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ABSTRACT
Multiple myeloma is a malignancy of antibody-secreting plasma cells that expand in the bone marrow.
Although high-dose therapy/autologous stem cell transplantation has become the standard of care for patients
with multiple myeloma, survival is highly variable and can range from a few years to >10 years after diagnosis.
Application of high-throughput genomics on a large uniformly untreated cohort of patients has revealed that
activation of 1 of the 3 cyclin D genes is a universal initiating event in this disease and that acquisition of
abnormalities of chromosome 1 leads to activation of CKS1B, a regulator of p27Kip1 degradation. Synergy
between cyclin D2 and CKS1B, but not cyclin D1 and CKS1B, may lead to early treatment failure.
© 2006 American Society for Blood and Marrow Transplantation
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Multiple myeloma (MM) is a malignancy of anti-
ody-secreting plasma cells that expand in the bone
arrow and cause severe osteolytic bone destruction,

ypercalcemia, immunosuppression, anemia, and kid-
ey failure [1]. High-dose therapy/autologous stem
ell transplantation has become the standard of care in
he treatment of MM. Although outcome has been
reatly improved, survival is still highly variable, with
atients surviving several years to �10 years [2-4].
ggressive disease, with increased proliferation and a
igher frequency of abnormal metaphase karyotypes,

ncreased lactate dehydrogenase, and extramedullary
anifestations, seen in approximately 20% of newly

iagnosed patients, inevitably appears in all cases. The
olecular mechanisms leading to this aggressive con-

ersion are not understood. In this review, we describe
he most common genetic lesions in myeloma and our
urrent attempts to identify the genetics of high risk.

Recurrent nonrandom genetic lesions have been
dentified in myeloma, and these have been related to
linical course and response to therapy [5]. At the
enetic level, myelomas can be broadly separated into
yperdiploid and nonhyperdiploid diseases [6]. Nonhy-
erdiploid myelomas, which typically harbor immuno-
lobulin-mediated translocations that lead to transcrip-

ional activation of normally silent proto-oncogenes, m
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ccount for approximately 50% of newly diagnosed
ases. The recurrent translocations are t(11;14), which
ctivates CCND1, in approximately 17%, followed by
(4;14), which activates the FGFR3 and MMSET genes,
n another approximately 17%; t(14;16), which acti-
ates MAF, in approximately 6%; t(14:20), which ac-
ivates MAFB, in another 6%; and t(6;14), which ac-
ivates CCND3, in no more than approximately 3%
7-10]. The remaining 50% of myelomas are hyper-
iploid, with aneuploidy resulting from trisomies of
hromosomes 3, 5, 7, 9, 11, 15, 19, and 21 [11-14].

Gene expression studies have revealed that virtu-
lly all myelomas, regardless of ploidy status, exhibit
eregulated expression of 1 of the 3 cyclin D genes,
hus suggesting that cyclin D activation may be an
nitiating genetic event in this malignancy [12]. My-
lomas with translocations that result in activation of
CND1 are typically diploid and have a more favor-
ble prognosis than those with translocations that
ctivate MAF or FGFR3/MMSET [15-18]. Deletion
f chromosome 13q14, which is strongly linked to
GH-mediated translocations; chromosome 17p; and
ypodiploidy are associated with a poor prognosis
18-22]. Hyperdiploid tumors are thought to be more
ependent on interactions with the bone marrow

icroenvironment, as evidenced by higher levels of
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KK1 expression, increased incidence of lytic bone
esions, and their conspicuous absence in myeloma cell
ines [12,23,24]. Virtually all of the recurrent genetic
esions seen in myeloma are also observed in the be-
ign plasma cell dyscrasia monoclonal gammopathy of
ndetermined significance [25-28], and this suggests
hat additional, uncharacterized gene mutations may
e required for progression of this condition.

