Interfacial tension of bilayer lipid membrane formed from phosphatidylethanolamine

Aneta D. Petelska, Zbigniew A. Figaszewski*,1

Institute of Chemistry, University of Białystok, Al. J. Piłsudskiego 11/4, Białystok 15-443, Poland

Received 3 May 2002; received in revised form 12 August 2002; accepted 4 September 2002

Abstract

The dependence of the interfacial tension of a lipid membrane on the pH of the aqueous solution has been studied. Interfacial tension measurements of phosphatidylethanolamine (PE) were carried out. A theoretical equation is derived to describe this dependence in the whole pH range. A maximum corresponding to the isoelectric point appears both in the theoretical equation and in the experimental data.

© 2002 Elsevier Science B.V. All rights reserved.

Keywords: Interfacial tension; Bilayer lipid membrane; Phosphatidylethanolamine

1. Introduction

The cell is the smallest structural element of all living organisms. Its functional state is characterized by a constant inner intercellular medium composition and by continuous exchange of substances with this medium and the environment. It is possible to meet these requirements owing to existence and function of a plasmatic membrane surrounding the cell. The plasmatic membrane is an integral part of each living cell [1–3].

A cell membrane is a very complex system; it contains various elements influencing its interfacial tension. Therefore, it is easier to study the effect of various factors; for example, pH of the medium, using artificial membranes called model membranes. The properties of the artificial membrane should be well known and similar to the properties of those occurring in living cells. Lipid monolayers, lipid bilayers, collodion, cellophane, milipore, ion exchanger, or other membranes are used as artificial membranes [2], but the interfacial tension of a cell membrane is best measured by means of a bilayer lipid model membrane.

Nowadays, it is doubtless that function and properties of a membrane are closely related to its structure. It has been demonstrated by suitable experimental techniques that all biological membranes have the same morphological structure: a phospholipid bilayer in which specialized proteins are incorporated and are connected with carbohydrates. An important property of a cell membrane is its interfacial tension [4,5]. Its importance is great as it endows the membrane with stiffness and stability. The interfacial tension of a bilayer lipid membrane depends on many factors like pH of the medium, the presence of cholesterol, of ionophores, or of pore-forming substances [6–8].

This paper is a continuation of studies of the effect of pH on interfacial tension of lipid bilayers. In this work, membranes have been formed from phosphatidylethanolamine (PE). The PE molecule is involved in acid–base equilibria with the medium.
The equilibria can be written in the form:

\[
\text{GO} -\overset{P-\text{OH}}{\longrightarrow} \overset{(+)}{\text{CH}_2\text{CH}_2\text{NH}_3} \quad \leftrightarrow \quad \text{GO} -\overset{P-\text{O}^\ominus}{\longrightarrow} \overset{(+)}{\text{CH}_2\text{CH}_2\text{NH}_3} + \text{H}^+ \quad (1.1)
\]

\[
\text{GO} -\overset{P-\text{O}^\ominus}{\longrightarrow} \overset{(+)}{\text{CH}_2\text{CH}_2\text{NH}_3} \quad + \quad \text{HOH} \quad \leftrightarrow \quad \text{GO} -\overset{P-\text{O}^\ominus}{\longrightarrow} \overset{(+)}{\text{CH}_2\text{CH}_2\text{NH}_3} + \text{H}^+ \quad (1.2)
\]

In the above equilibria, G is doubly acylated by the glycerol group [9,10].

2. Theory

2.1. Description I

The dependence of interfacial tension of a lipid membrane on pH of electrolyte solution can be described in terms of acid–base equilibria. The phospholipid molecule is in acid–base equilibria with the medium.

They can be written in the form:

\[
\text{AH} \leftrightarrow \text{A}^- + \text{H}^+ \quad (1.3)
\]

\[
\text{B}^+ + \text{OH}^- \leftrightarrow \text{BOH} \quad (1.4)
\]

\[
\text{HOH} \leftrightarrow \text{H}^+ + \text{OH}^- \quad (1.5)
\]

Eqs. (1.4) and (1.5) yield

\[
\text{B}^+ + \text{HOH} \leftrightarrow \text{BOH} + \text{H}^+ \quad (1.6)
\]

The dissociation constants of lipid membrane are presented as an equation,

\[
K_a = \frac{a_{\text{A}^-}a_{\text{H}^+}}{a_{\text{AH}}} \quad (1.7)
\]

\[
K_b = \frac{a_{\text{B}^+}a_{\text{OH}^-}}{a_{\text{BOH}}} \quad (1.8)
\]

The H⁺ and OH⁻ ions were assumed to be adsorbed at the phospholipid surface.

