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a b s t r a c t

Objective: The pathogenesis of ovarian clear cell carcinoma is still poorly understood; therefore, we
conducted a gene set-based analysis by integrating datasets downloaded from publicly available
microarray gene expression databases to investigate the pathogenesis of clear cell carcinoma, which was
based on the regularity of functions defined by gene ontology or canonical pathway databases.
Materials and Methods: The gene expression profiles of 80 clear cell carcinomas and 136 normal ovarian
controls were downloaded from the National Center for Biotechnology Information Gene Expression
Omnibus database. The gene expression profiles were converted to the gene set regularity (GSR) indexes
computed using the modified differential rank conservation, an algorithm measuring the degree of gene
expression ranking change in a gene set. Then the differences of GSR indexes between clear cell carci-
nomas and normal ovarian controls were analyzed.
Results: Machine learning can accurately recognize and classify the patterns of functional regularities
containing the GSR indexes between the clear cell carcinomas and normal controls with an accuracy of
99.3%. The significant aberrations included oxidoreductase activity, binding, transport, channel activity,
cell adhesion, immune response, chromosome assembly, and the deregulated signaling molecules, such
as guanyl nucleotide exchange factors, phosphoinositide 3-kinase-activating kinase, receptor tyrosine
kinase B, and protein tyrosine kinase.
Conclusion: Our pioneering works using the functionome, which was converted from microarray gene
expression profiles for integrative analysis, showed a clear distinction of functional changes between the
clear cell carcinomas and normal ovarian controls. This approach might provide a comprehensive view of
the deregulated functions of clear cell carcinomas for further investigation.
Copyright © 2016, Taiwan Association of Obstetrics & Gynecology. Published by Elsevier Taiwan LLC. This
is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/

4.0/).
Introduction

Ovarian carcinoma (OC), especially epithelial ovarian cancer, is
one of the most lethal gynecological malignancies [1]. OC is a
heterogeneous disease and consists of several molecularly and
clinicopathologically distinct subtypes [2e4]. Clear cell carcinoma
may be the most common secondary subtype, especially in Ori-
ental countries such as Taiwan [5,6]. The prognosis of clear cell
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carcinoma is relatively poor, and the recurrence and 5-year sur-
vival rates were 27% and 60%, respectively [7]. The pathogenesis of
clear cell carcinoma is unknown, but it is postulated to involve
oxidative stress, genomic alterations, inflammatory processes,
and estrogens [8,9].

Deoxyribonucleic acid (DNA) microarray gene expression is the
primary tool to investigate the pathogenesis of various kinds of
diseases, including clear cell carcinoma. The workflow of analyzing
gene expression profiles usually consists of detecting the differen-
tially expressed genes, and then mapping them to the gene
ontology (GO) terms or signaling pathways for annotating the
deregulated biological functions. However, this methodology fo-
cuses only on the statistically significant genes or pathways; the
by Elsevier Taiwan LLC. This is an open access article under the CC BY-NC-ND license
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complete information about the regulation of the functions, for
example, the functionome of clear cell carcinoma, is not provided.

Most of the microarray datasets investigating the pathogenesis
of clear cell carcinoma were derived from a relatively small sample
size. To overcome these limitations, we used a gene set based
model to investigate the pathogenesis of clear cell carcinoma with
the functionome. This model converts and quantizes the biological
function defined by a gene set with the gene expression profiles
downloaded from publicly available databases to a gene set regu-
larity (GSR) index computed by the modified differential rank
conservation (DIRAC) algorithm [10], which measured the match-
ing degree of gene expression rankings in a given gene set between
two different phenotypes, i.e., clear cell carcinomas and normal
ovarian tissue controls in this study. This model utilized the gene
set definitions from the GO term [11] and canonical pathways da-
tabases downloaded from the Molecular Signatures Database [12].
These two-gene set definitions collect relatively comprehensive
biological functions, processes, or signaling pathways, so we used
them to establish the human functionomes. The GO database
contains 1454 gene sets, defining biological functions, processes,
and cellular components. The canonical pathway database defines
1330 canonical signaling pathways, such as Kyoto Encyclopedia of
Genes and Genomes (KEGG) and Reactome pathways. The patho-
genesis of clear cell carcinoma was investigated with the functio-
nomes using statistical methodologies.
Figure 1. The gene set regularity (GSR) index was computed by converting the gene
expression rankings of the clear cell carcinoma or normal ovarian control sample
through each gene ontology (GO) term or canonical pathway gene set. Machine
learning was trained to recognize the patterns consisting of GSR indexes, and then
execute the binary (case-control) classifications. Functionome analysis was carried out
by statistical methodologies to investigate the pathogenesis of clear cell carcinoma.
Materials and methods

