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1. Introduction

We investigate the class of all limits of σ -complete inverse systems of compact metrizable spaces with skeletal bonding
maps. Notations are used the same as in the monograph [5]. For example, a compact space is Hausdorff, and a regular space
is T1. A directed set Σ is said to be σ -complete if any countable chain of its elements has least upper bound in Σ . An
inverse system {Xσ ,πσ

� ,Σ} is said to be a σ -complete, whenever Σ is σ -complete and for every chain {σn: n ∈ ω} ⊆ Σ ,
such that σ = sup{σn: n ∈ ω} ∈ Σ, there holds

Xσ = lim←−
{

Xσn ,π
σn+1
σn

}
,

compare [15]. However, we will consider inverse systems where bonding maps are surjections. Another details about inverse
systems one can find in [5, pp. 135–144]. For basic facts about I-favorable spaces we refer to [4], compare also [10].

Through the course of this note we modify quotient topologies and quotient maps, introducing Q P -topologies and
QP -maps, where P is a family of subsets of X . Next, we assign the family Pseq (of all sets with some properties of cozero
sets) to a given family P . Frink’s theorem is used to show that the Q P -topology is completely regular, whenever P ⊆ Pseq
is a ring of subsets of X , see Theorem 5. Afterwards, some special club filters are described as systems of countable skeletal
families. This yields that each family which belongs to a such club filter is a countable skeletal family, which produces a
skeletal map onto a compact metrizable space. Theorem 12 is the main result: I-favorable compact spaces coincides with
limits of σ -complete inverse systems of compact metrizable spaces with skeletal bonding maps.

E.V. Shchepin has considered several classes of compact spaces in a few papers, for example [13,14] and [15]. He intro-
duced the class of compact openly generated spaces. A compact space X is called openly generated, whenever X is the limit
of a σ -complete inverse system of compact metrizable spaces with open bonding maps. Originally, Shchepin used another
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name: open-generated spaces; see [15]. A.V. Ivanov showed that a compact space X is openly generated if, and only if its
superextension is a Dugundji space, see [9]. Then Shchepin established that the classes of openly generated compact spaces
and of κ-metrizable spaces are the same, see Theorem 21 in [15]. Something likewise is established for compact I-favorable
spaces in Theorem 12.

A Boolean algebra B is semi-Cohen (regularly filtered) if, and only if [B]ω has a closed unbounded set of countable reg-
ular subalgebras, in other words [B]ω contains a club filter. Hence, the Stone space of a semi-Cohen algebras is I-favorable.
Translating Corollary 5.5.5 of L. Heindorf and L.B. Shapiro [7] on topological notions, one can obtain our’s main result in
zero-dimensional cases, compare also Theorem 4.3 of B. Balcar, T. Jech and J. Zapletal [2]. We get Theorem 11 which says
that each completely regular I-favorable space is homeomorphic to a dense subspace of the limit of an inverse system
{X/R,qR

P , C}, where spaces X/R are metrizable and separable, bonding maps qR
P are skeletal and the directed set C is

σ -complete.

2. QP -topologies

Let P be a family of subsets of X . We say that y ∈ [x]P , whenever x ∈ V if, and only if y ∈ V , for each V ∈ P . The family
of all classes [x]P is denoted X/P . Note that [x]P ⊆ V if, and only if [x]P ∩ V �= ∅, for each V ∈ P . Put q(x) = [x]P . The
function q : X → X/P is called a Q P -map. The coarser topology on X/P which contains all images q[V ] = {[x]P : x ∈ V },
where V ∈ P , is called a Q P -topology. If V ∈ P , then q−1(q[V ]) = V . Indeed, we have V ⊆ q−1(q[V ]), since q : X → X/P is
a surjection. Suppose x ∈ q−1(q[V ]). Then q(x) ∈ q[V ], and [x]P ∩ V �= ∅. We get [x]P ⊆ V , since V ∈ P . Therefore x ∈ V .

Lemma 1. Let P be a family of open subsets of a topological space X. If P is a closed under finite intersections, then the Q P -map
q : X → X/P is continuous. Moreover, if X = ⋃

P , then the family {q[V ]: V ∈ P } is a base for the Q P -topology.

