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a b s t r a c t

A meso-scale analysis is performed to determine the fracture process zone of concrete subjected to uni-
axial tension. The meso-structure of concrete is idealised as stiff aggregates embedded in a soft matrix
and separated by weak interfaces. The mechanical response of the matrix, the inclusions and the interface
between the matrix and the inclusions is modelled by a discrete lattice approach. The inelastic response
of the lattice elements is described by a damage approach, which corresponds to a continuous reduction
of the stiffness of the springs. The fracture process in uniaxial tension is approximated by an analysis of a
two-dimensional cell with periodic boundary conditions. The spatial distribution of dissipated energy
density at the meso-scale of concrete is determined. The size and shape of the deterministic FPZ is
obtained as the average of random meso-scale analyses. Additionally, periodicity of the discretisation
is prescribed to avoid influences of the boundaries of the periodic cell on fracture patterns. The results
of these analyses are then used to calibrate an integral-type nonlocal model.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The energy dissipation during the fracture of concrete is influ-
enced by the meso-structure of the material, the loading applied
and the geometry of the specimen. The spatial distribution of the
dissipated energy density across the fracture process zone (FPZ)
is governed by both statistics and mechanics. Depending on the
type of loading, either statistical or mechanical processes domi-
nate. For instance, the shape of shear bands in concrete is strongly
influenced by the mechanical interaction of aggregates. For this
type of loading, the deterministic contribution on the shape of
the FPZ is significant (Kouznetsova et al., 2002). For tensile fracture
the tortuosity of the path of the main crack, which dissipates most
of the energy, is predominantly determined by the statistics of the
random arrangement of aggregates. Therefore, the crack paths in
concrete subjected to the same loading conditions differ signifi-
cantly, which implies that a purely deterministic meso-scale mod-
el, which does not consider the statistical variation of the fracture
paths, cannot describe the FPZ of concrete subjected to tension.
Hence, a direct determination of the mean FPZ by meso-scale
analysis requires averaging of the results of meso-scale analyses.
Previous modelling efforts have been focused on an indirect deter-
mination of the FPZ by inverse analysis (Carmeliet, 1999; Bellégo
ll rights reserved.
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et al., 2003; Jirásek et al., 2004; Iacono et al., 2006; Iacono et al.,
2008). In one of these approaches, strength and fracture energies
obtained from specimens of different sizes have been used to
determine the width of the FPZ (Jirásek et al., 2004). However,
the results obtained with this calibration approach were not un-
ique and provided only limited insight into the shape and size of
the fracture process of concrete.

The present study aims at determining the FPZ for mode-I frac-
ture of concrete by meso-scale analysis. The nonlinear finite ele-
ment method is used to analyse the spatial distribution of
dissipated energy density on the meso-scale of concrete. The size
and shape of the deterministic FPZ is determined as the average
of meso-scale analyses. The results are then used to calibrate a
deterministic nonlocal model, which can be used for large-scale
structural analysis. To the authors’ knowledge, this type of meso-
scale analysis for the determination of the fracture process zone
has not been carried out before.

Within the framework of the nonlinear finite element analysis,
three main approaches to fracture modelling can be distinguished.
Continuum approaches describe the fracture process by higher-or-
der constitutive models, such as integral-type nonlocal models
(Bažant and Jirásek, 2002; Grassl and Jirásek, 2005). In continuum
models with discontinuities, cracks are described as displacement
discontinuities, which are embedded into the continuum descrip-
tion (Jirásek and Zimmermann, 2001). Finally, discrete approaches
describe the nonlinear fracture process as failure of discrete ele-
ments, such as trusses and beams (Kawai, 1978; Cundall and
Strack, 1979). In recent years, one type of discrete approach based
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on a lattice determined by Voronoi tesselation has been shown to
be suitable for fracture simulations (Bolander and Saito, 1998). The
lattice approach is robust, computationally efficient, and allows for
fracture description by a stress–inelastic displacement relation-
ship, similar to continuum models with discontinuities. With a
specially designed constitutive model, the results obtained with
this approach were shown to be mesh-independent (Bolander
and Sukumar, 2005). Such a lattice approach is used for the
meso-scale modelling in the present study.

In the present work, discrete approaches are divided in the
group of particle and lattice models. In particle models, the
arrangement of particles can evolve, so that neighbours of particles
might change during analysis. Therefore, particle models are suit-
able to describe processes involving large displacements. On the
other hand, in lattice models the connectivity between nodes is
not changed during the analysis, so that contact determination is
not required. Consequently, lattice models are mainly suitable for
analysis involving small strains (Herrmann et al., 1989; Schlangen
and van Mier, 1992; Bolander and Saito, 1998).

