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Motivated by arithmetic applications, we introduce the notion of a partial zeta
function which generalizes the classical zeta function of an algebraic variety de"ned
over a "nite "eld. We then explain two approaches to the general structural properties
of the partial zeta function in the direction of the Weil-type conjectures. The "rst
approach, using an inductive "bred variety point of view, shows that the partial zeta
function is rational in an interesting case, generalizing Dwork's rationality theorem.
The second approach, due to Faltings, shows that the partial zeta function is always
nearly rational. ( 2000 Academic Press
1. INTRODUCTION

Let F
q
be the "nite "eld of q elements of characteristic p. Let X be an a$ne

algebraic variety over F
q
, embedded in some a$ne space An. That is, X is

de"ned by a system of polynomial equations

F
1
(x

1
,2, x

n
)"2"F

r
(x

1
,2, x

n
)"0,

where each F
i
is a polynomial de"ned over F

q
. Let d

1
,2, d

n
be n positive

integers. For each positive integer k, let

X
d1 ,2, dn

(k, X)"Mx3X(F1
q
) Dx

1
3F

qd1k
,2,x

n
3F

qdnk
N .

That is, the degree over F
q

of the ith coordinate x
i
of x"(x

1
,2, x

n
)3X

divides d
i
k for 14i4n. Let

N
d1 ,2, dn

(k, X)"dX
d1 ,2, dn

(k, X ).
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The number N
d1 ,2, dn

(k, X ) counts the points of X whose coordinates lie in
di!erent sub"elds of F1

q
. We would like to understand this sequence of

integers N
d1 ,2,dn

(k, X ) as k varies. As usual, it is su$cient to understand the
following generating function.

DEFINITION 1.1. Given n positive integers d
1
,2, d

n
, the associated partial

zeta function Z
d1 ,2, dn

(X, ¹) of X/F
q
is de,ned to be the following formal power

series

Z
d1 ,2, dn

(X, ¹ )"exp A
=
+
k/1

N
d1 ,2,dn

(k, X )

k
¹kB .

In the special case that d
1
"2"d

n
"d, the number N

d ,2, d (k, X) is just
the number of F

q dk-rational points on X. The partial zeta function
Z

d ,2, d
(X, ¹) then becomes the classical zeta function Z(X? F

qd, ¹ ) of the
variety X ?F

qd , which is a rational function by Dwork's rationality theorem
[Dw1] and satis"es a suitable Reimann hypothesis by Deligne's theorem
[De2] on the Weil conjectures.

Our motivation to introduce the above more general partial zeta function
comes directly from potential applications in number theory, combinatorics,
and coding theory. The idea of counting only part of the rational points
corresponds to the classical partial character sum problem in number theory.
For arbitrary partial counting, the problem would be too di$cult and one
cannot expect a good mathematical structure for it. Our partial counting is
not arbitrary as each coordinate x

i
is restricted to run over a sub"eld (not an

arbitrary subset of F1
q
). Thus, it seems reasonable to expect good mathemat-

ical properties of the partial zeta function Z
d1 ,2, dn

(X, ¹ ), generalizing what
we know about the Weil conjectures for the classical zeta function Z(X, ¹).
For certain plane curves of Artin-Schreier and Kummer type, it was observed
in [W1] that the partial counting problem (as well as certain partial one
variable character sum problems) has a fairly satisfactory solution by exploit-
ing Weil's work on the Reimann hypothesis for curves over "nite "elds. In the
present paper, we consider the general and higher dimensional case using the
theory of l-adic cohomology. The situation is naturally more complicated.
We have

THEOREM 1.2. ¸et Md
1
, d

2
,2, d

n
N be a sequence of positive integers which

can be rearranged such that d
1
Dd

2
D2Dd

n
. ¹hen the partial zeta function

Z
d1,2, dn

(X, ¹ ) is a rational function satisfying a suitable Riemann hypothesis.
¹hat is, there are ,nitely many algebraic integers a

a
and b

b
depending on X/F

q
and Md

1
,2, d

n
N such that

N
d1 ,2, dn

(k, X )"+
a

ak
a
!+

b

bk
b
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for every positive integer k, where the absolute value of each a
a
(resp. b

b
) is an

integral power of Jq.