Microarray datasets, gene set definitions, and data processing

Gene expression microarray datasets were downloaded in the
SOFT format from the National Center for Biotechnology Informa-
tion (NCBI) Gene Expression Omnibus (GEO) database. The clear
cell carcinoma and normal ovarian tissue control datasets were
selected only when the samples originated from the ovarian tissue.
The common genes, derived by intersecting of the genes from all
datasets as well as the corresponding gene expression data, were
used in this study. Datasets were discarded if the number of the
common genes available was less than 8000 during cross-platform
integration of these datasets. Gene sets were discarded if the
number of gene elements in the gene set is less than three.
Computing GSR indexes by modified DIRAC

The algorithm for computing GSR indexes was modified from
DIRAC, and the details are displayed in Figure 1. The GSR index
measures the change of gene expression ranking between two
phenotypes in a gene set. For this purpose, the GSR indexes of both
the clear cell carcinoma and the normal control groups were
computed by comparing the sample's gene expression rankingwith
a standard template, i.e., the baseline gene set ranking template
derived from the most common gene expression ranking in a gene
set among the entire normal ovarian tissue control samples. Then
the subsequent analyses were carried out based on this same
standard with the clear cell carcinoma and normal control GSR
indexes. The baseline gene set raking template for each gene set is
established by pairwise comparison between the expression levels
of two genes for all possible combinations of gene pairs. Estab-
lishment of the baseline gene set expression-ranking template and
measurement of GSR indexes were executed in (R code) environ-
ment; the code and the test datasets are available on the GitHub
(https://github.com/carlzang/GSR-model.git).
Statistical analysis

The differences between the clear cell carcinoma and control GSR
indexes were tested using ManneWhitney U test and corrected by
multiple hypotheses using false discovery rate (BenjaminieHoch-
berg procedure). The significance level was set at p < 0.001.

Classification and prediction by machine learning

GSR index matrices computed through the GO term and ca-
nonical pathway gene sets were classified and predicted by “ker-
nlab” [13], an R package for executing supporting vector machine
(SVM) [14] with the setting of kernel ¼ “rbfdot”(Radial Basis kernel
“Gaussian”), type ¼ “C-svc” (C classification). The performance of
classification and prediction by SVM were measured by 5-fold
cross-validation. The performance was assessed with the sensi-
tivity, specificity, accuracy, and area under curve. The area under
curve was computed using the R package “pROC” [15].

Establishment of GO tree

The tree of the deregulated GO terms was constructed and
visualized by the RamiGO [16], an R package providing functions to
interact with the AmiGO 2 web server (http://amigo2.berkeleybop.
org/amigo) and retrieving GO trees.

Results

Sample information and means of the GSR indexes for clear cell
carcinoma

DNA microarray gene expression datasets of the clear cell car-
cinoma samples were downloaded from the NCBI GEO database.
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Table 1
Means and standard deviations of gene set regularity (GSR) indexes for the clear cell carcinoma (CCC) and control groups, and the performances of the binary (CCC vs. control
group) classification and prediction by supporting vector machine with the GSR indexes computed through the gene ontology (GO) terms, canonical pathways, or combination
of both (GO terms þ canonical pathways).

Gene set CCC Control SEN SPE Accuracy AUC

GO terms 0.7400 (0.1180) 0.7727 (0.1329) 0.9888 (0.0234) 0.9965 (0.0109) 0.9930 (0.0112) 0.9921
Canonical pathways 0.7437 (0.1189) 0.7768 (0.1329) 0.9520 (0.0575) 1.0000 (0.0000) 0.9837 (0.01914) 0.9831
Both 0.7418 (0.1185) 0.7747 (0.1329) 0.9775 (0.0367) 0.9962 (0.0117) 0.9906 (0.0120) 0.9957

The sensitivities, specificities, accuracies, standard deviations, area under curve (AUC) were assessed by 5-fold cross-validation. Each measurement was computed by the
cumulative results of repeating 10 times classifications and predictions.
Data presented as mean (standard deviation).
SEN ¼ sensitivity; SPE ¼ specificity.
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The microarray gene expression datasets of clear cell carcinoma
used in this studywere GSE14764, GSE16570, GSE16574, GSE20565,
GSE29450, GSE30161, GSE54807, GSE54809, GSE55512, GSE6008,
and GSE63885, including five different microarray platforms:
GPL96, GPL570, GPL7264, GPL6244, and GPL6947. The sample
numbers were 80 clear cell carcinomas and 136 normal ovarian
tissue controls. The GSR indexes ranged from 0 to 1, where 0 rep-
resents the most seriously deregulated function, whereas 1 repre-
sents the functional regulation in the clear cell carcinoma group
that was completely unchanged in comparison with the most
common gene expression ranking in the normal control popula-
tion. The means of total GSR indexes computed through GO terms
and canonical pathways for clear cell carcinomas were smaller than
Table 2
The top 40 most deregulated gene ontology terms of clear cell carcinoma

