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Abstract The aim of this paper was to develop a region based active contour model and Fuzzy

C-Means (FCM) technique for segmentation of lung nodules. Ultimately, detection and assisted

diagnosis of nodules at earlier stage increase the mortality rate. Among many imaging modalities,

Computed Tomography (CT) is being the most sought because of its imaging sensitivity, high res-

olution and isotropic acquisition in locating the lung lesions. The proposed methodology focuses on

acquisition of CT images, reconstruction of lung parenchyma and segmentation of lung nodules.

Reconstruction of parenchyma can be employed using selective binary and Gaussian filtering with

new signed pressure force function (SBGF-new SPF) and clustering technique was used for nodule

segmentation. Comparative experiments demonstrate the advantages of the proposed method in

terms of decreased error rate and increased similarity measure.
� 2016 Faculty of Engineering, Alexandria University. Production and hosting by Elsevier B.V. This is an

open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Of the other cancers (colon, breast and prostate cancer), the

most serious death causing cancer is Lung cancer. Recently,
the United States has diagnosed 2,28,190 peoples with lung
cancer [1]. Most of the people were diagnosed with lung cancer

having non-small cell lung cancer rather small cell lung cancer.
Early diagnosis and diagnosis are important for the increase in
survival rate up to 50% [2].

Nodule identification is one of the fundamental problems in
medical image processing. Pulmonary nodules are small tissue
in the lung and most of them are benign [3]. To assist the spe-
cialist, with the information regarding nodules in lung
parenchyma computer-aided detection (CAD) system was
developed. An automated CAD system was designed to detect

the nodule sized between 3 and 30 mm. CAD has more advan-
tages in terms of speed, accuracy [4], detection of nodules in
pulmonary CT images and a reduction in miss rate [5,6]. Seg-

mentation is an essential step in many applications involving
CAD. It partitions the image into segments corresponding to
the anatomical objects in the image. In the recent years, a lot
of pulmonary nodule segmentation methods have been

proposed, which can be categorized as thresholding method
[7,8], morphological method [9], deformable model [10],
clustering method [11–13], graph cut method [14,15], Markov

random field, region growing [16], watershed, neural networks,
fuzzy logic, active contours [17] and histogram based segmen-
tation [18].

Among various segmentation methods, active contour was
one of the most popular and successful one. Many researchers
are devoted to study the detection of pulmonary nodules
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attached to vessels and the pulmonary wall. El-Bazl et al. [19]
proposed a segmentation technique using Markov random
field, consisting of two stages. The first stage is to select the

optimum decision level to create an initial labeling image,
and the second one is to extract the lung tissues from each
slice. Using this methodology, about 50 subjects were evalu-

ated. Out of this 40 subjects were normal and ten subjects
had abnormalities in their CT scans.

Tong et al. [20] used a three step process to detect lung

nodules. Firstly, an adaptive threshold algorithm was used
to segment the lung region. Secondly, active contour model
(ACM) was used to remove lung vessel and finally a Hessian
matrix (selective shape filter) was used to detect the suspi-

cious nodules. This method was able to produce an overall
detection rate of 85%. Marten et al. [21] evaluated and com-
pared features such as nodule size, position, margin, matrix

characteristics, vascular and pleural attachments with gold
standard. Some authors use manually segmented lesion as
the gold standard and some other uses specialist references

as the gold standard. Azimifar et al. [22] used active contour
modeling for segmentation and produces an overall detec-
tion rate of 89%. Dehmeshki et al. [23] proposed volumetric

measurement for the detection of lung nodule. A new region
growing method for segmentation in combination of fuzzy
connectivity, distance and intensity information as the
growing mechanism and peripheral contrast as the halting

criterion has been used. It was found that this method is
highly reproducible for various types of nodules from
various data protocols. All these works aim to detect lung

nodule automatically from CT images.
Most of them produce segmentation results with less

accuracy which is undesirable for clinical usage. Hence it is

necessary to develop a suitable technique which segments lung
nodules with good accuracy, reduced computation time and
less segmentation error rate per image.