This result came to my attention in late 1993 in connection with my initial
study of Dwork's conjecture [Dw2] on the p-adic meromorphic continuation
of his unit root zeta function. The idea is to view X as a sequence of "bred
varieties

X"X
n

fn
PX

n~1
fn~1&" X

n~2
2

f2
PX

1

such that

N
d1 ,2dn

(k, X )"dMx3X
n
(F

qdnk
) D f

j`1 323
f
n
(x)3X

j
(F

qdjk), 14j4nN.

The desired rationality of the partial zeta function then follows from an
inductive (or iterated) argument using Newton's formula and the theory of
l-adic cohomology. From the "bred variety point of view, the varieties X

i
do

not have to be a$ne. They can be any scheme of "nite type over F
q
. Our proof

works for more general partial ¸-functions attached to a character.
If the integers d

i
do not satisfy the dividing condition, the partial zeta

function should not be rational in general but should be nearly rational in
some sense. I explained this problem to Gerd Faltings in the summer of 1999
when I was visiting the Max-Planck Institute. Faltings showed me a clever
geometric construction which reduces the problem to a &&more general''
Lefschtez "xed point theorem in l-adic cohomology. His idea is to construct
a new variety >(d

1
,2, d

n
, X )/F

q
with an automorphism p of order

d"[d
1
,2, d

n
] (the least common multiple) such that

N
d1 ,2, dn

(k, X )"dMy3>(d
1
,2, d

n
, X )(F1

q
) Dp
3
Frobk(y)"yN,

where Frob denotes the qth power Frobenius map acting on >. The general
l-adic trace formula then implies that the partial zeta function is indeed
nearly rational in the following precise sense.

THEOREM 1.3 (FALTINGS). ¸et Md
1
,2, d

n
N be n positive integers. ¸et

d"[d
1
,2, d

n
] be the least common multiple of the d

i
. ¸et f

d
be a primitive dth

root of unity. ¹here are d rational function R
j
(¹ ) (14j4d) with R

j
(0)"1 and

with algebraic integer coe.cients such that

Z
d1,2, dn

(X, ¹)"
d

<
j/1

R
j
(¹f jd ).
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Furthermore, each rational function R
j
(¹ ) satis,es a suitable Riemann hypoth-

esis. ¹hat is, there are ,nitely many algebraic integers a
aj

and b
bj

depending on
X/F

q
and Md

1
,2, d

n
N such that

N
d1 ,2,dn

(k, X )"
d
+
j/1

fj
d A+

a

ak
aj
!+

b

bk
bjB

for every positive integer k, where the absolute value of each a
aj

(resp. b
bj

) is an

integral power of Jq.

This theorem shows that for many purposes, the partial zeta function is as
good as a rational function. In the special case that d42, then fj

d
"$1 and

the partial zeta function is actually rational, which also follows from The-
orem 1.2. The author does not know if one can prove Theorem 1.2 by
Faltings' method. It should be noted that we do not claim that the rational
function R

j
(¹ ) in Theorem 1.3 have rational integer coe$cients, which

would imply that the partial zeta function is rational. However, presumably,
the rational functions R

j
(¹) have coe$cients which are integers in the dth

cyclotomic "eld Q(f
d
). Although the partial zeta function is not expected to

be a rational function in general, the author has not found a counterexample.
The above results show that there are powerful theoretical methods avail-

able to handle partial zeta functions. Virtually, all theories developed for the
Weil conjectures, p-adic or l-adic (particularly Deligne's main theorem), can
be used to study the partial zeta function. For practical applications, how-
ever, one needs to have precise and sharp information on the weights and
slopes about the zeros and poles of the partial zeta function. This can be quite
di$cult and complicated in general, going beyond the Weil conjectures even
for some geometrically very simple varieties. The new arithmetic parameters
Md

1
,2,d

n
N allow one to ask many questions about the variation of the partial

zeta function Z
d1,2, dn

(X, ¹) when some of the arithmetic parameters
Md

1
,2,d

n
N vary. These variation questions seem to have important arithme-

tic meaning; see Section 4 for further remarks and questions.
As a preliminary p-adic result, we remark that one can easily obtain the

following theorem from the Ax}Katz theorem [Ka]. The proof is left to the
reader as an excercise.