Deregulated GO terms

1 Inositol or phosphatidylinositol phospha
2 Cofactor transport
3 Rho guanyl nucleotide exchange factor a
4 Small conjugating protein binding
5 Ubiquitin binding
6 Regulation of viral reproduction
7 Vitamin transport
8 Steroid hormone receptor binding
9 Oxidoreductase activity acting on the CH
10 Histone deacetylase binding
11 Protein tyrosine kinase activity
12 Transmembrane receptor protein tyrosin
13 Carbohydrate biosynthetic process
14 Insoluble fraction
15 SH3 SH2 adaptor activity
16 Regulation of muscle contraction
17 Ras guanyl nucleotide exchange factor a
18 Negative regulation of cellular compone
19 Molecular adaptor activity
20 Sarcomere
21 Transmembrane receptor protein kinase
22 Transferase activity transferring sulfur c
23 Aromatic compound metabolic process
24 Embryonic development
25 Neuropeptide signaling pathway
26 Humoral immune response
27 Isomerase activity
28 Cytosolic part
29 Nucleosome assembly
30 Negative regulation of cell proliferation
31 Oxygen binding
32 Neutral amino acid transmembrane tran
33 Positive regulation of cell adhesion
34 Microtubule
35 Calcium channel activity
36 Inward rectifier potassium channel activ
37 Transmembrane receptor protein tyrosin
38 Auxiliary transport protein activity
39 Oxidoreductase activity acting on sulfur
40 Myofibril

* ManneWhitney U test and corrected by multiple hypotheses using fals
those of normal controls as displayed in Table 1, and the difference
was statistically significant (p < 0.001). This indicated that clear cell
carcinomas exhibited more deregulated functions defined by GO
terms and canonical pathways than normal controls did.

Functional regulation patterns classified and predicted by machine
learning

Machine learning can learn from data by building a model and
recognizing patterns to make predictions. We trained SVM, a
widely usedmachine-learning algorithm, to classify and predict the
clear cell carcinoma and the normal control datasets with their
functional regulation patterns consisting of the GSR indexes. The
ranked by the p values.
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Table 3
Top 40 deregulated canonical pathways of clear cell carcinoma ranked by p value.

