [5]. Moreover, the new warp factor smooth out this mode
at the origin while the resolution parameter controls the value of
the gauge field on the brane.

Another improvement obtained is related to the conical behav-
ior of the string-like models. Indeed, the conical geometry yields
a divergence of the zero mode on the brane. On the other hand,
if we consider a thin string-brane, taking into account only the
exterior geometry, the metric does not satisfies the regularity con-
ditions [7,11]. Also, it is possible to achieve a well-defined zero
mode for others 6D conical geometries, but with compact trans-
verse space [27]. The resolution parameter prevents this singular
effect by smoothing out the cone at the origin.

For the KK modes, there is an attractive potential for only the
left-handed fermion [5]. As for the scalar field, the depth of the
well and the height of the barrier of the usual volcano potential
depend on the resolution parameter [25]. Nevertheless, despite the
lack of a potential well at the origin for the right-handed fermion,
there is a potential well besides the brane.

This work is organized as follows. In Section 2 we built the
warped product between a 3-brane and the 2-cycle of the conifold
and studied the geometric properties of this scenario. In Section 3
we have studied the properties of the massless and KK spectrum of
the fermionic field. Some conclusions and perspectives are outlined
in Section 4.

2. Bulk geometry

Consider a six-dimensional warped bulk M6 of form M6 =
M4 × M2, where M4 is a 3-brane embedded in M6 and M2 is
a two-dimensional transverse space.

The action for this model is defined as

S g =
∫
M6

(
1

2κ6
R − Λ +Lm

)√−g d6x, (1)

where κ6 = 8π
M4

6
, M4

6 is the six-dimensional bulk Planck mass and

Lm is the source matter Lagrangian.
Consider a static and axisymmetric warped metric between a

flat 3-brane M4 and the transverse manifold M2 given by [7,10,11,
26]

ds2
6 = W (r, c)ημν dxμ dxν + dr2 + γ (r, c,a)dθ2, (2)

where W ∈ C∞ is the so-called warp factor. For the thin string-like
models, the metric is given by [5–7,9–12]

W (r) = e−cr, γ (r) = R2
0e−cr, (3)

where c2 = − 2K6
5 Λ. The system in Eq. (3) describes the exterior

geometry of the defect. It can be understood as a warped product
between a 3-brane and a disc of radius R0. Furthermore, the metric
components in Eq. (3) do not satisfy the regularity conditions at
the origin, namely,

W (0, c) = 1, W ′(0, c) = 0, (4)

where, the prime (′) stands for the derivative d
dr . In order to over-

come this problem, in this work, we shall use a smoothed warp
factor [26,28]

W (r, c) = e−(cr−tanh cr). (5)

The addition of the term tanh cr smoothes the warp factor near
the origin, as shown in Fig. 1 (see also Fig. 2). Therefore, we can
realize this warp function as a near brane correction to the thin
string-like models [4–7].
Fig. 1. Warp function for c = 1 (thick line). The thin string warp factor (dotted line)
is defined only for the exterior of the string.

Fig. 2. Angular metric component for c = 1. For a = 0 (dashed line) there is a conical
singularity and the thin string-like geometry is denoted by the dotted line.

Moreover, instead of use the disc, we have chosen a 2-section
of the resolved conifold as the transverse manifold [14,17,18,21,25]

ds2
2 =

(
u2 + 6a2

u2 + 9a2

)
du2 + 1

6

(
u2 + 6a2)dθ2. (6)

Asymptotically, the resolved conifold has a conical shape. Near
the origin the constant a, called the resolution parameter, controls
the divergence of the conifold. This resolution flow provides a way
to study the effects of a conical singularity has on the fields.

The coordinates u and r are related by

ra(u) =
{

u, a = 0,

−i
√

6aE(arcsinh( i
3a u), 3

2 ), a �= 0,

whose behavior is sketched in Fig. 3 (see also Fig. 4).
For the angular metric component, γ : [0,∞) → [0,∞), we

have modified the string-like ansatz using as metric [7,10,26,28],

γ (r, c,a) = W (r, c)β(r,a)

= e−(cr−tanh cr)
(

u(r,a)2 + 6a2

6

)
. (7)

The angular component (7) provides a resolved conical behavior
to the transverse manifold. At the origin, the angular component
satisfies γ (0, c,a) = a2. Then, the geometrical flow of the resolved
conifold yields a dimensional reduction M6 → M5 at the origin.
The string-like dimensional reduction M6 → M4 is achieved only
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Fig. 3. Change of radial coordinate for a = 10 (thick line) and for a = 0 (dotted line).