Proof. We have q[V ∩ U ] = q[V ] ∩ q[U ], for every U , V ∈ P . Hence, the family {q[V ]: V ∈ P } is closed under finite inter-
sections. This family is a base for the Q P -topology, since X = ⋃

P implies that X/P is a union of basic sets. Obviously, the
QP -map q is continuous. �

Additionally, if X is a compact space and X/P is Hausdorff, then the Q P -map q : X → X/P is a quotient map. Also, the
QP -topology coincides with the quotient topology, compare [5, p. 124].

Let R be a family of subsets of X . Denote by Rseq the family of all sets W which satisfy the following condition: There
exist sequences {Un: n ∈ ω} ⊆ R and {Vn: n ∈ ω} ⊆ R such that Uk ⊆ (X \ Vk) ⊆ Uk+1 , for any k ∈ ω, and

⋃{Un: n ∈ ω} = W .
If Rseq �= ∅, then

⋃
R = X . Indeed, take W ∈ Rseq . Whenever Un and Vn are elements of sequences witnessing W ∈ Rseq ,

then X \ Vk ⊆ Uk+1 ⊆ W implies Uk+1 ∪ Vk = X .
If X is a completely regular space and T consists of all cozero sets of X , then T = Tseq . Indeed, for each W ∈ T , fix a

continuous function f : X → [0,1] such that W = f −1((0,1]). Put Un = f −1(( 1
n ,1]) and X \ Vn = f −1([ 1

n ,1]).
Recall that, a family of sets is called a ring of sets whenever it is closed under finite intersections and finite unions.

Lemma 2. If a ring of sets R is contained in Rseq, then any countable union
⋃{Un ∈ R: n ∈ ω} belongs to Rseq.

Proof. Suppose that sequences {Un
k : k ∈ ω} ⊆ R and {V n

k : k ∈ ω} ⊆ R witnessing Un ∈ Rseq , respectively. Then sets U 0
n ∪

U 1
n ∪ · · · ∪ Un

n and V 0
n ∩ V 1

n ∩ · · · ∩ V n
n are successive elements of sequences which witnessing

⋃{Un ∈ R: n ∈ ω} ∈ Rseq . �
Lemma 3. If a family of sets P is contained in Pseq, then the QP -topology is Hausdorff.

Proof. Take [x]P �= [y]P and W ∈ P such that x ∈ W and y /∈ W . Fix sequences {Un: n ∈ ω} and {Vn: n ∈ ω} witnessing
W ∈ Pseq . Choose k ∈ ω such that x ∈ Uk and y ∈ Vk . Hence [x]P ⊆ Uk and [y]P ⊆ Vk . Therefore, sets q[Uk] and q[Vk] are
disjoint neighbourhoods of [x]P and [y]P , respectively. �
Lemma 4. If a non-empty family of sets P ⊆ Pseq is closed under finite intersections, then Q P -topology is regular.

Proof. We have q[A] ∩ q[B] = q[A ∩ B] for each A, B ∈ P . The family {q[A]: A ∈ P } is a base of open sets for the Q P -
topology. Fix x ∈ W ∈ P and sequences {Un: n ∈ ω} ⊆ P and {Vn: n ∈ ω} ⊆ P witnessing W ∈ Pseq . Take any Uk ⊆ W such
that [x]P ⊆ Uk ∈ P . We get q(x) ∈ q[Uk] ⊆ cl q[Uk] ⊆ q[X \ Vk] = X/P \ q[Vk] ⊆ q[W ], where

⋃
P = X . �

To show which Q P -topologies are completely regular, we apply the Frink’s theorem, compare [6] or [5, p. 72].

Theorem (O. Frink (1964)). A T1-space X is completely regular if, and only if there exists a base B satisfying:

(1) If x ∈ U ∈ B, then there exists V ∈ B such that x /∈ V and U ∪ V = X.
(2) If U , V ∈ B and U ∪ V = X, then there exist disjoint sets M, N ∈ B such that X \ U ⊆ M and X \ V ⊆ N.
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Theorem 5. If P is a ring of subsets of X and P ⊆ Pseq, then the QP -topology is completely regular.

