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Reactive oxygen species (ROS) are involved in biochemical processes such as redox signaling, aging, carcinogenesis
and neurodegeneration. Although biomembranes are targets for reactive oxygen species attack, little is known
about the role of their specific interactions. Here, molecular dynamics simulations were employed to determine
the distribution, mobility and residence times of various reactive oxygen species at the membrane–water in-
terface. Simulations showed that molecular oxygen (O2) accumulated at the membrane interior. The applicabil-
ity of this result to singlet oxygen (1O2) was discussed. Conversely, superoxide (O2

−) radicals and hydrogen
peroxide (H2O2) remained at the aqueous phase. Both hydroxyl (HO) and hydroperoxyl (HO2) radicals were
able to penetrate deep into the lipid headgroups region. Due to membrane fluidity and disorder, these radicals
had access to potential peroxidation sites along the lipid hydrocarbon chains, without having to overcome
the permeation free energy barrier. Strikingly, HO2 radicals were an order of magnitude more concentrated
in the headgroups region than inwater, implying a large shift in the acid–base equilibriumbetweenHO2 and O2

−.
In comparison with O2, both HO and HO2 radicals had lower lateral mobility at the membrane. Simulations re-
vealed that there were intermittent interruptions in the H-bond network around the HO radicals at the
headgroups region. This effect is expected to be unfavorable for the H-transfer mechanism involved in HO diffu-
sion. The implications for lipid peroxidation and for the effectiveness of membrane antioxidants were evaluated.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Reactive oxygen species (ROS) are of primary importance in a large
number of contemporary research topics in Chemistry and Biology,
as for instance photocatalysis [1], environmental Chemistry [2] and
nanotoxicity [3]. In the organism, ROS are naturally present and partici-
pate in redox signaling pathways that are essential for the physiological
control of cell function [4]. However, they are also involved in deleterious
processes such as aging, carcinogenesis and neurodegenerative diseases
[4–6].

Highly reactive superoxide (O2
−) and hydroperoxyl (HO2) radicals

are generated by the mitochondrial electron transport chain. To cope
with their toxicity, the organism produces superoxide dismutases that
convert O2

− into the less reactive hydrogen peroxide (H2O2). However,
in the presence of tracemetals, H2O2may generate highly toxic hydroxyl
radicals (HO) via Fenton-type reactions [7,8]. In addition, artificially
generated singlet oxygen (1O2) plays a central role in the anti-cancer
treatment known as photodynamic therapy [9].

Biomembranes are very susceptible to the attack by biologically or
photodynamically generated ROS [10–12]. The presence of oxidized
lipids is able to change membrane properties, especially with regards
ights reserved.
to permeability [13–16]. From amechanistic point of view, the distribu-
tion of different ROS at the biomembrane–water interface is crucial for
the understanding of their reactions in the organism, including lipid
peroxidation and radical scavenging by membrane antioxidants. Up to
now, experiments have been able to provide a qualitative panorama of
these issues using spin traps and fluorescent probes as reporters for
ROSpenetration into lipid bilayers [17–19]. Results are usually associated
with large uncertainties becausemolecular probes aremobile and cannot
be precisely located in the membrane, as recently demonstrated by
computer simulations [20].

Molecular modeling studies have offered the first insights about the
behavior of ROS close to interfaces. They have shown that certainwater-
soluble oxy-radicals accumulate at the air–water interface of droplets
[21–24]. In addition, H2O2 was found to accumulate at the surface of
proteins [25,26]. Recently, the reactions between ROS and bacterial
cell walls have been considered theoretically [27]. Little is still known,
however, about the interactions between ROS and phospholipid mem-
branes [28]. Experiments show that the accumulation of molecular
oxygen (O2) and nitric oxide (NO) inside a phospholipid bilayer leads
to the magnification of their reaction rates, the so-called “membrane
lens effect” [29]. Analogously, both experiments [30] and simulations
[31] indicate that the 1O2 generation efficiency of photosensitizers in-
creases proportionally to their degree of accessibility to the oxygen-
richmembrane interior. There are several studies about the partitioning
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behavior of simplemolecules at phospholipid bilayers [32–36]. However,
no systematic study is available for a wider variety of biologically and
therapeutically relevant ROS.