Deregulated canonical pathways p*

1 Reactome downregulation of ErbB2eErbB3 signaling 3.20�17

2 BioCarta MTA3 pathway 2.52�15

3 Reactome negative regulation of the PI3KeAKT network 3.72�15

4 PID integrin 5 pathway 2.30�14

5 PID RET pathway 1.33�13

6 Reactome phospholipase C mediated cascade 1.33�13

7 PID NF-kappaB canonical pathway 1.49�13

8 Reactome PERK regulated gene expression 5.42�13

9 Reactome FGFR ligand binding and activation 8.14�13

10 BioCarta myosin pathway 1.33�12

11 KEGG inositol phosphate metabolism 2.01�12

12 Reactome ethanol oxidation 2.01�12

13 Reactome PI 3K cascade 2.55�12

14 Reactome regulation of RHEB GTPase activity by AMPK 2.80�12

15 Reactome beta defensins 3.02�12

16 PID RAC1 REG pathway 3.05�12

17 Reactome GPVI mediated activation cascade 4.69�12

18 Reactome insulin receptor signaling cascade 4.69�12

19 Reactome PI3K cascade 4.69�12

20 KEGG gap junction 4.89�12

21 KEGG phosphatidylinositol signaling system 4.89�12

22 KEGG tryptophan metabolism 4.89�12

23 Reactome activation of genes by ATF4 6.63�12

24 Reactome mRNA decay by 3 to 5 exoribonuclease 7.08�12

25 BioCarta PAR1 pathway 8.15�12

26 Reactome common pathway 1.07�11

27 Reactome signaling by Robo receptor 1.53�11

28 Reactome phase 1 functionalization of compounds 1.65�11

29 Reactome CD28 dependent PI3K Akt signaling 1.71�11

30 KEGG pathogenic Escherichia coli infection 2.41�11

31 Reactome G0 and early G1 3.68�11

32 Reactome PI3K events in ERBB2 signaling 3.68�11

33 Reactome downstream signaling of activated FGFR 3.91�11

34 PID integrin 2 pathway 4.45�11

35 KEGG butanoate metabolism 6.39�11

36 KEGG steroid hormone biosynthesis 6.39�11

37 BioCarta RAC1 pathway 6.59�11

38 PID A6B1 A6B4 integrin pathway 6.68�11

39 Reactome signaling by NODAL 7.40�11

40 Reactome signaling by FGFR 8.19�11

* ManneWhitney U test and corrected by multiple hypotheses using false discovery
rate.
AMPK ¼ adenosine monophosphate-activated protein kinase; FGFR ¼ fibroblast
growth factor receptor; KEGG ¼ Kyoto Encyclopedia of Genes and Genomes;
PI3K ¼ phosphatidylinositide 3-kinase.
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results are shown in Table 1. The accuracy rates of binary classifi-
cation (clear cell carcinomas vs. controls) were 99.30%, 98.37%, and
99.06% when computing through the GO terms, canonical path-
ways, or combination of both, respectively. SVM is a high-
performance machine-learning algorithm, and this result
revealed that the GSR indexes could provide sufficient and
adequate information for SVM to perform accurate classification
and prediction.

Deregulated GO terms and canonical pathways of clear cell
carcinoma

The GSR index is derived from the extent of ranking change
within a gene set defined by GO terms or canonical pathways be-
tween clear cell carcinomas and normal controls; thus, the GSR
index represented the regulation of function defined by the gene
set and could be used to investigate the pathogenesis by comparing
the functional regulations between clear cell carcinomas and
normal controls. Table 2 displays the top 40 most deregulated GO
terms ranked by p values. The first deregulated GO term was
“inositol or phosphatidylinositol phosphatase activity,” followed by
“cofactor transport” and “Rho guanyl nucleotide exchange factor
activity.” The deregulated GO terms shown in Table 2 can be
summarized into the following categories: binding, transport,
channel activity, cell adhesion, immune response, chromosome
assembly, and deregulated signaling molecules, including guanyl
nucleotide exchange factor, phosphatidylinositide 3-kinases
(PI3Ks), as well as protein tyrosine kinase. Table 3 displays the
top 40 deregulated canonical pathways ranked by p values. The first
deregulated canonical pathway was “reactome downregulation of
ErbB2, ErbB3 (receptor tyrosine kinase erbB-2, receptor tyrosine-
protein kinase erbB-3) signaling,” followed by “BioCarta MTA3
(metastasis associated 1 family, member 3) pathway” and “reac-
tome negative regulation of the PI3K/activating kinase (AKT)
network.” It is interesting to find that the PI3KeAKT pathway ap-
pears repeatedly in Table 3.

Tree of deregulated GO terms for clear cell carcinoma

Because the GO terms are structured ontologies established
according to the childeparent relationship, the deregulated GO
gene set could be organized and displayed according to their GO
hierarchies. Thus, the redundant GO terms could be identified and
used to simplify the interpretation of results. The top 100 deregu-
lated GO terms were utilized to establish the GO tree. The GO tree
for clear cell carcinomas is displayed in detail in Figure 2, which
shows the screenshot of the full GO tree and important deregulated
GO terms. After being mapped to the GO tree, the related GO terms
clustered together and revealed their hierarchies. Each cluster
could be summarized by the common parental GO term. The
deregulated GO terms in the figure could be divided into the
following categories: metabolism, chromatin assembly, binding,
binding, transport, cell cycle, cell adhesion, oxidoreductase activity,
protein tyrosine kinase activity, and channel activity. The GO tree
provided an intuitive way to view the structure of deregulated
functions in the pathogenesis of clear cell carcinomas.

Discussion

Instead of detecting the differentially expressed genes, the study
converted the microarray gene expression profiles of clear cell
carcinomas to quantize biological functions through the gene sets
defined by GO terms or canonical pathways, and then the patho-
genesis of clear cell carcinoma was investigated by comparing the
regularities of those functions between clear cell carcinomas and
normal controls. In contrast to the “genome” analyzed with gene
expression microarray, this model investigated “functionome”with
the GSR indexes. By converting tens of thousands of gene expres-
sion profiles to approximately 1000 GSR indexes, this approach
would diminish the data noise and simplify the subsequent ana-
lyses. Moreover, the GSR indexes are ordinal data derived from
converting gene expression profiles to rankings; the ordinal data
will encounter less bias than the gene expression levels during the
integration of cross-platform profiles among different microarray
gene expression datasets. In fact, with advanced technology and
powerful computers, more detailed and comprehensive functional
categories facilitated in KEGG and subsystem-based approach to
high-throughput genome annotation (SEED) have been used for
comparative genomics and as metagenomics tools to highlight
functional features represented by KEGG automatic annotation
server (KAAS) [17e19], MG-RAST (rapid annotations using sub-
systems technology server for metagenomic project) [20], and
MEGAN (http://www-ab.informatik.uni-tuebingen.de/software/
megan5/).