In lattice analyses, the meso-structure of concrete can be de-
scribed in at least two ways. In the first approach, the interaction
between aggregates is modelled directly by single lattice elements
(Zubelewicz and Bažant, 1987). All the nonlinearity of the material
response between the aggregates is represented by the stress–
strain response at a single point. This approach is characterised
by computational efficiency, since the nodes of the finite element
mesh correspond to the centres of concrete aggregates (Cusatis
et al., 2003). In the second approach, information on the heteroge-
neous meso-structure of concrete is mapped on a lattice in the
form of spatially varying material properties (Schlangen and van
Mier, 1992). This approach requires a finer resolution, since indi-
vidual aggregates are represented by several lattice elements. In
the present study the latter approach is chosen, since a detailed
description of the tortuous crack patterns is of importance. Because
of the fine lattice used, the present study is limited to two-dimen-
sional plane stress analyses with aggregates idealised as cylindrical
inclusions. This oversimplifies the meso-structure of concrete so
that a direct comparison with experimental results is difficult.
However, the study may produce qualitative results that are useful
for the development of macroscopic nonlocal constitutive models.

The lattices used were generated from randomly placed nodes,
which reduced the influence of the alignment on the fracture pat-
terns (Jirásek and Bažant, 1995; Schlangen and Garboczi, 1996).
Similar observations have been made for other fracture ap-
proaches, in which irregular meshes can reduce the influence of
the discretisation on fracture patterns (Jirásek and Grassl, 2008).
The number of degrees of freedom of the background lattice is re-
duced by placing lattice elements perpendicular to the boundary of
aggregates (Bolander and Berton, 2004). Small aggregates, which
cannot be captured by the background lattice, are approximated
by a random field, which is generated by a spectral representation
(Shinozuka and Jan, 1972; Shinozuka and Deodatis, 1996). These
random fields control the crack paths between the discretely mod-
elled aggregates. Thus, the influence of the background lattice on
the fracture patterns in the regions between the discretely mod-
elled aggregates is reduced.

The constitutive response of the meso-structure of concrete can
either be described by micro-mechanical models based on multi-
scale analysis (Budiansky and O’Connell, 1976) or, alternatively,
by phenomenological constitutive models, which are commonly
based on the theory of damage mechanics (Mazars, 1984), plastic-
ity (Etse and Willam, 1994) and combinations of damage and plas-
ticity (Ju, 1989). Plasticity and combinations of damage and
plasticity are well suited to describe the fracture process of con-
crete in compression (Grassl and Jirásek, 2006; Grassl et al.,
2002). On the other hand, for mode-I fracture, damage constitutive
models often provide satisfactory results (Jirásek and Grassl, 2008).
In the present study an isotropic damage constitutive model is
used.

2. Meso-scale modelling approach

The present approach to modelling the fracture process zone of
concrete is based on a meso-scale description. Aggregates, interfa-
cial transition zones (ITZ) and mortar are modelled as separate
phases with different material properties. For the mortar and ITZ,
a random field of strength and fracture energy is applied. A lattice
approach (Bolander and Saito, 1998) is used in combination with a
damage mechanics model.

2.1. Lattice approach

The material response is represented by a discrete system of
structural elements. The nodes of the lattice are randomly located
in the domain, subject to the constraint of a minimum distance dmin

(Zubelewicz and Bažant, 1987). For the discretely modelled aggre-
gates, the lattice nodes are not placed randomly but at special loca-
tions, such that the middle cross-sections of the lattice elements
form the boundaries between aggregates and mortar (Bolander
and Berton, 2004). The lattice elements are obtained from the
edges of the triangles of the Delaunay triangulation of the domain
(Fig. 1a), whereby the middle cross-sections of the lattice elements
are the edges of the polygons of the dual Voronoi tesselation
(Bolander and Saito, 1998).

Each lattice node possesses three degrees of freedom (two trans-
lations and one rotation). In the global coordinate system, shown in
Fig. 1b, the degrees of freedom ue ¼ ðu1;v1;/1;u2;v2;/2Þ

T of the lat-
tice nodes are linked to the displacement discontinuities uc ¼
ðuc;vcÞT in the local coordinate system at point C, which is located
at the centre of the middle cross-section of the element. The relation
between the degrees of freedom and the displacement discontinu-
ities at C is

uc ¼ Bue ð1Þ

where

B ¼
� cos a � sin a �e cos a sin a e

sina � cos a �h=2 cos a sin a �h=2

� �
ð2Þ

The displacement discontinuities uc at point C are transformed into
strains e ¼ ðen; esÞT ¼ uc=h, where h is the distance between the two
lattice nodes. The strains are related to the stresses r ¼ ðrn;rsÞT by
an isotropic damage model, which is described below.

The stiffness matrix of the lattice element in the local coordi-
nate system has the form

K ¼ l
h

BTDB ð3Þ

where l is the cross-sectional area (for a two-dimensional model
this area reduces to the length of the side shared by neighbouring
Voronoi polygons) and D is the material stiffness matrix.

Heterogeneous materials are characterised by spatially varying
material properties. In the present work this is reflected at two lev-
els. Aggregates with diameters greater than /min are modelled di-
rectly. The random distribution of the aggregate diameters / is
defined by the cumulative distribution function used in (Carpinteri
et al., 2004; Grassl and Rempling, 2008). The aggregates are placed
randomly within the area of the specimen, avoiding overlap of
aggregates. Overlaps with boundaries are permitted. The heteroge-
neity represented by finer particles is described by an autocorrelat-
ed random field of tensile strength and fracture energy, which are
assumed to be fully correlated. The random field is generated using



(a) (b)
Fig. 1. (a) Lattice based on Voronoi polygons. (b) Lattice element in the global coordinate system.