In the work presented here, molecular dynamics simulations were
employed to calculate the distribution, mobility and residence times of
various ROS at the phospholipid–water interface. Purely classical
models allow for the study of the partition behavior alone, without
chemical reactions. The following species were investigated: O2

−, HO2,
H2O2, HO and O2 (with results extended to 1O2). Results showed that
these ROS had significantly different tendencies for penetration and
accumulation at the surface of phospholipid membranes. The implica-
tions for lipid peroxidation and for the effectiveness of membrane anti-
oxidants were evaluated based on a molecular view of the interactions
between ROS and phospholipids.
2. Simulation methods

2.1. Simulation setup

Molecular dynamics (MD) simulations [37,38] were performed using
a single precision version of the GROMACS 4.5.1 package [39,40]. To inte-
grate Newton's equations ofmotion, a leapfrog Verlet scheme [37,38]was
used with a time step of 2 fs. Periodic boundary conditions were consid-
ered in all Cartesiandirections. In the following, a summarizeddescription
of the simulation protocols is provided. Further technical details can be
found as supplementary data.
2.2. Derivation of interaction parameters

Fully hydrated lipid bilayers of 2-oleoyl-1-palmitoyl-sn-glycero-3-
phosphocholine (POPC) were represented using the parameters of
Poger and Mark [41] and the SPC water model [42]. These parameters
were demonstrated to lead to membrane structural properties that are
consistent with experiments. Accordingly, molecular interactions were
described in the framework of the GROMOS 53A6 force field [43]. This
force field is suitable for describing partitioning phenomena because
molecular interactions are empirically adjusted to reproduce solvation
free energy data. Parameters for bonds, angles and torsions were
adapted from the literature for O2

−, HO2, H2O2, HO and O2 [44–47]. van
der Waals interactions and partial charges were adjusted to simulta-
neously reproduce pure liquid properties of H2O2 [48] and the experi-
mental hydration free energies of various ROS [49]. The van der Waals
interactions of O2 were adjusted to simultaneously reproduce its solva-
tion free energy inwater and cyclohexane [50,51]. As noted in a previous
work [52], the inversion of one electronic spin in the transition from
ground-state O2 to its singlet-type excited state is not explicitly consid-
ered in purely classical molecular mechanical models. For this reason,
both species were here described with the same set of parameters and
were not distinguished from each other. This assumption is motivated
by experimental evidence that indicates that these species have similar
partition coefficients between water and hydrophobic media [53–56].

The thermodynamic integration (TI) method [37,38,57] was
employed for the calculation of solvation free energies. In this method,
the solute is removed from the system by scaling down to zero all
solute–solvent interactions in a stepwise manner as function of a
coupling parameter λ. The free energy variation is obtained by integra-
tion of the average value of the derivative of the total Hamiltonian with
respect to λ. Single ROS molecules were solvated in cubic water boxes
with ca. 3 nm length. Coulomb and Lennard-Jones interactions were
decoupled sequentially using 21 and 51 evenly spaced steps, respectively.
Each step involved a 600 ps pre-equilibration phase, followed by 5 ns of
data acquisition in the isothermal-isobaric (NPT) ensemble at 298 K and
1 bar. The interaction parameters obtained are listed in Table S1 and their
derivation is fully documented in Figs. S1, S2 and S3.
2.3. Permeation free energy profiles