The present work aims to segment the lesion automatically
with the help of CT images. For lung reconstruction, Selective
Binary and Gaussian Filtering with new signed pressure force
function (SBGF-new SPF) and segmentation of lung nodule,

3-class FCM was used.

2. Methodology

Automatic nodule detecting scheme using CT scans helps the
physicians to reduce the load and to improve detection qual-
ity. The methods proposed for the detection of lung nodule

consist of the CT lung acquisition and the segmentation of
lung nodules. The main aim of this process was to remove
the portions that are part of the CT image other than lung

lesion. Fig. 1 shows the various stages of segmentation
scheme.
CT lung 
acquisition

Reconstruction
of Lung 

parenchyma

FCM Nodule 
detection

Figure 1 Main diagram of segmentation scheme.
2.1. CT lung acquisition

The Lung Image Database Consortium image collection
(LIDC-IDRI) consists of diagnosing and lung cancer screening
thoracic CT scans with marked-up annotated lesions [24]. It is

a web-accessible resource for development, training, and eval-
uation of CAD methods for lung cancer detection and
diagnosis.

2.2. Reconstruction of lung parenchyma

The objective of this stage was to eliminate the mediastinum
and thoracic wall and to separate the parenchyma using region

based ACM. There exist many region based models such as
Geodesic active contour (GAC) model [25], Chan–Vese
(C–V) model [26], Piecewise Smooth (PS) model [27], Local

Binary Fitting (LBF) [28] model and so on. Some models
suffer due to weak edges and others due to evolutionary time.
But SBGF-new SPF performs well under weak edges, with less

computational time and increased efficiency.

2.2.1. The proposed method

Based on the work inspired by [29] the proposed method

segments the lung nodule and has the advantage of easy imple-
mentation, speed, less segmentation error and accuracy.

In order to increase the efficiency, the algorithm was mod-
ified by the inclusion of contour constants in SPF function. Let

X 2 R3 be the image domain, and I(x) be the input image. Let
c1, c2 be the constants inside and outside the contour. The pro-
posed method uses selective step and no re-Initialization is

required. It first penalizes level set function to be binary, and
then uses a Gaussian filter to regularize it. The Gaussian filter
can make the level set function smooth and the evolution more

stable. The balloon force a is used for shrinking or expanding
the contour. The Signed Pressure Force (SPF) function is used
to control the direction of evolution. The function ranges in

{�1,1}. It uses local image information. It modulates the signs
of the pressure force which shrinks of contour inside the object
and expands of contour outside the object. A Gaussian kernel
is used to regularize the level set function which not only reg-

ularizes it but also removes the need of computationally expen-
sive re-initialization. If the object boundary has gaps, the
contour tends to leak and hence boundary leakage problem

arises. This can be solved by applying an edge stopping func-
tion, which pulls the contour to the boundary [30]. The existing
methodology uses more iteration. The proposed methodology

does not change the functionality of evolution but reduces the
number of iterations.

Therefore, the energy function of the proposed system was

given by

@/
@t

¼ c1 � c2 � spfðIðxÞÞ � ajr/j; x 2 X ð1Þ

spfðIðxÞÞ ¼ IðxÞ � c1þc2
2

max IðxÞ � c1þc2
2

�� ��� � ; x 2 X ð2Þ

c1ð/Þ ¼
R
X IðxÞ �Hð/ÞdxR

X Hð/Þdx ð3Þ

c2ð/Þ ¼
R
X IðxÞ � ð1�Hð/ÞÞdxR

Xð1�Hð/ÞÞdx ð4Þ
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Using Eq. (1) the energy function can be formulated. The
parameters such as sigma (r), number of iterations, delta
and alpha (a) can be varied to obtain the desired lung parench-

yma. Decreasing r results in incomplete lung lobe. On the
other hand increasing r results in large time consumption.