Fig. 2. Elliptic stress envelope in the nominal stress space.
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a spectral representation (Shinozuka and Jan, 1972; Shinozuka and
Deodatis, 1996). This mixed approach, in the form of a discrete rep-
resentation of the meso-structure and random field, is a compro-
mise between model detail and computational time.

The random field is characterised by an exponential autocorre-
lation function

RðnÞ ¼ expð�jnj2=b2Þ ð4Þ

and a Gaussian probability distribution function with a threshold to
exclude negative values of strength and fracture energy. Parameter
n is the separation distance and parameter b is related to the auto-
correlation length la as

b ¼ 2laffiffiffiffi
p
p ð5Þ

The autocorrelation length la is independent of the spacing dmin of
the lattice nodes (Grassl and Bažant, 2009).

2.2. Constitutive model

An isotropic damage model is used to describe the constitutive
response of ITZ and mortar. In the following section, the main
equations of the constitutive model are presented. The stress–
strain law reads

r ¼ ð1�xÞDee ¼ ð1�xÞ�r ð6Þ

where r ¼ ðrn;rsÞT is the nominal stress, x is the damage variable,
De is the elastic stiffness, e ¼ ðen; esÞT is the strain, and �r ¼ ð�rn; �rsÞT

is the effective stress.
The elastic stiffness

De ¼
E 0
0 cE

� �
ð7Þ

depends on model parameters E and c, which control Young’s mod-
ulus and Poisson’s ratio of the material (Griffiths and Mustoe, 2001).
For a regular lattice and plane stress, Poisson’s ratio is

m ¼ 1� c
3þ c

ð8Þ

and the elastic stiffness is
Em ¼ 2E
1þ c
3þ c

� �
ð9Þ

For a positive shear stiffness, i.e. c > 0, Poisson’s ratio is limited to
m < 1

3, which is acceptable for concrete but may be unrealistic for
certain other materials. The damage parameter x is a function of
a history variable j, which is determined by the loading function

f ðe;jÞ ¼ eeqðeÞ � j ð10Þ

and the loading–unloading conditions

f 6 0; _j P 0; _jf ¼ 0 ð11Þ

The equivalent strain

eeqðen; esÞ ¼
1
2
e0ð1� cÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2
e0ðc � 1Þ þ en

� �2

þ cc2e2
s

q2

s
ð12Þ

corresponds to an elliptic stress envelope in the nominal stress
space (Fig. 2).

For pure tensile loading, the nominal strength is limited by the
tensile strength ft ¼ Ee0. For pure shear and pure compression, the
nominal stress is limited by the shear strength fq ¼ qft and the
compressive strength fc ¼ cft, respectively.

The softening curve of the stress–strain response in uniaxial
tension is defined by the relation

r ¼ ft exp �wc

wf

� �
ð13Þ



Fig. 3. Periodic cell.
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where wc ¼ xhe is considered as an equivalent crack opening under
monotonic uniaxial tension. The stress–strain law in uniaxial ten-
sion can also be expressed in terms of the damage variable as

r ¼ ð1�xÞEe ð14Þ

Comparing the right-hand sides of (13) and (14), and replacing e by
j, we obtain the equation

ð1�xÞj ¼ e0 exp �xhj
wf

� �
ð15Þ

from which the damage parameter x can be determined iteratively.
Parameter wf determines the initial slope of the softening curve and
is related to the meso-level fracture energy Gft ¼ ftwf . The crack
openings obtained with this constitutive model are independent
of the length of the element. The present damage constitutive mod-
el used here is conceptually similar to Ortiz and Pandolfi (1999)).
However, a more complex equivalent strain formulation involving
the additional parameter c was required in the present study, since
the compressive strength of concrete is significantly greater than its
tensile strength. For c ¼ 1 the original formulation proposed in Ortiz
and Pandolfi (1999) is obtained.

2.3. Periodic cell

One important issue in micro- and meso-mechanical modelling
is the specific choice of boundary conditions at the boundary of the
computational cell. In elastic homogenization theory, it is well
known that kinematic boundary conditions (imposed displace-
ments) lead to an apparent stiffness (describing the relation be-
tween average strain and average stress) that overestimates the
effective one, while static boundary conditions (imposed tractions)
lead to an underestimated stiffness. The influence of boundary con-
ditions on the apparent elastic properties fades away with increas-
ing size of the cell. If the cell is large enough, it is considered as a
representative volume element and the apparent elastic properties
are close to the effective properties of the homogenized medium.

If the analysis is extended to highly nonlinear material behavior
that leads to localization of inelastic processes, the boundary con-
ditions may have a strong influence even if the cell is very large.
The reason is that the imposed constraints usually lead to stress
concentrations in a material layer near the boundary, which then
bias the localization pattern. It is therefore preferable to use
boundary conditions that are free of such bias and provide a statis-
tically homogeneous distribution of localization patterns. The
undesired boundary effects can be eliminated by the periodicity
requirement that replaces the boundary conditions. This requires
a special meso-structure and its discretization (in our case lattice),
both compatible with the periodicity requirement.