Fig. 4. Inverse change of variable for a = 10 (thick line) and for a = 0 (dashed line).

for a = 0. Therefore, the resolution flow connects the string-like
models (for a = 0) and the RS1 model [1] for a �= 0.

As shown in [28], this scenario has a smooth scalar curvature
and it converges asymptotically to an AdS6 manifold. The met-
ric ansatz (5) and (7) satisfy the Einstein equation for a source whose
stress-energy components satisfy the weak and dominant energy condi-
tions [28]. A detailed analysis of Einstein equations, the string tensions
and the relationship between the bulk and brane mass scales can also be
found in [28].

3. Fermion localization

In this section we shall study the effects that the resolution
flow has on a Dirac fermion in this scenario. Among the advantages
are the existence of a well-defined zero mode on the brane and a
parametrization of the Schrödinger potential.

Consider the action for a minimally coupled spin 1
2 spinor [6,5,

29–32], namely

S6 =
∫ √−gΨ̄ iΓ M D MΨ d6x, (8)

where Γ M = ξ M
M̄

Γ M̄ are the curved Dirac matrices defined from

the flat Dirac matrices Γ M̄ through the vielbein ξ M
M̄

and D M is the
gauge covariant derivative given by [5,29]

D M = ∂M + 1

4
ωM̄ N̄

M ΓM̄ΓN̄ − iq AM , (9)

where AM is a background gauge vector field.
In this geometry, the massless Dirac equation satisfies the equa-
tion

Γ M D MΨ =
[

W − 1
2 Γ μ̄

(
∂μ − iq Aμ(x)

)
+ Γ r̄

(
∂r +

[
W ′

W
+ (βW )′

4βW

]
− iq Ar(r)

)

+ (βW )−
1
2 Γ θ̄

(
∂θ − iq Aθ (r)

)] = 0. (10)

Following the usual approach, we shall use the spinor represen-
tation [5,6,29–32]

Ψ (x, r, θ) =
(

ψ4
0

)
8×1

, (11)

Γ μ̄ =
(

0 γ μ̄

γ μ̄ 0

)
8×8

, Γ r̄ =
(

0 γ 5

γ 5 0

)
,

Γ θ̄ =
(

0 −i
i 0

)
, (12)

and γ 5 is such that γ 5ψR,L = ±ψR,L .
Further, let us perform a Kaluza–Klein decomposition on ψ4 in

the form

ψ4(x, r, θ) =
∑

l

[
ψRl (x)αRl (r) + ψLl (x)αLl (r)

]
eilθ . (13)

Using Eqs. (11), (12), and (13), the Dirac equation (10) turns to
be

Γ M D MΨ (x, r, θ) =
∑

l

eilθ
[

W − 1
2 mψLl,Rl

±
(

∂r + W ′

W
+ (βW )′

4βW
− iq Ar(r)

+ (βW )−
1
2
(
q Aθ (r) − l

))
ψRl,Ll (x)

]
αRl,Ll (r)

= 0. (14)

In this work, we will be concerned with the solutions for l = 0,
the so-called s-waves. In this case, Eq. (14) yields(

∂r +
[

W ′

W
+ (βW )′

4βW
− iq Ar(r) ± q√

βW
Aθ (r)

])
αR,L(r)

= ∓ m√
W

αL,R(r). (15)

3.1. Zero mode

Now let us study the solution of Eq. (15) for m = 0, the so-
called massless mode. Due to the difference of the expressions for
a = 0 and a �= 0, we shall split the analysis in two steps.

3.1.1. Conical behavior a = 0
Using Eq. (5) and Eq. (7), the massless mode for a = 0 (singular

cone) is given by

αR,L(r) = C0
1√

r
exp

[
5

4

[
cr − tanh(cr)

]

− q

r∫ [
i Ar

(
r′) ±

√
6

r′ e
1
2 [cr′−tanh(cr′)] Aθ

(
r′)]dr′

]
. (16)

Eq. (16) is similar to the string-like one except for the factor 1√
r

that prevents us to define an induced fermion on the brane [6,5].
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Fig. 5. Î for a = 0 and r0 = 0.1.

This result shows us that a non-singular cone is essential for the spinor
field be well-defined on this scenario. The problem of induced fields
and field equation on string-like branes due the conical behav-
ior near the origin is well known for the scalar and gravitational
field [25,26].