2.2.2. Reconstruction of lung border

The reconstruction of the lung border is an important step that
aims to recover lung nodules that are attached to the thoracic
wall. The juxtapleural nodule can be recovered using Adaptive

border marching [31], greedy snake algorithm [32], ray casting,
vector quantization [33], and chain codes [34]. The present
work employs a technique called rolling ball, which uses mor-

phological closing operations with a circular structuring ele-
mental along the contour of the lung, causing the
reconstruction of the concavities where this element cannot

enter. The structuring element was used in a disk with radius
equal to 12.

2.3. FCM

Clustering algorithms achieve region segmentation by parti-
tioning the image into sets or clusters of pixels that have strong
similarity in the feature space. In hard clustering, data are

divided into distinct clusters, where each data element belongs
to exactly one cluster. In fuzzy clustering, data elements can
belong to more than one cluster, and associated with each ele-

ment is a set of membership levels. These indicate the strength
of the association between that data element and a particular
cluster [35,36].

Fuzzy clustering is a process of assigning these membership
levels, and then using them to assign data elements to one or
more clusters. One of the most widely used fuzzy clustering
algorithms is the FCM Algorithm [37]. This can be used in

many fields such as pattern recognition, fuzzy identification,
and feature extraction.

Let U 2 Mfc be a fuzzy c partition of X, and the FCM func-

tion [42] is defined as

JmðU; vÞ ¼
Xn

k¼1

Xc

i¼1

uikð Þm dikð Þ2

d2ik ¼ xk � vik k2
ð5Þ

The FCM algorithm produces a fuzzy c partition of the

data set X ¼ x1; x2; . . . xnf g. The 3-class FCM algorithm is
used to segment the region of interest from the reconstructed
lung. The region of interest (ROI) contains nodules, blood ves-

sels and bronchi. In order to separate nodule from these struc-
tures, morphological operations are performed.
3. Results and discussion

The proposed system uses LIDC for the evaluation on lung
CT. For benignity the nodule size is 3–30 mm and >30 mm
for malignancy. The original lung CT, reconstructed lung par-

enchyma, FCM output and segmented nodule detection out-
put for different candidates are shown in Fig. 2. It has been
found that the segmented output can be achieved at faster rate

with less number of iterations. The number of iterations
required is 140 with a response time of less than 1 min. The
parameters are used in the proposed algorithm for separating
the parenchyma from the mediastinum and the thoracic wall
and nodule detection are r equal to 0.3, 1 and 2, number of

iterations to segment is equal to 150, delta equal to 1, / equal
to 4 and number of clusters is equal to 3. It was noted that if
the size of parenchyma is large, the number of iterations can

changed to higher value. No other parameter needs to be
changed.

3.1. Quantitative metrics for evaluation

The images that are segmented manually are termed as Gold
Standard (GS). S denotes the automated segmented image.

Let ei be the error measure and n be the number of samples
used. Evaluation of segmented (S) against GS images was
made for following measures:

aÞ Volume error; VE ¼ 2ðS� GSÞ
ðSþ GSÞ ð6Þ

bÞ Coefficient of Similarity ¼ 1þ ðGS \ SÞ
GS

ð7Þ

cÞ Spatial overlap ¼ 2ðGS \ SÞ
ðS [ GSÞ ð8Þ

dÞ RMSE ¼
ffiffiffiffiffiffiffiffiffiffi
1

n

� �s Xn

i¼1

e2i ð9Þ

eÞ Under segmentation rate; U ¼ jGS� ðS \ GSÞj ð10Þ
fÞ Over segmentation rate; V ¼ jS� ðS \ GSÞj ð11Þ