In such a case, the adsorption equilibria are presented by the following equations:

\[
\text{A}^- + \text{H}^+ \leftrightarrow \text{AH} \quad (1.9)
\]

\[
\text{B}^+ + \text{OH}^- \leftrightarrow \text{BOH} \quad (1.10)
\]

The lipid is present in the surface only. For this reason, its amount related to the membrane area yields the surface concentration of the lipid. This concentration and hydrogen and hydroxyl ion molarities in solution yield acid–base constants according to the following equations:

\[
K_A = \frac{a_{\text{AH}}}{a_{\text{A}^-}a_{\text{H}^+}} \quad (1.11)
\]

\[
K_B = \frac{a_{\text{BOH}}}{a_{\text{B}^+}a_{\text{OH}^-}} \quad (1.12)
\]

Concentrations of the dissociated and associated lipid forms in the above equations appear at the same (first) power.

The Gibbs equation can be written as:

\[
d\gamma = -\sum \Gamma_i d\mu_i \quad (1.13)
\]

Denoting the surface concentration of the lipid by \(s\) and considering an acid–base equilibrium form of Eq. (1.3) or (1.6), the following equations can be written:

\[
a_{\text{AH}} + a_{\text{A}^-} = s \quad (1.14)
\]

\[
a_{\text{BOH}} + a_{\text{B}^+} = s \quad (1.15)
\]

Eqs. (1.14) and (1.15) can be considered to be independent because they are interrelated by water self-ionization, which was not explicitly considered in deriving the equation system.

The dependence on pH of electrolyte solution of interfacial tension of lipid membrane formed from PE could be derived using the reasoning presented in a previous paper [7].

The equation obtained there has the form:

\[
\gamma = -sRT \ln \left[\frac{K_a}{a_{\text{H}^+}} + 1 \right] \left[\frac{a_{\text{H}^+}}{K_b} + 1 \right] + \text{constant} \quad (1.16)
\]
Eq. (1.16) shows that interfacial tension maximum is imposed by the relationship:

\[a_{\text{H}^+} = \sqrt{K_a K_b} \]

(1.17)

Substitution of Eq. (1.17) to (1.16) yields the dependence of interfacial tension of lipid membrane on pH of electrolyte solution.

\[\gamma = \gamma_{\text{max}} + 2sRT\ln \left(\frac{K_a}{K_b} + 1 \right) - sRT\ln \left(\frac{(K_a + 1)(a_{\text{H}^+} + 1)}{(K_b + 1)(a_{\text{OH}^-} + 1)} \right) \]

(1.18)

where: \(K_a \) and \(K_b \)—acid and base equilibrium constant, respectively; \(s \) [mol/m²]—surface concentration of PE; \(R \) [J/(mol K)]—gas constant; \(T \) [K]—environment temperature; \(\gamma_{\text{max}} \) [mN/m]—maximum interfacial tension value of lipid membrane.

2.2. Description II

In Section 2.1, the surface excess of the \(\text{H}^+ \) and \(\text{OH}^- \) ions has been assumed to be equal to their surface concentration. Although such an assumption has been frequent in adsorption phenomena analysis [11,12], it is correct only in the case of strong adsorption and low adsorbed ion concentration. In the case studied here, the surface excess definition used in derivation of Gibbs equation [13] should be strictly respected.

Equations describing surface excess values of \(\text{H}^+ \) and \(\text{OH}^- \) ions are presented below:

\[\Gamma_{\text{H}^+} = a_{\text{BOH}} - V_{\text{H}^+} a_{\text{AH}^+} - V_{\text{OH}^-} a_{\text{BOH}^-} \]

(2.1)

\[\Gamma_{\text{OH}^-} = a_{\text{AH}^-} - V_{\text{H}^+} a_{\text{AH}^+} - V_{\text{OH}^-} a_{\text{BOH}^-} \]

(2.2)

where: \(V_{\text{H}^+} \) [m³]—volume of the \(\text{H}^+ \) ions in the adsorption layer; \(V_{\text{OH}^-} \) [m³]—volume of the \(\text{OH}^- \) ions in the adsorption layer \(\text{OH}^- \).

Substitution of Eqs. (2.1) and (2.2) to the Gibbs equation yielded:

\[d\gamma = -sRT a_{\text{BOH}} \frac{\text{d}a_{\text{OH}^-}}{a_{\text{OH}^-}} + sRT V_{\text{H}^+} a_{\text{AH}^+} a_{\text{OH}^-} \]

\[+ sRT V_{\text{OH}^-} a_{\text{BOH}^-} \frac{\text{d}a_{\text{H}^+}}{a_{\text{H}^+}} \]

\[+ sRT V_{\text{OH}^-} a_{\text{AH}^+} \frac{\text{d}a_{\text{OH}^-}}{a_{\text{OH}^-}} \]

(2.3)