THEOREM 1.4. ¸et d"[d
1
,2, d

n
]. ¸et D

j
(14j4r) be the degree of the

polynomial F
j
. ¸et k (d

1
,2, d

n
; D

1
,2,D

r
) denote the smallest nonnegative

integer which is at least as large as

d
1
#2#d

n
!(D

1
#2#D

r
)d

max
14j4r

D
j

.
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¹hen for every positive integer k, we have the p-adic estimate

ord
q
N

d1,2, dn
(k, X)5kl(d

1
,2, d

n
; D

1
,2,D

r
) .

Equivalently, for every reciprocal zero (resp. reciprocal pole) a occurring in
¹heorems 1.2}1.3, we have the p-adic estimate

ord
q
(a)5l (d

1
,2, d

n
; D

1
,2, D

r
) .

2. RATIONALITY OF PARTIAL ZETA FUNCTIONS

In this section, we prove Theorem 1.2 and its generalization to partial
¸-functions attached to a constructible l-adic sheaf, where l is a prime
number di!erent from p. The word &&variety'' over F

q
in this paper means

a separated scheme of "nite type over F
q
.

For a variety X over F
q

and a positive integer k, we de"ne

X(k)"X (F
qk
)

to be the set of F
qk-rational points on X. Let

X"X
n

fn
PX

n~1
fn~1&"X

n~2
2

f2
PX

1

be a sequence of "bred varieties over F
q
. That is, the varieties X

i
and the

morphisms f
i
are all de"ned over F

q
. For 14i(j4n, de"ne

g
ij
"f

i`1 323
f
j
: X

j
PX

i
.

Let d
1
Dd

2
D2 Dd

n
be a sequence of positive integers such that each divides the

next. For 14j4n, de"ne

X
d1 ,2, dj

(k, X
j
)"Mx3X

j
(d

j
k) Dg

ij
(x)3X

i
(d

i
k) , 14i(jN.

Thus, for j'1, we have

X
d1,2, dj

(k, X
j
)"Mx3X

j
(d

j
k) D f

j
(x)3X

d1 ,2, dj~1
(k, X

j~1
)N.

Let E
j

be a constructible l-adic sheaf on X
j
/F

q
. Let Frob denote the

Frobenius map on E
j
induced by the qth power Frobenius map on X

j
. For
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positive integers k and h, we de"ne the partial character sum

S
d1 ,2, dj

(Eh
j
, X

j
(d

j
k) )" +

x|Xd1
,2,

dj (k,Xj)

Tr(Frobhdjk DE
jx

), (2.1)

where E
jx

denotes the "bre of E
j
at the geometric point x of X

j
. In particular,

taking j"1, we have

S
d1

(Eh
1

, X
1
(d

1
k))" +

x|X1 (d1k)

Tr(Frobhd1k DE
1x

).

Taking h"1, the above equation becomes the following standard complete
character sum over X

1
(d

1
k) :

S
d1

(E
1
, X

1
(d

1
k))" +

x|X1 (d1k)

Tr(Frobd1k DE
1x

). (2.2)

The ¸-function attached to the sequence of character sums in (2.2) is rational
by Grothendieck's rationality theorem [Gr], where the base variety is
X

1
?F

q d1
. We want to extend this result to the ¸-function attached to the

sequence of sums in (2.1).
We have

THEOREM2.1. ¸et d
1
Dd

2
D2Dd

n
. ¸et E be a constructible l-adic sheaf on X

n
.

¸et h be another positive integer. ¹here are a ,nite number of integers a
m

and
constructible l-adic sheaves F

m
on X

1
such that for every positive integer k, we

have the formula

S
d1 ,2, dn

(Eh , X
n
(d

n
k))"+

m

a
m
S
d1

(F
m
, X

1
(d

1
k)). (2.3)

Furthermore, if E is mixed on X
n
of weight at most w, then each F

m
is mixed on

X
1

of weight at most

hd
n
w#2

n
+
i/2

d
i
(dimX

i
!dimX

i~1
).