Proof. The QP -topology is Hausdorff by Lemma 3. Let B be the minimal family which contains {q[V ]: V ∈ P } and is closed
under countable unions. This family is a base for the Q P -topology, by Lemma 1. We should show that B fulfills conditions
(1) and (2) in Frink’s theorem.

Let [x]P ∈ q[W ] ∈ B. Fix sequences {Uk: k ∈ ω} and {Vk: k ∈ ω} witnessing W ∈ Pseq and k ∈ ω such that x ∈ X \ Vk ⊆ W .
We have W ∪ Vk = X . Therefore [x]P /∈ q[Vk] and q[W ] ∪ q[Vk] = X/P . Thus B fulfills (1).

Fix sets
⋃{Un: n ∈ ω} ∈ B and

⋃{Vn: n ∈ ω} ∈ B such that

X/P =
⋃{

q[Un]: n ∈ ω
} ∪

⋃{
q[Vn]: n ∈ ω

}
,

where Un and Vn belong to P . Thus, U = ⋃{Un: n ∈ ω} ∈ Pseq and V = ⋃{Vn: n ∈ ω} ∈ Pseq by Lemma 2. Next, fix
sequences {An: n ∈ ω}, {Bn: n ∈ ω}, {Cn: n ∈ ω} and {Dn: n ∈ ω} witnessing U ∈ Pseq and V ∈ Pseq , respectively. Therefore

Ak ⊆ (X \ Bk) ⊆ Ak+1 ⊆ U and Ck ⊆ (X \ Dk) ⊆ Ck+1 ⊆ V

for every k ∈ ω. Put Nn = An ∩ Dn and Mn = Cn ∩ Bn . Let

M =
⋃

{Mn: n ∈ ω} and N =
⋃

{Nn: n ∈ ω}.
Sets q[M] and q[N] fulfill (2) in Frink’s theorem. Indeed, if k � n, then

Ak ∩ Dk ∩ Cn ∩ Bn ⊆ An ∩ Bn = ∅
and

An ∩ Dn ∩ Ck ∩ Bk ⊆ Cn ∩ Dn = ∅.

Consequently Mk ∩ Nn = ∅, for any k,n ∈ ω. Hence sets q[M] and q[N] are disjoint. Also, it is q[V ] ∪ q[N] = X/P . Indeed,
suppose that x /∈ V , then x ∈ U and there is k such that x ∈ Ak . Since x /∈ V , then x ∈ Dk for all k ∈ ω. We have x ∈ Ak ∩ Dk =
Nk ⊆ N . Therefore [x]P ∈ q[N]. Similarly, one gets q[U ] ∪ q[M] = X/P . Thus B fulfills (2). �

If P ⊆ Pseq is finite, then X/P is discrete, being a finite Hausdorff space. Whenever P ⊆ Pseq is countable and closed
under finite intersections, then X/P is a regular space with a countable base. Therefore, X/P is metrizable and separable.

3. Skeletal families and skeletal functions

A continuous surjection is called skeletal whenever for any non-empty open sets U ⊆ X the closure of f [U ] has non-
empty interior. If X is a compact space and Y Hausdorff, then a continuous surjection f : X → Y is skeletal if, and only
if Int f [U ] �= ∅, for every non-empty and open U ⊆ X . One can find equivalent notions almost-open or semi-open in the
literature, see [1] and [8]. Following J. Mioduszewski and L. Rudolf [11] we call such maps skeletal, compare [14, p. 413]. In
a fact, one can use the next proposition as a definition for skeletal functions.

Proposition 6. Let f : X → Y be a skeletal function. If an open set V ⊆ Y is dense, then the preimage f −1(V ) ⊆ X is dense, too.

Proof. Suppose that a non-empty open set W ⊆ X is disjoint with f −1(V ). Then the image cl f [W ] has non-empty interior
and cl f [W ] ∩ V = ∅, a contradiction. �

There are topological spaces with no skeletal map onto a dense in itself metrizable space. For example, the remainder
of the Čech–Stone compactification βN . Also, if I is a compact segment of connected Souslin line and X is metrizable, then
each skeletal map f : I → X is constant. Indeed, let Q be a countable and dense subset of f [I] ⊆ X . Suppose a skeletal
map f : I → X is non-constant. Then the preimage f −1(Q ) is nowhere dense in I as countable union of nowhere dense
subset of a Souslin line. So, for each open set V ⊆ I \ f −1(Q ) there holds Int f [V ] = ∅, a contradiction. Regular Baire space
X with a category measure μ, for a definition of this space see [12, pp. 86–91], gives an another example of a space with
no skeletal map onto a dense in itself, separable and metrizable space. In [3] A. Błaszczyk and S. Shelah are considered
separable extremally disconnected spaces with no skeletal map onto a dense in itself, separable and metrizable space. They
formulated the result in terms of Boolean algebra: There is a nowhere dense ultrafilter on ω if, and only if there is a complete,
atomless, σ -centered Boolean algebra which contains no regular, atomless, countable subalgebra.

A family P of open subsets of a space X is called a skeletal family, whenever for every non-empty open set V ⊆ X there
exists W ∈ P such that U ⊆ W and ∅ �= U ∈ P implies U ∩ V �= ∅. The following proposition explains connection between
skeletal maps and skeletal families.

Proposition 7. Let f : X → Y be a continuous function and let B be a π -base for Y . The family { f −1(V ): V ∈ B} is skeletal if, and
only if f is a skeletal map.
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Proof. Assume, that f is a skeletal map. Fix a non-empty open set V ⊆ X . There exists W ∈ B such that W �= ∅ and
W ⊆ Int cl f [V ]. Also, for any U ∈ B such that ∅ �= U ⊆ W there holds f −1(U ) ∩ V �= ∅. Indeed, if f −1(U ) ∩ V = ∅, then
U ∩ cl f [V ] = ∅, a contradiction. Thus the family { f −1(V ): V ∈ B} is skeletal.

Assume, that function f : X → Y is not skeletal. Then there exists a non-empty open set U ⊆ X such that Int cl f [U ] = ∅.
Since B is a π -base for Y , then for each W ∈ B there exists V ∈ B such that V ⊆ W and V ∩ f [U ] = ∅. The family
{ f −1(V ): V ∈ B} is not skeletal. �

It is well know—compare a comment following the definition of compact open-generated spaces in [15]—that all limit
projections are open in any inverse system with open bonding maps. And conversely, if all limit projections of an inverse
system are open, then so are all bonding maps. Similar fact holds for skeletal maps.

Proposition 8. If {Xσ ,πσ
� ,Σ} is an inverse system such that all bonding maps πσ

� are skeletal and all projections πσ are onto, then
any projection πσ is skeletal.

Proof. Fix σ ∈ Σ . Consider a non-empty basic set π−1
ζ (V ) for the limit lim←−{Xσ ,πσ

� ,Σ}. Take τ ∈ Σ such that ζ � τ and

σ � τ . We get π−1
ζ (V ) = π−1

τ ((πτ
ζ )−1(V )). Hence

πτ

[
π−1

ζ (V )
] = πτ

[
π−1

τ

((
πτ

ζ

)−1
(V )

)] = (
πτ

ζ

)−1
(V ),

the set πτ [π−1
ζ (V )] is open and non-empty. We have

πσ

[
π−1

ζ (V )
] = πτ

σ

[
πτ

[
π−1

ζ (V )
]]

,

since πτ
σ ◦ πτ = πσ . The bonding map πτ

σ is skeletal, hence the closure of πσ [π−1
ζ (V )] has non-empty interior. �

4. The open–open game

Players are playing at a topological space X in the open–open game. Player I chooses a non-empty open subset A0 ⊆ X
at the beginning. Then Player II chooses a non-empty open subsets B0 ⊆ A0. Player I chooses a non-empty open subset
An ⊆ X at the nth inning, and then Player II chooses a non-empty open subset Bn ⊆ An . Player I wins, whenever the union
B0 ∪ B1 ∪ · · · ⊆ X is dense. One can assume that Player II wins for other cases. The space X is called I-favorable whenever
Player I can be insured that he wins no matter how Player II plays. In other words, Player I has a winning strategy. A strategy
for Player I could be defined as a function

σ :
⋃{

T n: n � 0
} → T ,

where T is a family of non-empty and open subsets of X . Player I has a winning strategy, whenever he knows how to
define A0 = σ(∅) and succeeding An+1 = σ(B0, B1, . . . , Bn) such that for each game

(
σ(∅), B0, σ (B0), B1, σ (B0, B1), B2, . . . , Bn, σ (B0, B1, . . . , Bn), Bn+1, . . .