With the partial charges derived from TI, the free energy profiles for
ROS translocation across POPC bilayers were calculated using the
umbrella sampling (US) method [58]. Starting structures for US were
picked randomly from the last 50 ns of a 100 ns simulation of a hydrated
bilayer containing 128 lipidmolecules. The simulated systems had lateral
dimensions of ca. 6.2 nmparallel to themembrane surface (xy-plane) and
ca. 8.5 nm along the bilayer normal (z-axis). A total of 144 umbrella win-
dows separated by 0.5 Å were defined along the z-axis, so as to span the
whole bilayer thickness region up to bulkwater. ROSwere inserted at the
centers of umbrella windows by gradually switching on their interactions
with the rest of the system during 100 ps. Although ROS were free to
move in the xy-plane, motion was restricted along the z-axis by a har-
monic bias with a force constant of 1000 kJ·mol−1·nm−2. After a pre-
equilibration period of 500 ps, the collection of umbrella histograms
took place for 2 ns in the NPT ensemble at 310 K and 1 bar. Under
these conditions, the POPC bilayer was in its fluid liquid-crystalline
state. Free energy profiles were built by the weighted histogram analysis
method (WHAM) [58] using the g_wham tool [59]. Final results for each
ROS were obtained by the average of four independent US simulations.

2.4. Simulations of ROS distribution and dynamics

To study the behavior of ROS at the membrane–water interface, 30
molecules of each of the non-ionic ROS were initially placed together
at the aqueous phase surrounding a pre-equilibrated bilayer. This
corresponded to an initial molar fraction of ca. 0.5% for each ROS at
the aqueous phase. This value is still orders of magnitude higher than
experimentally measured ROS concentrations in mitochondria [60].
However, it provides reasonable statistics [61]. After 20 ns of equilibra-
tion, data acquisition followed for 30 ns in the NPT ensemble at 310 K
and 1 bar. Since ions are known to affect the membrane lateral packing
[62], a separate simulationwas performed for 30 O2

− ions in the presence
of Na+ counterions. Density profiles were built along the z-direction to
determine the ROS distribution at the membrane–water interface. The
residence times of ROS at the lipid headgroups region were determined
in terms of survival time correlation functions, as introduced by Impey
et al. [25,63]. In addition, a POPC bilayer was simulated in the presence
of the antioxidants β-carotene, α-tocopherol and Trolox® (chemical
structures in Fig. S4). The interaction parameters of membrane additives
were pieced together from the GROMOS 53A6 library by analogy with
existing structures and functional groups. Longer simulations (150 ns)
were performed to equilibrate these systems. Molecular topology files
describing the structure and interactions of ROS and antioxidants are
available as supplementary data.

3. Results and discussion

3.1. Distribution of ROS at the membrane–water interface

Fig. 1 shows the partitioning behavior of ROS between the aqueous
phase and a POPC bilayer, as obtained from MD simulations. The free
energy profiles for ROS translocation across the membrane (Fig. 1A)
were consistent with independent simulations of the equilibrium ROS
distributions in the system (Fig. 1B). In the case of hydrophobic O2

molecules, the free energy had a minimum at the bilayer center and
there was no significant energy barrier for permeation. On average, O2

was ca. 3.5 times more concentrated in the membrane interior than in
bulk water, in line with experimental measurements [64]. Following
the assumptions discussed in Section 2.2, 1O2 is expected to behave in
a similar fashion. For all hydrophilic ROS, the membrane acted as a per-
meation barrier. These results are supported by experimental evidence
that species such as HO2 and H2O2 are much less permeant than O2

[28]. In the case of H2O2, a shallow free energy minimum appeared
at the headgroups region due to favorable H-bond interactions with



Fig. 1. (A) Symmetrized free energy profiles for the translocation of various ROS across a
POPC bilayer (background image). (B) Distribution of different ROS (full lines) and lipid
unsaturations (unsat, shaded) along the bilayer normal. Distances are expressed in rela-
tion to the bilayer center (z = 0). Vertical dashed lines indicate the average positions of
carbonylester (z = 1.52 nm) and the phosphate (z = 1.89 nm) groups. The inset shows
the H-bond formed between a HO2 radical and a carbonylester group. (C) Distributions
of the conjugated chains of β-carotene (black) and the hydroxyl groups of α-tocopherol
(dark gray) and Trolox® (light gray).