Proof. We shall use the following universal formula

Tr(/h D<)"
h
+
s/1

(!1)s~1s )Tr(/ DSyms<?'h~s< ), (2.4)

which holds for any linear map / acting on a "nite dimensional vector space
<. This formula can be easily proved; see Lemma 4.1 in [W2]. It is an
improvement of Newton's formula on symmetric functions. The universal
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formula in (2.4) shows that without loss of generality, we can assume that
h"1 in proving Theorem 2.1.

Now, with h"1, we can write

S
d1 ,2, dn

(E, X
n
(d

n
k))" +

x|Xd1
,2,

dn~1(k,Xn~1)

+
y|f~1

n (x) (dnk)

Tr(Frobdnk DE
y
) ,

where the "bre f~1
n

(x) is viewed as a variety de"ned over F
qdn~1k and

f~1
n

(x)(d
n
k) denotes the set of F

qdnk-rational points on f~1
n

(x). Applying the
relative l-adic trace formula to the morphism f

n
:X

n
PX

n~1
, we deduce that

for all x3X
d1 ,2, dn~1

(k, X
n~1

),

+
y|f~1

n (x)(dnk)

Tr(Frobdnk DE
y
)" +

m50

(!1)m~1Tr(Frobdn~1k dn
dn~1

D (Rmf
n!
E)

x
),

where Rmf
n!
E denotes the l-adic higher direct image with compact support,

which is a constructible l-adic sheaf on X
n~1

. It follows that

S
d1 ,2, dn

(E, X
n
(d

n
k))" +

m50

(!1)m~1S
d1 ,2, dn~1

((Rmf
n!
E )

dn
dn~1 ,X

n~1
(d

n~1
k)).

Iterating this procedure, or by induction, we get the required constructible
sheaves F

m
and the integers a

m
such that (2.3) holds. If E is mixed of weight at

most w, Deligne's main theorem [De2] shows that each higher direct image
sheaf Rmf

n!
E of E is mixed of weight at most w#2(dimX

n
!dimX

n~1
). This,

together with our inductive proof, shows that each F
m

is also mixed. The
upper bound on the weights of F

m
follows from the above inductive proof. It

can also be checked directly from a trivial archimedian estimate. The proof of
Theorem 2.1 is complete.

THEOREM 2.2. =ith the same assumption as in ¹heorem 2.1, the partial
¸-function

¸
d1 ,2,dn

(Eh, ¹)"expA
=
+
k/1

S
d1 ,2, dn

(Eh, X
n
(d

n
k))

k
¹kB

is a rational function. If E is mixed of integral weights, then the partial
¸-function ¸

d1 ,2, dn
(Eh, ¹ ) satis,es a suitable Riemann hypothesis.

Proof. Applying the usual l-adic trace formula to the right side of (2.3),
we obtain

¸
d1 ,2, dn

(Eh, ¹ )"<
m

¸ (F
m
/X

1
?F

qd1
, ¹)am.
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By Grothendieck's rationality theorem, each classical ¸-function
¸(F

m
/X

1
?F

qd1
, ¹) is a rational function. Since the powers a

m
are integers, we

conclude that the partial ¸-function ¸
d1 ,2, dn

(Eh, ¹ ) is indeed rational.
Theorem 1.2 is the special case of Theorem 2.2 by taking E to be the

constant sheaf Zl , X
n
"X and X

i
"Ai for 14i(n, with the map f

i
(1(j4n) being the natural projection

f
j
: (x

1
,2, x

j
)3X

j
P(x

1
,2, x

j~1
)3X

j~1
.

In order to get a good estimate on the weights of the zeros and poles of the
partial zeta function in various cases, the above inductive proof shows that
we need to understand how geometrically constant sheaves occur in various
combinations of tensor products and higher direct images arising from E.
This is related to representation theory of the various monodromy groups of
the sheaves arising from the above inductive proof.