The meso-scale approach used in this paper is based on the con-
cept of an initially rectangular computational cell that can be peri-
odically repeated in the directions parallel to its sides, both in the
initial and the current (deformed) configuration. In addition to the
displacements and rotations of individual lattice nodes that are
contained within the cell, the average strain components are con-
sidered as degrees of freedom of the computational model. Force
quantities work-conjugate to these global degrees of freedom are
directly related to the average stress components. It is thus easy
to impose various types of mixed loading conditions. For instance,
for uniaxial tension at the macroscopic scale, the average strain in
the direction of loading is incremented (playing the role of the con-
trol variable) while the average stress in the lateral direction and
the average shear stress are set to zero.

When setting up the discretised equilibrium equations of the
meso-scale model, the internal lattice elements, i.e. those connect-
ing two nodes that are both inside the cell, are processed in the
standard way. Special treatment is needed for the boundary ele-
ments that connect one node inside the cell with another node
physically located in one of the neighbouring cells. The external
lattice node is a periodic image of one of the internal nodes. For
easier reference, let us denote I and J the internal lattice nodes
and I0 and J0 their periodic images outside the cell; see Fig. 3.

The corresponding lattice element can be considered as con-
necting either nodes I and J0, or I0 and J. Both representations are
equivalent and only one of them, say I and J0, is actually processed
when setting up the contribution to the equilibrium equations. Due
to the assumption of periodicity, the rotations of lattice nodes J and
J0 are the same and the translations of node J0 can be expressed as
the translations of node J plus an appropriate contribution of the
average strains. More specifically, suppose that the initial position
of node J0 is shifted with respect to node J by kxa in the x-direction
and by kyb in the y-direction, where a and b are dimensions of the
cell and kx and ky are integers -1, 0 or 1 (for the specific case plotted
in Fig. 3, we have kx ¼ 1 and ky ¼ 1). The translations of node J0 are
then expressed as

uJ0 ¼ uJ þ kxaEx þ kybExy ð16Þ

v J0 ¼ v J þ kybEy ð17Þ

where Ex and Ey are the average normal strains in the x- and y-direc-
tion, respectively, and Exy is the average engineering shear strain.
Note that the contribution of the average shear has been attributed
exclusively to the translations along the x-direction. This is per-
fectly justified, because rigid-body rotation of the entire lattice is
completely arbitrary and we can fix it by assuming that straight
lines parallel to the x-axis do not rotate. The other two rigid-body
modes (translations) need to be suppressed by setting the transla-
tions of one selected lattice node to zero.

Making use of (16) and (17) and of the relation for the rotations,
/J0 ¼ /J , we can set up the transformation rule

uI

v I

/I

uJ0

v J0

/J0

0
BBBBBBBB@

1
CCCCCCCCA
¼

1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 kxa 0 kyb

0 0 0 0 1 0 0 kyb 0
0 0 0 0 0 1 0 0 0

2
666666664

3
777777775

uI

v I

/I

uJ

v J

/J

Ex

Ey

Exy

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

ð18Þ

When this rule is combined with Eq. (1) linking the displacements
of nodes I and J0 and the discontinuities, the 6� 9 transformation
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matrix from (18), denoted as T, multiplies matrix B from the right. It
follows from duality that the internal forces must be multiplied by
TT from the left before they are inserted into the equilibrium condi-
tions. The usual 6 � 6 stiffness matrix of the element, K, is therefore
transformed into a 9 � 9 matrix TTKT before it enters the assembly
process. The global stiffness matrix remains banded, with the
exception of the three rows and columns that contain terms related
to the global degrees of freedom (average strains) and to the corre-
sponding equilibrium equations (related to the average stresses).
Consequently, the total number of degrees of freedom of the prob-
lem are the degrees of freedom of the individual nodes described in
Section 3.1, plus three global degrees of freedom controlling the
average strain in the periodic cell.

3. Meso-scale analysis

3.1. Geometry, loading setup and results

The aim of the present study is to analyse the fracture process
zone of concrete under uniaxial tension. A specimen with periodic
boundary conditions, material properties and background lattice
was used to reduce the influence of boundaries on the fracture pro-
cess. The material properties for the mortar, ITZ and aggregate
phases were chosen according to Table 1. Parameters �f t and Gf in
Table 1 are the mean values of the random fields of tensile strength
ft and fracture energy Gf , respectively. The material parameters
were chosen to approximate a macroscopic tensile strength of
3 MPa and a macroscopic fracture energy of 100 J=m2. The ratio be-
tween Young’s moduli of matrix and aggregate is assumed to be 3.
Lattice elements crossing the boundary between aggregates and
cement paste represent the average response of the interfacial
transition zones and the two adjacent materials. In all the analyses,
the length of the lattice elements is significantly greater than the
width of the interfacial transition zone. Therefore, Young’s modu-
lus of the interface elements is

EI ¼
2

1
Em
þ 1

Ea

ð19Þ

where Em and Ea are Young’s moduli of matrix and aggregate,
respectively. Furthermore, the ratios of tensile strength and fracture
energy for matrix and ITZ are 3. These values are in the range used
for other meso-scale analyses in Grassl and Rempling (2008) and
Rempling and Grassl (2008).