Table 1
H-bonds between ROS and water.

Species Number of H-bondsa

(As donor) (As acceptor)

H2O2 1.9 2.6
HO2 1.0 0.8 (central O)

0.5 (lateral O)
HO 1.0 1.0

a H-bonds were defined based on a maximumH-acceptor distance of
2.5 Å and a maximum H-donor–acceptor angle of 30°.
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phosphate groups. The activation free energy for H2O2 permeation was
estimated in 33 ± 4 kJ/mol (see Fig. S5 for an uncertainty analysis), in
agreement with the value of 36.8 kJ/mol found experimentally [65].

Significantly lower barriers were found for HO and HO2 radicals. As
shown in Table 1, hydrophilic ROS may act as both H-bond donors
and acceptors in water. However, H2O2 establishes about twice as
manyH-bonds inwater as HOor HO2. In comparison to H2O2, these rad-
icals weremore prone to lose their hydrationwaters and penetrate into
the headgroups region. The loss of twoH-bonds per radical inwaterwas
partly compensated by the formation of an H-bond with a lipid
carbonylester group, with the radical acting as an H-bond donor.
The HO2 radical was found to accumulate at the interface. The free
energy profile of HO2 exhibited a deep free energy minimum at the
headgroups region, with a value of−8.5 kJ/mol relative to the aqueous
phase. In the HO2 distribution, a concentration enhancement of more
than one order of magnitude was observed at the headgroups region.
The ratio between the surface and bulk concentrations in this region is
consistent with the concentration enhancement expected from the
free energy minimum, as obtained at infinite dilution. As demon-
strated in Fig. S6, the difference in the behavior of HO and HO2 radi-
cals can be explained by the presence of one additional oxygen atom
in HO2, which led to stronger van der Waals interactions with the
lipid headgroups. To rule out the presence of force field artifacts, simu-
lations were repeated using different parameters for the headgroups
and qualitatively similar results were obtained (see Fig. S7).

The peculiar behavior of each ROS will probably have implications
for the efficiency of radical scavengers. To illustrate this point, Fig. 1C
shows how commonly used antioxidantswere distributed in a hydrated
POPC bilayer (chemical structures are displayed in Fig. S4).Molecules of
β-carotene, a hydrophobic antioxidant, had easier access to species that
also accumulated in the membrane interior, as was the case of O2.
Conversely, hydrophilic molecules of Trolox® had easier access to
water-soluble species. Molecules ofα-tocopherol, with their amphiphilic
structure, accumulated at the membrane–water interface, where they
had greater accessibility to non-ionic hydrophilic ROS, especially HO2. In
fact, carotenoids are known for their efficiency as 1O2 quenchers in bio-
logical systems, an effect that can be partly attributed to the tendency
of these molecules to accumulate in the membrane interior. A relation-
ship between the partition constant of several antioxidants and the 1O2

quenching rates has been experimentally demonstrated [66].
Another implication of the partitioning behavior of the various ROS

relates to chemical reactions with the phospholipids themselves. Fig. 1
suggests that certain hydrophilic ROS do not need to overcome their
permeation free energy barrier in order to have access to the lipid
hydrocarbon chains, where lipid peroxidation takes place. Due tomem-
brane fluidity and disorder, there was a significant overlap between the
distributions of HO and HO2 radicals and the distribution of the
unsaturations at lipid oleoyl chains. The same effect is expected to be
relevant in experiments that rely on molecular probes to detect ROS at
different immersion depths within the membrane [17–19]. Even when
these probes are covalently attached to the lipid hydrocarbon chains,
their reactions with ROS will depend not only on their average position
along themembrane normal, but also on thewidth of their distribution.
Therefore, it is convenient to calculate the probability of molecular en-
counters between ROS and lipid segments by means of the integral
overlap of the distributions of the species involved. This probability
(P) is given by:

Pi∝
1

ρ∞
ROS

Z
dzρi zð Þ � ρROS zð Þ; ð1Þ

where ρi(z) is the distribution of the ith carbon atom of the lipid acyl
chains and ρROS(z) is the distribution of a specific ROS. The integral
runs over the whole system length along the membrane normal. In
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order to compare different species, the probability needs to be normal-
ized by the ROS concentration in bulk water, here represented as ρROS∞ .