Remark. Deligne's conjecture [De2] says that every constructible sheaf is
mixed. This seems still open.

3. NEAR RATIONALITY OF PARTIAL ZETA FUNCTIONS

In this section, we explain Faltings' proof of his near rationality theorem
(Theorem 1.3). The notations are the same as in the Introduction.

Let d"[d
1
,2, d

n
] be the least common multiple of the positive integers

d
1
,2, d

n
. Let X be an a$ne variety over F

q
, embedded in An. The d-fold

product Xd of X has two actions. One is the qth power Frobenius action
denoted by Frob. Another is the automorphism p on Xd de"ned by the cyclic
shift

p (y
1
,2, y

d
)"(y

d
, y

1
,2, y

d~1
),

where y
j
denotes the jth component (14j4d) of a point y"(y

1
, . . . , y

d
) on

the d-fold product Xd. Thus, each component y
j
is a point on X, not the jth

coordinate in An of some point on X. Write

y
j
"(y

1j
,2, y

nj
),

where y
ij

(14i4n) is the ith coordinate in An of the point y
j
3X. For each

14i4n, de"ne a morphism

z
i
: XdPAd
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by

z
i
(y)"z

i
(y

1
,2, y

d
)"(y

i1
, y

i2
,2, y

id
).

Let >">(d
1
,2, d

n
,X ) be the subvariety of Xd de"ned by

z
i 3

pdi"z
i

for all 14i4n. Thus, a point y"(y
1
,2, y

d
)3Xd is on the subvariety

>(d
1
,2, d

n
, X ) if and only if

y
ij
"y

i (j`di )
, 14i4n, 14j4d, (3.1)

where j#d
i
is taken to be the smallest positive residue of j#d

i
modulo d. It

is clear that > is stable under the action of p.
Let y"(y

1
,2, y

d
) be a geometric point of > (d

1
,2, d

n
, X). One checks

that

p
3
Frobk(y)"y8yqk

j
"y

j`1
, 14j4d, (3.2)

equivalently, if and only if

yq k

ij
"y

i ( j`1)
, 14i4n, 14j4d. (3.3)

Iterating Eq. (3.3) d
i
times, we get

yqdik

ij
"y

i (j`di )
.

Since y is on >(d
1
,2, d

n
, X) by (3.1), we deduce that

yq dik

ij
"y

ij
.

This shows that every "xed point y of p
3
Frobk acting on>(d

1
,2, d

n
, X) is

uniquely determined by y
1
3X such that the ith coordinate y

i1
of y

1
3X is in

the "eld F
qdik

for all 14i4n. That is,

p
3
Frobk (y)"y8 y

1
3X

d1 ,2, dn
(k, X).

Thus,

N
d1 ,2, dn

(k, X)"dMy3> (d
1
,2, d

n
, X)(F1

q
) Dp
3
Frobk (y)"yN .
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The l-adic trace formula implies that

N
d1 ,2, dn

(k, X )"
2$*. (Y)

+
a/0

(!1)a~1Tr(p
3
Frobk DHa

c
(>?F1

q
)) ,

where Ha
c
denotes the l-adic cohomology with compact support. As p com-

mutes with Frob, we can write

Tr(p
3
Frobk DHa

c
(>?F1

q
))"+

j

a
aj

bk
aj

,

where each a
aj

is an eigenvalue of p and each b
aj

is an eigenvalue of Frob.
Since pd"1, each a

aj
is a dth root of unity. By Deligne's theorem [De2], each

b
aj

has complex absolute value qwaj@2, where w
aj

is an integer satisfying
04w

aj
4a42dim(> ). Theorem 1.3 is proved.

To get further and more precise results in various interesting special cases,
one needs to understand the geometry of the a$ne variety > (d

1
,2, d

n
, X),

such as its dimension, geometric irreducibility, and number of components.
None of these simple questions seems to have a clean answer. Since >, is
a$ne, we do know, by the Lefschetz a$ne theorem, that Ha

c
(>?F1

q
)"0 for

04a4dim(>). Ideally, in certain nice cases, one would hope that
Ha

c
(>? F1

q
)"0 for dim(>)(a(2dim(>).