In spite of this, the zero mode (16) can leads to an effective
four-dimensional action depending on the form of the vector gauge
field. In fact,

S6ef f =
∫

xM

√−gΨ̄ iΓ M D MΨ dM x

= 2π

∫
x

dμx ψ̄ iΓ μ̄∂μψ

∞∫
0

dr W 2β
1
2
∣∣αR,L(r)

∣∣2
. (17)

Then, we need to analyze the integral

I R,L(r) =
∞∫

0

dr W 2β
1
2
∣∣αR,L(r)

∣∣2

= C2
0

∞∫
0

dr
(
e

1
2 [cr−tanh(cr)])e∓2

√
6q

∫ r dr′ Aθ (r′)[ 1
r′ e

1
2 [cr′−tanh(cr′)]]

.

(18)

It is worthwhile to say that the integral (18) depends only on
the angular gauge vector component Aθ . Thus, let us choose a gen-
eral ansatz for the right-handed spinor in the form

AθR (r) =
(

re− 1
2 [cr−tanh(cr)]

4
√

6

)
λ tanh2 b(r − r0), (19)

where λ and b are free parameters. With the expression (19) the
integral (18) turns to be

I R = C2

∞∫
0

dre
1
2 [(c−λ)r+ λ

b tanh b(r−r0)−tanh(cr)]. (20)

In order to I R converges, we impose that λ > c and for a
smooth I R we further suppose that λ � b > c. Taking c = 1, we
plotted the graphics for the integrand of I R , Î , and Aθ in Figs. 5
and 6. It is worthwhile to say that the background bulk gauge field
Aθ has the same behavior of an Abelian vortex in six dimensions
[10].

For the massless left-handed fermion be localized it turns out
that we need to shift the sign of Aθ in (19). Thus, even though
Fig. 6. Angular gauge component for a = 0.

both modes yield an effective action, for a given gauge field A
there is only one localized mode.

3.1.2. Resolved conifold a �= 0
For a �= 0, the solution of Eq. (15) is given by

αR,L(r) = Ca
4
√

v2
a − 1

exp

[
5

4

[
cr − tanh(cr)

]

− q

∫ [
i Ar(r) ± e

1
2 [cr−tanh(cr)]

a
√

1 − v2
a

Aθ (r)

]
dr

]
, (21)

where Ca is a constant and va = E(arcsinh( i√
6a

r), 2
3 ).

It is worthwhile to say that the zero mode for a �= 0 is well-
defined at the origin what solves the brane induced field problem.
The resolution parameter controls the value of this massless mode
at the brane and it represents the radius of the compact dimension as
well.

The form of αR,L(r) in (21) yields the expression for I R,L

I R,L(r) = C2
a

∞∫
0

dr
(
e

1
2 [cr−tanh(cr)])e

∓2q
∫

dr e
1
2 [cr−tanh(cr)]

a
√

1−v2
a

Aθ (r)

. (22)

For the angular gauge component, we have chosen the follow-
ing ansatz

AθR (r) =
(

a

√
1 − v2

ae− 1
2 [cr−tanh(cr)]

4q

)
λ tanh2 b

(
ua(r) − r0

)
,

(23)

where the constant r0 yields a non-vanishing gauge field at the
origin. Hence, I R assumes the form

I R = C2

∞∫
0

dr e
1
2 [(c−λ)r−λ

∫
sech2 b(ua(r)−r0) dr−tanh(cr)]. (24)

Once again in order to obtain a normalizable massless mode we
choose λ > c. Moreover, for a smooth solution we need to add the
condition

λ

∫
sech2 b

(
ua(r) − r0

)
dr > tanh(cr), (25)

that constrains the free parameter λ,b to c. We plotted the radial
component I R (24) in Fig. 7 and the angular gauge component in
Fig. 8 for c = 1, λ = 2 and r0 = 0.2. Note that as more b more
localized are the massless mode and the angular component.
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Fig. 7. Î for a �= 0 and r0 = 0.2.

Fig. 8. Angular gauge component for a �= 0.

3.2. Massive modes

Now let us turn our attention to the massive modes of Eq.
(15). Performing the following change of independent variable
dz
dr = W − 1

2 (r, c), Eq. (15) can be rewritten as[
∂z + Ẇ

W
+ ( ˙βW )

4βW
− iqW

1
2 Az ± q Aθ√

β

]

×
[
∂z + Ẇ

W
+

˙(βW )

4βW
− iqW

1
2 Az ∓ q Aθ√

β

]
αR,L(z)

= −m2αR,L(z), (26)

where the dot (·) stands for d
dz . A noteworthy feature of Eq. (26) is

that the only difference between the right-handed and left-handed
states lies in the sign of the gauge coupling.