The functionome of clear cell carcinomas was composed of 1454
GO term-defined or 1330 canonical pathway-defined functions.
Our result revealed that the functionomes could be recognized and
accurately classified by the machine learning. This result indicated
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Figure 2. Screenshot of the full clear cell carcinoma gene ontology (GO) tree in the middle. The important GO terms (green boxes) in each cluster are magnified to display the
details, and each cluster is labeled by their common parental GO terms (orange boxes).
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the practicability of molecular classification with the functionome.
Among the deregulated GO terms shown in Table 2, the most
deregulated GO term, “inositol or phosphatidylinositol phospha-
tase activity,” revealed that PI3K played a key step in the patho-
genesis of clear cell carcinoma. Matsuzaki et al [21] had published
an article entitled “Potential targets for ovarian clear cell carci-
noma” and also showed the important role of PI3KeAKTemTOR
(mammalian target of rapamycin) signaling pathway of ovarian
clear cell carcinoma on the platinum resistance. In addition, PI3K/
AKT pathway activation may be also related to ovarian clear cell
carcinoma development [22], and account for 40% of ovarian can-
cers [23]. The signals from the receptor tyrosine kinase (RTK)
transduced to the PI3KeAKT pathway and aberrantly regulated cell
proliferation, inhibition of apoptosis, and cell adhesion. These ab-
errations led to abnormal chromatin assembly and eventually the
carcinogenesis of clear cell carcinoma. The deregulated canonical
pathways shown in Table 3 provided the additional evidence sup-
porting these findings. The PI3KeAKT pathway was the third most
significantly deregulated gene set in the canonical pathways
database. All supported the validity of our current approach.

ErbB2 was the most significantly deregulated canonical path-
ways in Table 3; it is expressed in OCs ranging from 20% to 30% [24]
and is a member of the epidermal growth factor receptor (EGFR)
family. Sereni et al [25] found that the expression of EGFR Y1068
and human epidermal growth factor receptor(HER)/ErbB2 Y1248
was significantly increased and/or activated in clear cell carcinomas
of the ovary. By contrast, this significant increase in the expression/
activation level of EGFR Y1068 and HER/ErbN2 Y1248 was only
found in ovarian clear cell carcinoma, whereas all other histo-
subtypes of ovarian cancers, such as high-grade serous carcinoma,
endometrioid carcinoma, and mixed types, showed the significant
downregulation of both EGFR Y1068 and HER/ErbB2 Y1248 [25]. In
fact, ErbB2 can activate the PI3KeAKT pathway; therefore, it is
reasonable to find the results of upregulated expression of both
EGFR Y1068 and HER/ErbB2 Y1248. This hypothesis was supported
by the current study, because we found the 31st deregulated
pathway “Reactome PI3K events in ErbB2 signaling,” revealing the
interaction between the two pathways.
The second important deregulated GO term was “cofactor
transport,” and the fourth was “small conjugating protein binding”
deregulated GO terms, suggesting the importance of cofactors for
the carcinogenesis of clear cell carcinoma, such as the third “Rho
guanyl nucleotide exchange factors” and the 17th “ras guanyl
nucleotide exchange factors”dtwo proteins regulating the
switches of ras activation or deactivation. Recently, Takai et al [26]
found the crosstalk between PI3K and ras pathways in human
ovarian clear cell carcinoma, which was mediated by protein
phosphatase 2A, suggesting that aberration of the ras system was
also important in the development of clear cell carcinoma.

In conclusion, with the microarray gene expression datasets
downloaded from publicly available databases, the functionome
analysis provided a more comprehensive view of the pathogenesis
of clear cell carcinoma. Clear cell carcinomas were involved in the
aberrations of oxidoreductase activity, cell adhesion, channel ac-
tivity, transport and metabolism, and the aberrant signaling cas-
cades including RTK, ras pathway, PI3KeAKT, and ErbB pathways.
This study might be the first integrative analysis investigating the
pathogenesis of ovarian clear cell carcinoma; the results not only
showed the aberrant pathways being compatible with current
knowledge, but also provided a more comprehensive picture of the
deregulated functions for this disease.
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