The relative probabilities of contacts between ROS and different
sections of the lipid acyl chains are depicted in Fig. 2A and B. For
the hydrophobic O2, the probability increased from the headgroups to
the tail region. Almost the opposite happened to hydrophilic ROS,
with the exception that the probability minimum was not at the tail
Fig. 2. (A) Relative probabilities of contacts between ROS and carbon atoms along the
phospholipid oleoyl chains. Carbon atoms are numbered from 1 (carbonyl) to 18 (last
tail atom). The arrow indicates the position of the unsaturation. (B) Contacts between
HO2 radicals and the allylic carbons of the lipid oleoyl chains. Vertical black lines indicate
instants inwhich contactswere establishedwith appropriate geometries for H-abstraction
reactions. (C) Change in thepKa value ofHO2 as functionof thedistance to the bilayer center.
The assumptions needed for the calculation are explained in the text. Vertical dashed lines
indicate the relative decrease in the density of water at the interface with respect to the
bulk value. The inset shows the thermodynamic cycle used for the calculation of the pKa
shift in the lipid (lip) phase.
end. Both O2 and HO2 had the largest degree of accessibility to the
double bond region. In the context of lipid peroxidation, double bonds
are very susceptible to the attack by 1O2 [11]. In turn, HO2 radicals are
able to generate lipid radicals by abstracting bisallylic hydrogen atoms
from polyunsaturated non-conjugated lipids [67]. The accessibility of
the HO radical to the double bond region was found to be more than
one order of magnitude lower in comparison with O2. Still, the impor-
tance of HO to lipid peroxidation should not be undermined because
this radical is 5 orders of magnitude more reactive toward lipids than
1O2 [11].

Among all the ROS investigated, O2
− radicals had the lowest probabil-

ity to establish molecular contacts with hydrocarbon chains. However,
due to membrane fluidity and disorder, there was a nonzero overlap
even between the distributions of the last atoms of the lipid tails and
the O2

− radicals (see Fig. S8). Clearly, these values should be considered
as qualitative due to limited sampling of O2

− configurations at the
headgroups region and to membrane undulations. According to experi-
mental evidence, the importance of O2

− for lipid peroxidation is
fundamented rather on its ability to form HO2 in aqueous solution
[68–70]. In fact, the HO2 radical is the conjugated acid of O2

−, with a
pKa of 4.7 [71]. At physiological pH, however, only ca. 0.2% of all O2

− is
in the protonated form. Nevertheless, simulation results indicate that
the degree of accessibility of HO2 to the double bond region is about 5
orders of magnitude higher in comparison with O2

−. It implies that the
protonated acid, although far from being the predominant species, is
still able to reach the peroxidation site with higher probability than
O2
− itself. In this context, the possible role of HO2 in lipid peroxidation

naturally emerges as a consequence of its pronounced accumulation
in the lipid headgroups region.