Thereafter, (Eqs. (1.11) and (1.12) and (1.14) and (1.15) from Section 2.1 were used to determine \(a_{\text{AH}^-} \) and \(a_{\text{BOH}^-} \):

\[a_{\text{AH}^-} = \frac{K_a s a_{\text{H}^+}}{1 + K_a a_{\text{H}^+}} \]

(2.4)

\[a_{\text{BOH}^-} = \frac{K_b s a_{\text{OH}^-}}{1 + K_b a_{\text{OH}^-}} \]

(2.5)

Substitution of Eqs. (2.4) and (2.5) to Eq. (2.3), followed by elimination of \(a_{\text{AH}^+} \) and \(a_{\text{BOH}^-} \), resulted in:

\[d\gamma = -sRT \left[\frac{K_b s a_{\text{OH}^-} a_{\text{H}^+}}{1 + K_b a_{\text{OH}^-}} + sRT V_{\text{H}^+} \frac{K_a a_{\text{H}^+} s a_{\text{OH}^-}}{1 + K_a a_{\text{H}^+}} \right. \]

\[+ sRT V_{\text{OH}^-} K_b a_{\text{H}^+} a_{\text{OH}^-} - sRT \frac{K_a d a_{\text{H}^+}}{1 + K_a a_{\text{H}^+}} \]

\[- \left. sRT \left(\frac{K_a s a_{\text{H}^+} a_{\text{OH}^-}}{1 + K_a a_{\text{H}^+}} \right) \right] \]

(2.6)

Integration of Eq. (2.6) for the conditions \(\gamma = \gamma_{\text{max}}, a_{\text{H}^+} = a_{\text{H}^+\text{max}} \) and \(a_{\text{OH}^-} = a_{\text{OH}^-\text{max}} \) resulted in the expression:

\[\gamma = \gamma_{\text{max}} = \frac{sRT}{sRT V_{\text{H}^+} K_a a_{\text{H}^+\text{max}}} - \frac{sRT V_{\text{H}^+} a_{\text{OH}^-\text{max}}}{a_{\text{H}^+\text{max}}} \]

\[+ sRT V_{\text{OH}^-} a_{\text{OH}^-\text{max}} \]

(2.7)

2.3. Description III

The phospholipid layer observed from the aqueous solution side has uniformly distributed \(\text{PO}^{(-)} \) and \(\text{N}^{(+)} \) \(\text{H}3 \) groups because it is built of the molecules each having one \(\text{PO}^{(-)} \) group and one \(\text{N}^{(+)} \text{H}3 \) group. Therefore, two descriptions of the PE surface can be adopted. In Description I, the membrane surface is continuous with uniformly distributed functional groups being the active centres of adsorption of the \(\text{H}^+ \) and \(\text{OH}^- \) ions. In Description II, the PE surface is composed of nonbonded molecules and of the molecules with bonded \(\text{H}^+ \) and \(\text{OH}^- \) ions. A model is presented in Fig. 1.

Uniformly distributed active centres at which the \(\text{H}^+ \) and \(\text{OH}^- \) ions can be adsorbed are present at the aqueous solution side.

They are schematically described with Eqs. (3.1) and (3.2):

\[\text{PO}^{(-)} + \text{H}^{(+)\text{A}^-} \Leftrightarrow \text{PO}^{(-)} - \text{H}^{(+)\text{AH}} \]

(3.1)

\[\text{N}^{(+)\text{H}3} + \text{OH}^{(-)\text{B}^-} \Leftrightarrow -\text{N}^{(+)\text{H}3} - \text{OH}^{(-)\text{BOH}} \]

(3.2)
Thus, four groups, namely, A−, AH, B+, and BOH are present at the layer surface.

The dependence of interfacial tension of lipid membranes on the pH solution can be described in terms of acid–base equilibrium. This dependence is presented in a previous paper\[8\].

\[
\begin{align*}
\gamma &= \gamma^0_A \left(\frac{1}{1 + K_A a_{H^+}} \right) + \gamma^0_{AH} \left(\frac{K_A a_{H^+}}{1 + K_A a_{H^+}} \right) \\
&+ \gamma^0_B \left(\frac{1}{1 + K_B a_{OH^-}} \right) + \gamma^0_{BOH} \left(\frac{K_B a_{OH^-}}{1 + K_B a_{OH^-}} \right) \quad (3.3)
\end{align*}
\]

where: \(\gamma \) [N/m]—interfacial tension of the lipid membrane; \(\gamma^0_A, \gamma^0_{AH}, \gamma^0_B, \gamma^0_{BOH} \) [N/m]—specific interfacial tension of the membrane component, respectively.

Eq. (3.3) presents the dependence of the interfacial tension of the lipid membrane on pH of electrolyte solution.