)

the union B0 ∪ B1 ∪ B2 ∪ · · · ⊆ X is dense. For more details about the open–open game see P. Daniels, K. Kunen and
H. Zhou [4].

Consider a countable sequence σ0, σ1, . . . of strategies for Player I. For a family Q ⊆ T let P (Q) be the minimal family
such that Q ⊆ P (Q) ⊆ T , and if {B0, B1, . . . , Bn} ⊆ P (Q), then σk(B0, B1, . . . , Bn) ∈ P (Q), and σk(∅) ∈ P (Q), for all σk .
We say that P (Q) is the closure of Q under strategies σk . In particular, if σ is a winning strategy and the closure of Q under
σ equals Q, then Q is closed under a winning strategy.

Lemma 9. If P is closed under a winning strategy for Player I, then for any open set V �= ∅ there is W ∈ P such that whenever U ∈ P
and U ⊆ W then U ∩ V �= ∅.

Proof. Let σ be a winning strategy for Player I. Consider an open set V �= ∅. Suppose that for any W ∈ P there is U W ∈ P
such that U W ⊆ W and U W ∩ V = ∅. Then Player II wins any game whenever he always chooses sets U W ∈ P , only. In
particular, the game

σ(∅), Uσ(∅), σ (Uσ(∅)), Uσ(Uσ(∅)), σ (Uσ(∅), Uσ(Uσ(∅))), Uσ(Uσ(∅),Uσ(Uσ(∅))
), . . .

would be winning for him, since all sets chosen by Player II:

Uσ(∅), Uσ(Uσ(∅)), Uσ(Uσ(∅),Uσ(Uσ(∅))
), . . . ;

are disjoint with V , a contradiction. �
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Theorem 10. If a ring P of open subsets of X is closed under a winning strategy and P ⊆ Pseq, then X/P is a completely regular space
and the QP -map q : X → X/P is skeletal.

Proof. Take a non-empty open subset V ⊆ X . Since P is closed under a winning strategy, there exists W ∈ P such that if
U ∈ P and U ⊆ W , then U ∩ V �= ∅, by Lemma 9. This follows q[U ] ∩ q[V ] �= ∅, for any basic set q[U ] such that U ⊆ W
and U ∈ P . Therefore q[W ] ⊆ cl q[V ], since {q[U ]: U ∈ P } is a base for the Q P -topology. The QP -map q : X → X/P is
continuous by Lemma 1. By Theorem 5, the space X/P is completely regular. �

Fix a π -base Q for a space X . Following [4], compare [10], any family C ⊂ [Q]ω is called a club filter whenever:
The family C is closed under ω-chains with respect to inclusion, i.e. if P1 ⊆ P2 ⊆ · · · is an ω-chain which consists of

elements of C , then P1 ∪ P2 ∪ · · · ∈ C ; For any countable subfamily A ⊆ Q, where Q is the π -base fixed above, there exists
P ∈ C such that A ⊆ P ; and

(S) For any non-empty open set V and each P ∈ C there is W ∈ P such that if U ∈ P and U ⊆ W , then U meets V , i.e. U ∩ V �= ∅.

In fact, the condition (S) gives reasons to look into I-favorable spaces with respect to skeletal families. Any P closed
under a winning strategy for Player I fulfills (S), by Lemma 9. There holds, see [4, Theorem 1.6], compare [10, Lemmas 3
and 4]: A topological space has a club filter if, and only if it is I-favorable. In the next part we modify a little the definition of
club filters. We introduce T -clubs, i.e. club filters with some additional properties.

Suppose a completely regular space X is I-favorable. Let T be the family of all cozero subsets of X . For each W ∈ T fix
sequences {U W

n : n ∈ ω} and {V W
n : n ∈ ω} witnessing W ∈ Tseq . First, for each k choose σ ∗

k (∅) ∈ T . Next, put σ ∗
2n(W ) = U W

n

and σ ∗
2n+1(W ) = V W

n , and σ ∗
k (S) = σ ∗

k (∅) for other S ∈ ⋃{T n: n � 0}. Then, a family P ⊆ T is closed under strategies σ ∗
k ,

whenever P ⊆ Pseq . Also, P is closed under finite unions, whenever it is closed under the strategy which assigns the union
A0 ∪ A1 ∪ · · · ∪ An to each sequence (A0, A1, . . . , An). And also, P is closed under finite intersections, whenever it is closed
under the strategy which assigns the intersection A0 ∩ A1 ∩ · · · ∩ An to each (A0, A1, . . . , An).