The specimen used in the analyses (Fig. 4) had a height and
width of a ¼ b ¼ 100 mm, respectively. The lattice for the meso-
scale analysis was generated with dmin ¼ 0:75 mm. The aggregate
volume fraction was chosen as q ¼ 0:3 with a maximum and min-
imum aggregate diameter of /max ¼ 12 mm and /min ¼ 4:75 mm,
respectively. The approach to generate the distribution of
aggregate diameters is described in Grassl and Rempling (2008).
Furthermore, the random field was characterised by the autocorre-
lation length la ¼ 1 mm and the coefficient of variation cv ¼ 0:2.
The specimen was subjected to uniaxial tensile stress ry, which
was controlled by the displacement in y-direction. On the left
and right boundary of the specimen, boundary conditions that cor-
respond to vanishing macroscopic tractions were applied. This
means that the global degrees of freedom Ex and Exy mentioned
Table 1
Model parameters.

E ½GPa� c �f t ½MPa� q c Gf ½N=m�

Matrix 30 0.33 5.3 2 10 93
Interface 45 0.33 1.8 2 10 31
Aggregate 90 0.33 – – - -
in Section 2.3 were considered as two of the global unknowns,
and the external forces on the right-hand side of the corresponding
equilibrium equations were set to zero. On the other hand, the glo-
bal degree of freedom Ey was prescribed and used as the control
variable of the loading process, and the corresponding external
force, which has the meaning of the average (macroscopic) stress
multiplied by ab, was computed as a reaction.

The stress–strain response for one random meso-scale analysis
is shown in Fig. 4b. The crack patterns for three stages of the uni-
axial tensile loading, marked in Fig. 4b, are shown in Fig. 5. Red
(dark grey) lines mark cross-sections of elements in which the
damage parameter increases at this stage of analysis (i.e., active,
opening cracks), whereas light grey lines indicate cross-sections
in which the maximum damage parameter was reached at an ear-
lier stage of analysis (i.e., passive, closing cracks). From Figs. 4b and
5 it can be seen that the path of the active crack is highly tortuous.
At earlier stages of analysis, distributed cracking occurs, whereby
the cracks are located mainly in the ITZs (light grey cracks)
(Fig. 5a). Shortly after peak (Fig. 5b), many of these cracks cease
to grow, i.e. their opening decreases, and only few cross-sections
exhibit increasing crack opening (red or dark grey lines). This is
in agreement with observations made in Cedolin et al. (1987),
Planas et al. (1992), Nirmalendran and Horii (1992) and Bolander
et al. (1993). Energy dissipation in these localised cracks consti-
tutes a substantial part of dissipated energy. In Fig. 6, the mean
of 100 meso-scale analyses is presented with error bars showing
the standard deviation. The results are plotted in terms of the aver-
age stress (force per unit length of the unit cell side and per unit
thickness) against the average strain (relative displacement of
the opposite sides divided by their distance). The average stress–
strain curve exhibits pre-peak nonlinearities typical of uniaxial
tensile experiments of concrete. The standard deviation is small
in the pre-peak regime, but increases strongly in the post-peak re-
gime of the analysis.

In addition to the stress–strain curves in Fig. 6, the dissipated
energy densities are evaluated. The averaging of dissipated energy
densities is complicated, since the location of the final crack, in
which most of the energy is dissipated, depends on the meso-
structure of the material and cannot be determined in advance. Di-
rect averaging of the energy densities for random meso-scale anal-
yses, would lead, in the limit of an infinite number of analyses, to a
uniformly distributed energy density over the specimen height. For
a meaningful characterization of the random fracture process
zones, the results of individual analysis were post-processed.
Firstly, the y-coordinate of the centre of the fracture process was
determined by processing the dissipated energy of all elements.
Then, all elements were shifted in the y-direction (Fig. 4), such that
the y-coordinate of the centre of the dissipated energy density of
each individual analysis coincides with the y-coordinate of the cen-
tre of the specimen. This shift is admissible, since the specimen is
fully periodic, i.e. not only the boundary conditions, but also meso-
structure and background lattice are periodic. In the next step, the
specimen was subdivided in a regular rectangular grid of cells with
x- and y-edge lengths of cx ¼ a=64 and cy ¼ b=64. The energy den-
sities in these cells were determined by integrating the dissipated
energy of all elements located within them, and by dividing these
energies by the cell area. Subsequent averaging of the energy den-
sities of the 100 analyses results in the average dissipated energy
density, which characterizes the fracture process zone. The energy
density along the y-direction, i.e. perpendicular to the crack, is pre-
sented in Fig. 7 by averaging the dissipated energy along the crack
(along the x-direction). This additional averaging reduces the scat-
ter of the fracture process zone representation. However, it does
not influence the size of the fracture process zone. The error bars
in Fig. 7 represent the range between the mean plus and minus
one standard deviation. The fracture process zone has its maxi-



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2

st
re

ss
 [M

Pa
]

strain [mm/m]

a

b

c

Fig. 4. (a) Geometry and loading setup of the periodic specimen with a ¼ b ¼ 100 mm. (b) Load–displacement curve for one random meso-scale analysis.