2.4. Description IV

The adsorption of the H+ and OH− ions at the lipid layer surface formed from PC or PS can result as presented in a previous paper [8].

The adsorption of the H+ and OH− ions at the PE layer surface can result in the presence of the forms:

\[
\begin{align*}
\text{(EHOH)}
\end{align*}
\]

Thus, four groups, namely, EHOH, EH+, EOH−, and E are present at the layer surface.

Eq. (3.1) presents the dependence of the interfacial tension of the lipid membrane on pH of electrolyte solution.

\[
\begin{align*}
\gamma &= \gamma^0_{LHOH} \left(\frac{K_A a_{H^+}}{1 + K_A a_{H^+}} \right) \left(\frac{K_B a_{OH^-}}{1 + K_B a_{OH^-}} \right) \\
&+ \gamma^0_{LH} \left(\frac{1}{1 + K_A a_{H^+}} \right) \left(\frac{1}{1 + K_B a_{OH^-}} \right) \\
&+ \gamma^0_{LOH} \left(\frac{1}{1 + K_A a_{H^+}} \right) \left(\frac{K_B a_{OH^-}}{1 + K_B a_{OH^-}} \right) \\
&+ \gamma^0_L \left(\frac{1}{1 + K_A a_{H^+}} \right) \left(\frac{1}{1 + K_B a_{OH^-}} \right) \quad (4.1)
\end{align*}
\]

where: \(\gamma \) [N/m]—interfacial tension of the lipid membrane; \(\gamma^0_{LHOH}, \gamma^0_{LH}, \gamma^0_{LOH}, \gamma^0_L \) [N/m]—specific interfacial tension of the membrane component, respectively.

3. Experimental

3.1. Methods

The interfacial tension, \(\gamma\), of the lipid bilayer was determined by measuring the curvature radius, \(R\), of the convex surface formed by applying a pressure difference, \(\Delta p\), on its sides. The method used was based on Young’s and Laplace’s equation [14].

\[2\gamma = R\Delta p.\]
3.2. Measurements

The apparatus and the measurement method were described in previous papers [6,7].

The lipid membranes were formed by the Mueller–Rudin method [15]. They were formed in a Teflon diaphragm of 1.5 mm outer diameter containing an orifice along its axis. An electrolyte solution was present on both sides of the orifice. The convexity of the spherical cap was measured by means of a microscope with an objective equipped with a scale with 0.1 mm interval scale marks. Therefore, the instrument readings of the lipid spherical cap were made with 0.05 mm precision. The convexity of the lipid membrane of the spherical cap, together with the Teflon element diameter corresponding to the lipid spherical cap diameter, yielded the radius of curvature. The measurement of the spherical cap was difficult, as the spherical cap is hardly visible. While using yellow light, its visibility gets better.

The interfacial tension was measured on freshly created lipid bilayer membrane 12–15 times for each pH electrolyte solution. For each membrane, about 10 instrument readings of the lipid spherical cap diameter, formed by pressure difference applied on both sides, were made. These measurements were made in the whole range, from the very low values of the lipid spherical cap diameter to those almost equal to the Teflon element radius. From all of instrument readings (100–150), the arithmetic mean and standard deviation were enumerated. Measurements with preparation of the electrolyte solution were made two to three times to test the repeatability of these determinations.

The solution used to form the model membrane contained 20 mg/ml of PE in solution (n-decan, chloroform).

In the measurements, the bilayer lipid membranes were also used in the form of liposomes. These could be formed owing to the fact that most phospholipids undergo spontaneously in water or in aqueous electrolyte solutions if shaken or subjected to ultrasounds. Bubbles of spherical or cylin-
solution is presented by Eq. (1.18). In this equation, the surface concentration and surface excess are identified. However, the theoretical interfacial tensions obtained from Eq. (1.18) coincide with the experimental ones of the PE membrane in proximity of its isoelectric point.

Variation in pH solution provokes changes in electric charge of the membrane by modifying acid–base equilibria of functional groups present in the membrane. In the isoelectric point, the number of positive and negative groups is equal and the net electric charge is zero. It is worth checking if the interfacial tension maximum of the membrane coincides with its isoelectric point.

Acid–base equilibria constants must be determined to calculate the isoelectric point. However, their determination is hampered by poor stability of PE in water. For this reason, liposomes were used like in a previous work [7]. In this way, uniform distribution of acidic and basic groups of PE molecules in the bulk solution was assured in spite of poor

![Graph](image1)

Fig. 4. The participation of A and B groups, calculated for Description III, in dissociated and associated forms in the interfacial tension of the bilayer formed from PE, as a function of pH of electrolyte solution.

![Graph](image2)

Fig. 5. The dependence of the interfacial tension of a lipid membrane formed from PE on the pH of the electrolyte solution calculated for Description IV.
References