Consider a collection C = {P (Q): Q ∈ [T ]ω}. Assume that each P ∈ C is countable and closed under a winning strategy
for Player I and all strategies σ ∗

k , and closed under finite intersections and finite unions. Then, the family C is called T -club.
By the definitions, any T -club C is closed under ω-chains with respect to the inclusion. Each P ∈ C is a countable ring
of sets and P ⊆ Pseq and it is closed under a winning strategy for Player I. By Theorem 10, the Q P -map q : X → X/P is
skeletal and onto a metrizable separable space, for every P ∈ C .

Thus, we are ready to build an inverse system with skeletal bonding maps onto metrizable separable spaces. Any T -club
C is directed by the inclusion. For each P ∈ C it is assigned the space X/P and the skeletal function qP : X → X/P . If
P , R ∈ C and P ⊆ R, then put qR

P ([x]R) = [x]P . Thus, we have defined the inverse system {X/R,qR
P , C}. Spaces X/R are

metrizable and separable, bonding maps qR
P are skeletal and the directed set C is σ -complete.

Theorem 11. Let X be an I-favorable completely regular space. If C is a T -club, then the limit Y = lim←−{X/R,qR
P , C} contains a dense

subspace which is homeomorphic to X.

Proof. For any P ∈ C , put f (x)P = qP (x). We have defined the function f : X → Y such that f (x) = { f (x)P }. If R, P ∈ C
and P ⊆ R, then qR

P ( f (x)R) = f (x)P . Thus f (x) is a thread, i.e. f (x) ∈ Y .
The function f is continuous. Indeed, let πP be the projection of Y to X/P . By [5, Proposition 2.5.5], the family

{π−1
P (qP [U ]): U ∈ P ∈ C} is a base for Y . Also,

f −1(π−1
P

(
qP [U ])) = q−1

P
(
qP [U ]) = U

holds for any U ∈ P ∈ C .
Verify that f is injection. Let x, y ∈ X and x �= y. Take P ∈ C such that x ∈ U and y ∈ V for some disjoint sets U , V ∈ P .

Sets qP [U ] and qP [V ] are disjoint, hence π−1
P (qP [U ]) and π−1

P (qP [V ]) are disjoint neighbourhoods of f (x) and f (y),
respectively.

There holds f [U ] = f [X] ∩ π−1
P (qP [U ]), whenever U ∈ P ∈ C . Indeed, f [U ] ⊆ π−1

P (qP [U ]) implies f [U ] ⊆ f [X] ∩
π−1

P (qP [U ]). Suppose, there exists y ∈ π−1
P (qP [U ]) ∩ f [X] such that y /∈ f [U ]). Take x ∈ X such that f (x) = y and x /∈ U .

We get πP ( f (x)) = qP (x) /∈ qP [U ], but this follows f (x) /∈ π−1
P (qP [U ]), a contradiction.

Thus, f is open, since T = ⋃
C is a base for X . But f [X] ⊆ Y is dense, since the family {π−1

P (qP [U ]): U ∈ P ∈ C} is a
base for Y . �
5. Reconstruction of I-favorable spaces

Now, we are ready to prove the announce analog of Shchepin’s openly generated spaces.
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Theorem 12. If X is an I-favorable compact space, then

X = lim←−
{

Xσ ,πσ
� ,Σ

}
,

where {Xσ ,πσ
� ,Σ} is a σ -complete inverse system, all spaces Xσ are compact and metrizable, and all bonding maps πσ

� are skeletal
and onto.

Proof. Let C be a T -club. Put
{

Xσ ,πσ
� ,Σ

} = {
X/R,qR

P , C
}
.