Using the thermodynamic cycle in Fig. 2C, this effectwas expressed in
terms of a position dependent pKa shift. First, the HO2 distribution was
scaled down so as to reproduce the correct acid/base ratio in bulk
water at physiological pH. Then, the change in the acid–base equilibrium
constantwas estimated based on the ratio between the concentrations of
HO2 and O2

−. It was assumed that the pH did not vary with distance and
that the lipid headgroups region remained sufficiently hydrated so that
solvent effects could be neglected in the pH definition. According to
Fig. 2C, under these assumptions, a pKa increase of more than one unit
was obtained at the headgroups region. It should be emphasized,
however, that the sampling of O2

− configurations at the headgroups
region was itself insufficient for an accurate prediction of the pKa
shift. Therefore, the results in Fig. 2C must be considered qualitatively.
3.2. Dynamics of ROS at the membrane–water interface

Fig. 3 shows the dynamics of various ROS at the membrane–water
interface. As depicted in Fig. 3A, O2 remained most of the time within
the hydrophobic membrane interior, with only sporadic and short
excursions to the aqueous phase. All hydrophilic ROS were able to
visit the headgroups region and to return to the aqueous phase. Due
to specific interactions with the carbonylester groups, HO2 radicals
stayed adsorbed for the longest time.

Statistically, the dynamics of adsorption/desorption was evaluated
by means of a survival time correlation function f (t) (see Eq. S5)
[25,63]. Given a certain number of molecules initially adsorbed at the
membrane surface, the function f (t) quantifies which fraction of these
molecules remains adsorbed without ever leaving after an interval of
time t. In all cases, a distance of 2.5 nm was chosen as the boundary be-
tween the bilayer and the aqueous phase. As displayed in Fig. 3B, the func-
tion f (t) exhibited a short timescale decay associated with fast boundary
recrossing processes. At longer timescales, a slower exponential decay
associatedwith desorptionwas observed. The residence timewas consid-
ered as the decay constant of the longer timescale process. In the specific
case of O2, the residence time did not refer to adsorption/desorption but
to partitioning between the aqueous phase and the membrane.

image of Fig.�2


Fig. 3. (A) Distances between selected individualmolecules and the bilayer center as function of time. Horizontal dashed lines indicate the average position of the carbonylester groups at
z = 1.52 nm. (B) Survival correlation functions related to ROS adsorption/desorption. The values in parenthesis are the residence times at the phospholipid headgroups region, reported in
units of ns. (C–F) Trajectories of different ROS, showing their lateralmobility parallel to themembrane surface. Thin gray lines refer tomotion in the aqueousphase,while colored bold lines
refer to motion at the headgroups region or in the membrane interior.
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Both O2 (and probably 1O2 by analogy) and HO2 were associated
with the longest residence times, which were 12.4 and 17.3 ns, respec-
tively. However, the half-life of these species is typically orders of mag-
nitude larger [11]. It means that, if they are locally generated at the
membrane, they have a considerable chance to escape to the aqueous
phase without reacting with the phospholipids. In contrast to that, HO
radicals were associated with a residence time of ca. 3.8 ns, while
their typical lifetime is of the order of 1 ns. To causemembrane damage,
these radicals need to be generated very close to themembrane surface.
However, once generated there, they will almost certainly react with
the lipids. Both HO2 and HO radicals were able to establish long-lived
H-bonds with the membrane carbonylester groups. As demonstrated
in Fig. 3C–F, this led to a severe impairment of their lateral mobility in
comparison with O2.

Although simulations provided important clues about the partition
and dynamics of ROS at the membrane–water interface, attention must
be called to a few limitations. Especially in the case of short-lived radicals
such asHO, the competing processes of radical generation and scavenging
are likely to give rise to a steady-state rather than an equilibriumdistribu-
tion over larger distances. Besides that, reactivity is influenced not only by
ROS accumulation, but also by the activitywithin the lipidic environment,
which may differ from that in the aqueous bulk. The reactivity of antiox-
idants toward ROS is supposed to depend also on the local dielectric con-
stant, which varies as function of the immersion depth in the membrane
[72]. Furthermore, details of electronic structure, such as for instance the
difference between singlet and triplet oxygen, are not explicitly consid-
ered in classical models. By the other side, electronic structure calcula-
tions are limited with regards to the time and length scales accessible. It
is not possible to neglect the importance of quantum effects that lead to
chemical reaction and influence radical mobility. As demonstrated by
hybrid quantum mechanical/molecular mechanical methods, the diffu-
sion of HO radicals in aqueous solution occurs via H-transfer reactions
with solvent molecules [73].