By means of the change of dependent variable

αR,L(z) = exp

[
−

(
5

4

[
cz − tanh(cz)

]
−

∫
z

iqW
1
2
(
z′)Ar

(
z′)dz′

)]
α̃R,L(z), (27)

Eq. (26) turns to be(
−∂2

z +
[(

q Aθ (z)√
β(z)

)2

∓
˙(

q Aθ (z)√
β(z)

)])
α̃R,L(z)

= m2α̃R,L(z). (28)

Eq. (28) is a Schördinger-like equation whose potentials (in the
original variable, r) are given by
Fig. 9. Potential for right-handed fermion and a = 0.

Fig. 10. Potential for left-handed fermion and a = 0.

V R,L(r) =
(

q Aθ (r)√
β(r)

)2

∓ √
W (r)

(
q Aθ (r)√

β(r)

)′
. (29)

The expression for the Schrödinger-like potential in Eq. (29) is sim-
ilar to one found in compact 6D braneworlds [29]. The difference
here is the dependence on the metric components that evolve un-
der the resolution flow.

3.2.1. Conical case a = 0
For a = 0, the Schödinger potential takes the form

V 0
R,L(r, λ,b) = λ2

16
e−[cr−tanh(cr)] tanh b(r − 0.2)

[
tanh3 b(r − 0.2)

± 1

λ2

(
8b sech2 b(r − 0.2)

− 2c tanh2(cr) tanh b(r − 0.2)
)]

, (30)

whose graphics were plotted in Fig. 9 (for right-handed fermion)
and Fig. 10 (for left-handed fermion), both for c = 1, λ = 2 and
r0 = 0.2.

As usual in braneworld scenarios, only the left-handed potential
is attractive at the brane. Moreover, the parameter b controls the
depth of the well and the height of the barrier. Furthermore, the
potential does not possesses an asymptotic gap, as for 5D thick
branes [33–36]. Therefore, despite the lack of a massless mode on
the brane for a = 0 (conical behavior), there could be resonant KK
modes on the brane.
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Fig. 11. Potential for right-handed fermion and a �= 0.

Fig. 12. Potential for left-handed fermion and a �= 0.

3.2.2. Resolved case a �= 0
For a �= 0, the potential turns to be

V a
R,L(r, λ,b) = λ2

16
e−[cr−tanh(cr)] tanh b

(
ua(r) − 0.2

)
×

[
tanh3 b

(
ua(r) − 0.2

) ∓ 16a2b

λ(r2 + 6a2)

×
(√

(r2 + 6a2)(r2 + 9a2)

54a2
sech2 b

(
ua(r) − 0.2

)

− 2c tanh2(cr) tanh b
(
ua(r) − 0.2

))]
, (31)

that are represented in Fig. 11 (left-handed fermion) and in Fig. 12
(right-handed fermion), both for c = 1, λ = 2 and r0 = 0.2.

Again, the potential has a usual volcano shape for only the left-
handed fermions. Note that as higher the value of a higher the
barrier. Furthermore, for a ≈ 0 the potential has an abrupt change
near the origin.

4. Conclusions and perspectives

In this work we have analyzed the effects of a resolution
flow upon the geometry and fermion field defined on a warped
braneworld scenario built from a 3-brane and a 2-cycle of the re-
solved conifold.

Firstly, we have shown that this ansatz smoothes out the
well-known string-like geometry near the brane and retrieves the
string-like properties asymptotically.

The next step was to study how a massless fermion behaves
in this geometrical flow. For a minimally coupled l = 0 states with
a background gauge vector field, we turned out that the massless
mode is ill-defined on the brane for a = 0, due the conical be-
havior. The resolution parameter solves this problem by allowing a
chiral zero mode whose value on the brane depends on a.

On the other hand, we showed that for the massive modes, the
Schrödinger-like potential has the usual volcano shape for the left-
handed fermion, for both a = 0 and a �= 0. For a ≈ 0 the potential
has an abrupt change near the origin.

For future works we intend to study the solutions for l �= 0.
Moreover, another important issue to be addressed are the effects
of the resolution parameter has on the resonant modes with or
without a background vector field.
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