Each space Xσ = X/R has countable base, by the definition of T -club. Also, each Q R -map qR : X → X/R is continuous, by
Lemma 1. Hence, any space Xσ is compact and metrizable, by Lemma 4. Each Q R -map qR : X → Xσ is skeletal, by Theo-
rem 10. Thus, all bonding maps πσ

� are skeletal, too. The space X is homeomorphic to a dense subspace of lim←−{Xσ ,πσ
� ,Σ},

by Theorem 11. We get X = lim←−{Xσ ,πσ
� ,Σ}, since X is compact.

The inverse system {Xσ ,πσ
� ,Σ} is σ -complete. Indeed, suppose that P0 ⊆ P1 ⊆ · · · and all Pn ∈ C . Let P =⋃{Pn: n ∈ ω} ∈ C . Put

(
h
([x]P

))
Pn

= qP
Pn

([x]P
) = [x]Pn .

Since maps qP
Pn

are continuous, we have defined a continuous function h : X/P → lim←−{X/Pn,q
Pn+1
Pn

}. Whenever {[xn]Pn } is

a thread in the inverse system {X/Pn,q
Pn+1
Pn

}, then there exists x ∈ ⋂{[xn]Pn : n ∈ ω}, since sets [xn]Pn consist of a centered

family of non-empty closed sets in a compact space X . Thus h−1({[xn]Pn }) = [x]P ∈ X/P , hence h is a bijection. �
To obtain the converse of Theorem 12 one should consider an inverse system of compact metrizable spaces with all

bonding maps skeletal. Such assumptions are unnecessary. So, we assume that spaces Xσ have countable π -bases, only.

Theorem 13. Let {Xσ ,πσ
� ,Σ} be a σ -complete inverse system such that all bonding maps πσ

� are skeletal and all projections πσ are
onto. If all spaces Xσ have countable π -base, then the limit lim←−{Xσ ,πσ

� ,Σ} is I-favorable.

Proof. Let � denotes the relation which directs Σ . Describe the following strategy for a match playing at the limit X =
lim←−{Xσ ,πσ

� ,Σ}. Assume that Players play with basic sets of the form π−1
σ (V ), where V is non-empty and open in Xσ and

σ ∈ Σ .
Player I chooses an open non-empty set A0 ⊆ X at the beginning. Let B0 = {B0} be a respond of Player II. Take σ0 ∈ Σ

such that B0 = π−1
σ0

(V 0
0 ) ⊆ A0. Fix a countable π -base {V 0

0 , V 0
1 , . . .} for Xσ0 .

Assume, that we have just settled indexes σ0 � σ1 � · · · � σn and π -bases {V k
0, V k

1, . . .} for Xσk , where 0 � k � n. Addi-

tionally assume, that for any V k
m there exists V k+1

j such that π−1
σk+1

(V k+1
j ) = π−1

σk
(V k

m). Now, Player I plays each set from

An+1 = {
π−1

σk

(
V k

m

)
: k � n and m � n

}

one after the other. Let Bn+1 denote the family of all responds of Player II, for innings from An+1. Choose σn+1 � σn and a
countable π -base {V n+1

0 , V n+1
1 , . . .} for Xσn+1 which contains the family

{(
π

σn+1
σk

)−1(
V k

m

)
: k � n and m ∈ ω

}

and such that for any V ∈ Bn+1 there exists V n+1
j such that π−1

σn+1
(V k+1

j ) = V .
Let σ = sup{σn: n ∈ ω} ∈ Σ . Any set πσn [

⋃{⋃ Bn: n ∈ ω}] is dense in Xσn , since it intersects any π -basic set V n
j ⊆ Xσn .

The inverse system is σ -complete, hence the set πσ [⋃{⋃ Bn: n ∈ ω}] is dense in Xσ . The projection πσ is skeletal by
Proposition 8. So, the set

⋃{⋃ Bn: n ∈ ω} is dense in X by Proposition 6. �
A continuous and open map is skeletal, hence every compact openly generated space is I-favorable.

Corollary 14. Any compact openly generated space is I-favorable.

The converse is not true. For instance, the Čech–Stone compactification βN of positive integers with the discrete topology
is I-favorable and extremally disconnected. But βN is not openly generated, since a compact extremally disconnected and
openly generated space has to be discrete, see Theorem 11 in [13].
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