The average volume error is 0.968%. For clinical usages,
less than 5% volume error is more likely suitable [38]. Figs. 3
and 4, show the comparison of coefficient of similarity and

spatial overlap between LBF and proposed method. Coeffi-
cient of similarity shows the resemblances between the seg-
mented and gold standard images. Spatial overlap is the

accurate measure of spatial properties of segmented images.
The best coefficient of similarity and overlap fraction is
0.914 and 0.584 and worst is 0.074 and 0.089. According to

[41] the spatial overlap of LIDC database can be reported from
0.51 to 0.66. The proposed work shows a spatial overlap frac-
tion of 0.584 which lies within the specified range. Experimen-
tal results show that the proposed method shows increased

performance when compared with LBF model. In the previous
literature Paik et al. [31] suggested an average over segmenta-
tion and under segmentation ratio was 0.43% and 1.63%. In

the present study, the observed results (average over segmenta-
tion and under segmentation ratio) were 0.63% and 0.015%
respectively. It was found that the proposed methodology

shows better performance when compared with the previous
literature results [31].

Table 1 depicts the comparison of various segmentation

methods with the proposed method. The root mean square
error (RMSE) and overlap measure describe the similarities
between segmented and gold standard image. The proposed
method achieves RMSE of 0.10 mm and accuracy measure

of 98.95%. In research studies the performance of RMSE
has been used as a standard statistical metric. The proposed
method shows very less error rate when compared with other

methods. Under segmentation rate defines the proportion of
the unsegmented lesion area. Over segmentation rate is defined
as the ratio of the segmented non-lesion area. Figs. 5 and 6



Figure 2 Result of different subjects, (A) Original image, (B) Reconstructed lung, (C) FCM output, (D) Nodule detection.
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Figure 3 Comparison of coefficient of similarity between LBF

and proposed method.
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Figure 4 Spatial overlap between LBF and proposed method.
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show the over segmentation and under segmentation ratio

for LBF and proposed model. The average over segmentation
and under segmentation ratio was 0.63% and 0.015%
respectively.

3.2. Advantage of proposed model over the LBF model

Compared with LBF, proposed model utilizes global segmen-
tation with less number of iterations and low computation
time. LBF uses local segmentation, with more iteration and
very high computation time. LBF is a region based active con-

tour model which uses signed distance function (SDF) and
requires re-initialization. Evolution converges at 100 iterations
with the required time of 454 s whereas the proposed model

utilizes 140 iterations for 18 s. The best similarity and overlap
fraction are 0.914 and 0.584 and worst is 0.074 and 0.089. The
average over segmentation and under segmentation ratio was

0.63% and 0.015% respectively.



Table 1 Performance comparison with other models.

Study Method Performance

Hu et al., [39] Iterative threshold,

Morphological

Operations

Root mean square

Difference = 0.54 mm

Yim et al., [40] Region growing,

Connected

component

Root mean square

Difference = 0.32 mm

Badura et al. [41] Modified relative Fuzzy connectedness Spatial Overlap = 0.6

Deep et al. [42] Rotation invariant LBP Accuracy = 98%

Proposed method SBGF-new SPF, FCM Root mean square

Difference = 0.10 mm

Spatial Overlap = 0.584 Accuracy = 98.95%
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Figure 5 Under segmentation rate of various images in

databases.
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Figure 6 Over segmentation rate of various images.
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4. Conclusion

Computer-aided diagnosis of lung cancer is used to segment
pathologically changed tissues fast and accurately. The
proposed algorithm SBGF-new SPF and FCM successfully

segment the lung nodule from the CT. For lesion the average
volume error obtained is 0.968%. The coefficients of similarity,
spatial overlap, RMSE, average over and under segmentation

ratio are 0.914, 0.584, 0.10 mm, 0.63% and 0.015% respec-
tively. The experimental results indicate that the newly pro-
posed algorithm could segment blood vessel adhesion, pleura
adhesion fast and exactly performs better than traditional
segmentation effects, with executive efficiencies and decreased
rate of errors.
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[8] S. Magalhães Barros Netto, A. Corrĉa Silva, R.
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