Even in this respect, however, purely classical simulations are
able tomake qualitative predictions. The images in Fig. 4 are simulation
snapshots showing aHO radical bound as anH-bonddonor to one of the
carbonylester groups of a phospholipid. They reveal the existence of an
H-bond network that links the HO radical to the bulk aqueous solution.
Themaintenance of this network is a pre-requisite for the occurrence of
an H-transfer mechanism. It was found, however, that this H-bond
network disappeared intermittently. It was completely absent during
most of the time during which the radical remained attached to the
carbonylester group. The loss of hydration suffered by HO upon penetra-
tion into the headgroups region is expected to hamper the H-transfer
mechanism, contributing to the decrease of the lateral mobility of this
radical along the membrane surface.

4. Conclusions

The results obtained from molecular dynamics simulations offer a
basis for the interpretation of experiments of membrane peroxidation
induced by ROS. It was demonstrated, for instance, that even hydrophilic
species such as HO andHO2 radicalswere able to penetrate deep into the
lipid headgroups region. Due to membrane fluidity and disorder, these
radicals had access to potential peroxidation sites along the lipid hydro-
carbon chains, without having to overcome the permeation free energy
barrier. In a similar fashion, hydrophilic ROS had easier access to amphi-
philic and hydrophilic antioxidants, here represented by α-tocopherol
and Trolox®, respectively. In turn, hydrophobic β-carotene molecules
had more access to hydrophobic species that also accumulated in the

image of Fig.�3


Fig. 4. Simulation snapshots showing a HO radical at the phospholipid headgroups region
at (A) 21.535 and (B) 23.235 ns. The HO radical and the nearest phospholipid are repre-
sented according to the following color coding: C (cyan), H (white), N (blue), O (red), P
(brown). The rest of the bilayer is represented in gray. The water molecules involved in
an H-bond network with the HO radical are represented in purple up to the 10th genera-
tion. (C) Penetration depth of the HO radical as function of time. Shaded regions indicate
instants in which an H-bond existed between HO and water.
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membrane interior, such as O2 and presumably 1O2 as well. All results
were obtained for phosphatidylcholine, which is a major component of
biological membranes. Further investigations will be performed about
different lipid types and the influence of cholesterol.

Up to now, the role of HO2 in lipid peroxidation has received minor
attention because, at physiological pH, this species exists almost
exclusively in the form of its conjugated base O2

−. However, different
fromall other ROS, HO2 radicalswere found to be one order ofmagnitude
more concentrated in the headgroups region than in bulk water. It
represents an increase of more than one order of magnitude in the
acid/base equilibrium constant involving HO2 and O2

−. Simulations
indicated that, even at physiological pH, HO2 may have an important
role in the context of both lipid peroxidation and radical scavenging
by membrane antioxidants.
The residence times of HO2 and HO radicals at themembrane–water
interface were 17.3 and 3.8 ns, respectively, in comparison with a
residence time of 12.4 ns found for O2 in the membrane interior.
Both oxy-radicals were involved in long-lived H-bonds with the
membrane carbonylester groups, which led to a severe impairment
of their lateral mobility along the membrane surface in comparison
with O2. Simulations revealed that, due to limited hydration at the
headgroups region, there were intermittent interruptions in the H-bond
network connecting HO radicals to bulk water. These interruptions are
expected to decrease HO mobility by hampering the H-transfer mecha-
nism. Even then, the mobility predicted by purely classical methods
is expected to be underestimated because it does not account for
theH-transfer process, which is expected to take place at least intermit-
tently at the membrane surface. Taken together, the insights obtained
from simulations may ultimately contribute to a better understanding
of oxidative stress mechanisms at the molecular level.
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