In an effort to identify genes linked to an ag-
ressive clinical course, we applied RNA from
ighly purified plasma cells derived from 351 newly
iagnosed patients with MM to Affymetrix (Santa
lara, CA) U133Plus2.0 microarrays. Expression

xtremes of approximately 54 000 probe sets were
orrelated with disease-related and overall survival
fter 2 cycles of high-dose melphalan and autolo-
ous stem cell transplantation. This analysis re-
ealed a statistically significant overrepresentation
f chromosome 1 genes in a group of 70 genes
hose expression was linked to poor outcome. In
articular, overexpression of CKS1B, which maps to
n amplicon at 1q21 in myeloma [29-35] and regu-
ates SCFSkp2-mediated ubiquitination and proteol-
sis of the cyclin-dependent kinase (Cdk) inhibitor
27Kip1 [36,37], was significantly overexpressed in
atients with poor survival (P � .001). Increased
xpression of CKS1B was strongly correlated with
ene amplification (P � .0001), which in turn was an
ndependent predictor of unfavorable outcome in

ultivariate analyses (P � .002). CKS1B expression
nd amplification both increased at relapse and im-
arted a short postrelapse survival (P � .005).

Fourth-quartile CKS1B expression was observed
n nearly two thirds of patients with MAF or MAFB
ctivation, in one third each with FGFR3/MMSET
nd CCND1 activation, and in only 18% of those who
acked such translocations (P � .0001). In the context
f metaphase karyotypes, hyperdiploidy is associated
ith a more favorable prognosis than hypodiploidy

5]: CKS1B quartile 4 expression was observed in ap-
roximately 20% of cases with hyperdiploid or normal
uninformative) karyotypes but in nearly 50% of hy-
odiploid MM cases (P � .0002). Adjusting for these
enetic subgroups in multivariate analyses, high
KS1B expression remained an independent adverse
redictor. MMSET-, MAF-, and MAFB-activating
ranslocations conferred inferior event-free survival
P � .001) but not inferior overall survival (P � .164).
onsistent with the favorable implications of CCND1

ranslocations, the superior event-free and overall sur-
ival of this subgroup was not negated by high CKS1B
xpression.

The eukaryotic cell cycle is controlled by Cdks,
hich are opposed by Cdk inhibitors [38]. Reduced
rotein levels of the Cdk inhibitor p27Kip1, which
egulates Cdk2/cyclin E activity and the late restric-

ion point of the G1 to S transition of the cell cycle,
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re associated with a poor prognosis in many cancers
39]. The absence of inactivating mutations in the
DKN1B/p27Kip1 gene has raised speculation that hy-
eractivation of SKP2 or CKS1B, representing the
ate-limiting components of the SCFSkp2-Cks1 ubiq-
itin ligase, may lead to inappropriate degradation of
27Kip1 [39]. Recent studies have shown that loss of
27Kip1 is associated with shortened survival in pa-
ients with myeloma [40]. On the basis of our current
nowledge, we propose that increased degradation of
27Kip1 and poor prognosis in myeloma may be caused
n part by a gene dosage–related increase in CKS1B
ene expression. In support of this concept, we also
bserved that CKS1B overexpression and amplifica-
ion commonly surfaced at relapse in patients who
acked such features at diagnosis; this suggests that
q21 rearrangements in MM may, in part, target the
KS1B gene.

Cyclin D dysregulation is a common event in
ancer and contributes to tumorigenesis by promoting
yperphosphorylation of the RB1 protein, activation
f E2F, and transition through the early G1 to S phase
f the cell cycle. We have recently reported that dys-
egulated expression of 1 of the 3 D-type cyclins may
e initiating genetic lesions in MM. On the basis of
ur current knowledge, we propose that activation of
CyclinD gene, especially Cyclin D2, and CKS1B

ene activation may cooperate to deregulate both
arly and late restriction points of the G1 to S phase of
he cell cycle.

CKS1B gene amplification, along with chromo-
ome 13q14 deletion and abnormal metaphase cyto-
enetics, accounted for almost 40% of the observed
urvival variability in this analysis. This underscores
hat myeloma risk is best assessed by molecular and
ellular genetic tests. Routine application of such
tudies, performed on a single bone marrow sample, is
ecommended for appropriate patient stratification in
herapeutic trial design. The survival effect of new
gents, such as bortezomib and thalidomide and its
erivatives, will be profound if their clinical efficacy
lso extends to genetically defined high-risk myeloma,
hich to date has not been investigated. CKS1B func-

ion seems to directly or indirectly interact with ubiq-
itin ligases, the proteasome, or both to regulate cell-
ycle progression [41]. New therapeutic strategies that
irectly target CKS1B or related pathways may rep-
esent novel, and more specific, means of treating de
ovo high-risk myeloma and may prevent secondary
volution.
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