Fig. 5. Crack patterns for three stages of loading marked in Fig. 4b. Red (dark grey) lines indicate cross-sections with increasing crack opening. Light grey lines indicate cross-
sections with decreasing crack openings. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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mum value in the centre with symmetrically decreasing slopes on
both sides. The width of the fracture process zone is mainly deter-
mined by the tortuosity of the cracks and is for the present meso-
structure equal to approximately three times the size of the max-
imum aggregates. The dissipated energy density in the x-direction
(along the crack) is shown in Fig. 8. For this representation, the
density is integrated in the y-direction. Thus, the result corre-
sponds to the energy dissipated per unit area of the ligament
(per unit length in the two-dimensional setting). The distribution
of dissipated energy along the crack in Fig. 8 is fluctuating around
a constant mean value, which corresponds to the fracture energy of
the material. Again, error bars indicate the mean plus and minus
one standard deviation.
3.2. Discussion of the meso-scale analysis results

The standard deviations of the dissipated energy densities are
considerably greater than those of the stress–strain curves. At
some points of the fracture process zone in Fig. 7, the standard
deviation is even greater than the mean value, which indicates that
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sets of 100 analyses. Fracture processes zones are shifted before averaging.
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the statistical distribution is far from normal (since all dissipation
values are non-negative). The difference in standard deviation is
expected, since the average stress–strain curves are global results,
which involve averaging of local responses, whereas the dissipated
energy density is local. With such significant standard deviations,
it is necessary to check whether 100 analyses are sufficient to ob-
tain statistically representative results. Therefore, two additional
sets of 100 analyses were carried out. The averages of the three sets
are presented in Figs. 9 and 10 in the form of stress–strain curves
and fracture process zones, respectively. The difference between
the results of the three sets is small, which indicates that 100 anal-
yses are sufficient to obtain statistically representative results.

Additionally, the influence of the lattice on the results was
investigated. In the present study, the size of lattice elements
and their spatial arrangement was chosen independently of the
material meso-structure. Of course, the lattice elements must be
sufficiently small to be able to represent the discretely modelled
aggregates. However, fracture is modelled as displacement jumps
within individual lattice elements. Therefore, the spatial orienta-
tion and size of the lattice elements might influence the fracture
patterns. The influence of these two parameters is investigated
by two additional studies. Firstly, analyses with three different ran-
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Fig. 9. Comparison of average stress–strain curves obtained from three different
sets of 100 analyses.
dom lattices with the same minimum distance dmin were con-
ducted. The same aggregate arrangement and random field was
used. The stress–strain curves and crack patterns of these analyses
are compared in Figs. 11 and 12. The stress–strain curves exhibit
only small differences in the post-peak regime, which are smaller
than the standard deviations of the stress–strain curves shown in
Fig. 6. The overall crack patterns in Fig. 12, which determine the
shape of the fracture process zone in Fig. 7, are almost independent
of the background lattice. Only small differences are visible, which
have a negligible influence on the tortuosity of the fracture process
zones obtained.

As the next step, the influence of the lattice element size was
studied. In the constitutive model used in the present study, frac-
ture is described by a stress-crack opening curve. Therefore, the
crack openings are expected to be independent of the size of the
lattice elements. Three analyses with the same meso-structure
but different background lattices with minimum distances
dmin ¼ 1, 0.75 and 0.5 mm, respectively, were performed. The dif-
ferences among the stress–strain curves (Fig. 13) are small, which
shows that the present lattice approach is free of pathological
mesh dependence. Also, the crack patterns in Fig. 14 exhibit only
local differences, which are due to the random arrangement of
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Fig. 11. Comparison of average stress–strain curves obtained using three different
discretisations with the same meso-structure and lattice element size, but different
random positions of lattice nodes.



Fig. 12. Comparison of crack patterns obtained from analyses using three different lattices with the same meso-structure and the same average lattice element size.
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lattice elements (compare with Fig. 12), but not their size. For the
present lattice model the crack path will always be influenced by
the spatial arrangement of the lattice elements. However, if the
size of the lattice elements is smaller than the size of the heteroge-
neities considered, this influence is small. These local differences
are not expected to influence the average fracture process zones
presented in Fig. 7. The two studies above show that discretely
modelled aggregates in connection with a random field for the
mortar provide results which are almost independent of the back-
ground lattice.

A periodic cell was chosen in the present study so that the re-
sults are independent of the boundary conditions and the fracture
process zones can be shifted before the averaging of the results.
The size of the periodic cell was chosen so that the tortuosity of
the fracture patterns is statistically representative. A decrease of
the size of the periodic cell in the direction of loading is expected
to influence the tortuosity of the crack patterns, i.e. the width of
Fig. 14. Comparison of crack patterns obtained from lattices with minimum distances of
the same aggregate arrangement and random field is used.
the fracture process zone. The smaller the cell size, the less tortu-
ous are the crack patterns. However, it is expected that there is an
upper limit of the cell size, above which the width of the fracture
process zone remains almost constant. The influence of the cell size
was studied by performing two sets of 100 analysis for two addi-
tional cells with a ¼ 50 and 150 mm. The average stress–strain
curves and fracture process zones for these two sizes are compared
to the original results for a ¼ 100 mm in Figs. 15 and 16, respec-
tively. Although the difference between the average stress–strain
curves for the three sizes is small, it can be seen that a reduction
of the size leads to a steeper softening branch in the post-peak re-
gime of the stress–strain curves. Furthermore, the comparison of
the fracture process zones shows that the width of the fracture
process zone reduces considerably when the size of the periodic
cell is decreased from 100 to 50 mm. On the other hand, an in-
crease of the size from 100 to 150 mm has only a small influence
on the width of the fracture process zone. Consequently, a cell size
of 100 mm was deemed to be sufficient to represent the fracture
process zone.

4. Comparison of meso-scale analyses to macroscopic nonlocal
constitutive model

In the previous two sections, the meso-scale description of frac-
ture in concrete was used to determine the average of dissipated
energy densities. The present study adopts the view that this aver-
age of densities corresponds to the fracture process zone, which is
represented by macroscopic nonlocal models. In the following sec-
tion, a one-dimensional macroscopic nonlocal damage model is
compared to the results of meso-scale analyses.

4.1. Nonlocal damage model

In the one-dimensional setting, the stress–strain law used by
the damage model is

r ¼ ð1�xÞEe ð20Þ

where r is the uniaxial stress, x is the damage variable, E is Young’s
modulus and e is the strain. Damage evolution is driven by the
dmin ¼ 1 mm; dmin ¼ 0:75 mm and dmin ¼ 0:5 mm, respectively. In all three analyses,



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 0  0.5  1  1.5  2

st
re

ss
 [M

Pa
]

strain [mm/m]

a = 150 mm
a = 100 mm
a = 50 mm
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nonlocal strain �e, which represents a weighted spatial average of the
local strain e (in multiple dimensions, a scalar measure of the strain
level called the equivalent strain would be used). In an unbounded
one-dimensional medium, the nonlocal strain is evaluated as

�eðxÞ ¼
Z 1

�1
aðx� nÞeðnÞ dn ð21Þ

where a is the nonlocal weight function, decaying with increasing
distance between points x and n and normalized such that the aver-
aging operator does not modify a uniform field. The weight function
is sometimes taken as a Gauss-type function, but in the present
study we consider the quartic polynomial with a bounded support,

aðrÞ ¼ 15
16 R

1� r2

R2

� �2

ð22Þ

and the exponential function

aðrÞ ¼ 1
2 l

exp � jrj
l

� �
ð23Þ

Both weight functions are normalized such that
R1
�1 aðrÞ dr ¼ 1.

Parameters R or l reflect the characteristic length of the material
and have a strong influence on the width of the process zone, as will
be shown later. Function (23) corresponds to Green’s function of the
differential equation �e� l2�e00 ¼ e (on an infinite one-dimensional
domain). With this specific choice, the nonlocal integral-type model
is equivalent to the implicit gradient model proposed in Peerlings
et al. (1996).

Since damage is irreversible, the damage variable x is related to
an internal variable j, which represents the maximum level of
nonlocal strain ever reached in the previous history of the material.
Formally, j can be defined by the loading–unloading conditions
(11) with the loading function

f ð�e;jÞ ¼ �e� j ð24Þ

The damage law that links the strain to damage is closely related to
the shape of the stress–strain curve. Since the curves obtained from
the lattice model exhibit nonlinearity already before the peak, we
consider a damage law that can reproduce such behavior:

x ¼ gðjÞ ¼

1� exp � 1
m

j
ep

	 
m	 

if j 6 e1

1� e3
j exp � j�e1

ef 1þ j�e1
e2

	 
nh i
0
@

1
A if j > e1

8>>>><
>>>>:

ð25Þ

The primary model parameters are the uniaxial tensile strength ft,
the strain at peak stress (under uniaxial tension) ep, and additional
parameters e1; e2 and n, which control the post-peak part of the
stress–strain law. Other parameters that appear in (25) can be de-
rived from the condition of zero slope of the stress–strain curve at
j ¼ ep and from the conditions of stress and stiffness continuity
at j ¼ e1:

m ¼ 1
lnðEep=ftÞ

ð26Þ

ef ¼
e1

e1=ep
� �m � 1

ð27Þ

e3 ¼ e1 exp � 1
m

e1

ep

� �m� �
ð28Þ
4.2. Parameter identification

The parameters have been adjusted so as to fit the uniaxial
stress–strain curve in Fig. 6 and the fracture process zone in
Fig. 7. The basic parameters E ¼ 29:6 GPa; f t ¼ 2:86 MPa and
ep ¼ 0:198� 10�3 can be directly determined from the ascending
branch of the stress–strain curve, and the corresponding value of
m ¼ 1:39 is calculated from (26). For the one-dimensional model,
the strain profile remains uniform up to the peak, and so the
above-mentioned parameters are independent of the characteristic
length of the nonlocal model. The remaining parameters are re-
lated to the descending branch and their values must be optimized
for each specific choice of the nonlocal weight function separately.
Here we consider two different nonlocal weight functions, (22) and
(23), each with three different values of the characteristic length
parameter R or l. The resulting six sets of parameters are listed in
Table 2. Parameter n controls the shape of the tail of the stress–
strain curve and can be taken by the same value n ¼ 0:85 for all
the parameter sets considered here. Parameters e1 and e2 were ob-
tained by fitting and parameters ef and e3 were calculated from
(27) and (28).

The comparison of the nonlocal model and the meso-scale ap-
proach is shown in Figs. 17 and 18. With a proper choice of param-
eters of the macroscopic nonlocal model, the damage evolution law
(25) allows for a good fit of the average stress–strain curve ob-
tained from the meso-scale lattice analyses; see Fig. 17. The
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Table 2
Parameters that control the post-peak part of the stress–strain curve.

Parameter set Weight function Length parameter e1½10�3� e2½10�3� e3½10�3� ef ½10�3�

A (22) R ¼ 20 mm 0.255 5 0.0919 0.603
B (22) R ¼ 15 mm 0.238 7 0.0942 0.814
C (22) R ¼ 10 mm 0.221 15 0.0958 1.335
D (23) l ¼ 8 mm 0.280 2.5 0.0875 0.451
E (23) l ¼ 6 mm 0.255 3.5 0.0919 0.603
F (23) l ¼ 4 mm 0.230 7 0.0950 0.990
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zone obtained with the meso-scale lattice model and with the macroscopic nonlocal
model using (a) quartic polynomial weight function (22), and (b) exponential
(Green-type) weight function (23).
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agreement is almost perfect for all six sets of parameters presented
in Table 2. Note that Fig. 17 contains the results obtained with the
lattice model and marked by solid circles, and also the results ob-
tained by the nonlocal model with six different parameter sets,
which are marked by continuous curves that are identical in the
pre-peak range and nearly identical in the post-peak range. This
means that the same global response can be reproduced with dif-
ferent types of nonlocal weight functions and different values of
the length parameter R or l. The optimal value of the characteristic
length cannot be deduced from the average stress–strain curve,
which is in fact the rescaled load–displacement curve and charac-
terizes the global response. As shown in Fig. 18, the characteristic
length controls the width of the process zone.

On the other hand, the specific form of the weight function has
only a weak influence on the distribution of energy dissipation
across the process zone; see Fig. 19. The exponential weight func-
tion gives a slightly higher peak of the dissipation profile but this
difference is much less pronounced than the difference in the
weight functions; see Fig. 20. Of course, the length parameters R
and l do not have the same meaning; similar dissipation profiles
are obtained if R is set approximately to 2.5l. For R ¼ 15 mm or
l ¼ 6 mm, a good fit of the dissipation profile predicted by the
meso-mechanical lattice model is achieved, except for the centre
of the process zone where the extremely high dissipation density
obtained with the lattice model is underestimated.

5. Conclusions

In the present work, a meso-scale approach was used to deter-
mine the fracture process zone of concrete, which is characterised
by the average of dissipated energy densities. Then, a macroscopic
nonlocal model was fitted to the meso-scale results. The work re-
sulted in the following conclusions:
� The average of dissipated energy densities obtained from the
meso-scale analyses resulted in a fracture process zone of a finite
width, which is determined by the tortuosity of the crack path.

� The meso-scale results obtained with a lattice approach are
independent of the size and spatial orientation of the elements.
This is achieved by describing the material properties by a ran-
dom field of strength.

� The standard deviation of the energy densities obtained is
greater than the mean value, which indicates a deviation from
the normal distribution. Nevertheless, the results were shown
to be statistical representative.
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In future work, the meso-scale results will be used to calibrate
nonlocal macroscopic damage models reported in the literature,
which describe boundaries differently. These nonlocal models will
then be applied to the analysis of notched concrete beams, for
which boundary conditions play an important role. Additionally,
meso-scale analysis of these concrete beams will be carried out,
which will allow the identification of nonlocal models suitable
for the description of the failure of concrete.
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Zubelewicz, A., Bažant, Z.P., 1987. Interface modeling of fracture in aggregate
composites. Journal of Engineering Mechanics 113, 1619–1630.


	Meso-scale approach to modelling the fracture process zone of concrete subjected  to uniaxial tension
	Introduction
	Meso-scale modelling approach
	Lattice approach
	Constitutive model
	Periodic cell

	Meso-scale analysis
	Geometry, loading setup and results
	Discussion of the meso-scale analysis results

	Comparison of meso-scale analyses to macroscopic nonlocal constitutive model
	Nonlocal damage model
	Parameter identification

	Conclusions
	Acknowledgements
	References