In the case that d
1
Dd

2
D2Dd

n
, Theorem 1.2 suggests that the eigenvalues of

p acting on Ha
c
(>?F1

q
) might be $1. Is this true? If so, it would give a new

proof of Theorem 1.2 and perhaps some new information as well. If not, it
would give some interesting cancellation information on the Frobenius
eigenvalues. Theorem 1.3 can be generalized somewhat. We state one gener-
alization here. The proof is left to the reader since it is completely similar to
the above proof.

Let Md
1
,2, d

n
N be n positive integers. For each 14i4n, let

f
i
: XPX

i

be a morphism of algebraic varieties de"ned over F
q
. For each positive integer

k, let

X
d1 ,2, dn

(k, f )"Mx3X (F1
q
) D f

i
(x)3X

i
(F

qdi k
), 14i4nN.

Let

N
d1 ,2, dn

(k, f )"dX
d1 ,2dn

(k, f ) .
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Assume that this number is "nite for all k, which is the case if and only if the
map

f : XPX
1
]2]X

n
, f (x)"( f

1
(x) ,2, f

n
(x))

is set theoretically "nite. De"ne

Z
d1 ,2,dn

( f, ¹)"exp A
=
+
k/1

N
d1,2, dn

(k, f )

k
¹kB .

THEOREM 3.1. Assume that the map

f :XPX
1
]2]X

n
, f (x)"( f

1
(x) ,2, f

n
(x))

is set theoretically injective. ¹hen, there are d rational functions R
j
(¹)

(14j4d) with R
j
(0)"1 and with algebraic integer coe.cients such that

Z
d1,2, dn

( f, ¹)"
d
<
j/1

R
j
(¹ )fjd .

Furthermore, each rational function R
j
(¹) satis,es a suitable Riemann hypo-

thesis.

Theorem 1.3 is the special case of Theorem 3.1 by taking X6An, X
i
"A1,

and the map f
i
:

f
i
: (x

1
,2, x

n
)3XPx

i
3X

i
"A1.

In this case, it is clear that the map

f : (x
1
,2, x

n
)3XP(x

1
,2, x

n
)3An

is an embedding. It may be of interest to know if Theorem 3.1 can be further
generalized by assuming only that the map f is "nite.

4. FURTHER REMARKS

In this "nal section, we brie#y discuss some examples and their connec-
tions with other more classical problems.

For a concrete example, let X be the rational surface

x2
1
"x

2
(x

2
!1)(x

2
!x

3
)
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in A3, which is also the universal level 2 elliptic curve parametrized by x
3
. In

this case, the partial zeta function Z
d,d,1

(X, ¹) is rational by Theorem 1.2.
One can show that Z

d,d,1
(X, ¹) is essentially the quotient of two Hecke

polynomials. The integer d in this example corresponds to the weight of
modular forms. Although the degree of each Hecke polynomial is known in
terms of dimensions of modular forms, the exact number of zeros (resp. poles)
of Z

d,d,1
(X, ¹) is not known due to the possible cancellation of zeros. This

seems to be a deep problem. The precise weight estimate of zeros and poles of
Z

d,d,1
(X, ¹ ) is equivalent to the Ramanujan}Peterson conjecture. Very little

is known about the slopes of the zeros and poles of Z
d,d,1

(X, ¹).The slope
estimate of the zeros and poles of Z

d,d,1
(X, ¹) is closely related to the p-adic

Ramanujan}Peterson conjecture. The p-adic variation of the slopes as d va-
ries p-adically is closely related to Gouve( a}Mazur's conjecture on modular
forms; see [W2] for further information on these p-adic questions.

For a more general but still concrete example, let X be an a$ne hypersur-
face in An. Let d

1
Dd

2
D2Dd

n
. The partial zeta function Z

d1 ,2, dn
(X, ¹ ) is rational

by Theorem 1.2. A simple heuristic argument shows that on the average, one
would expect that

N
d1,2, dn

(k, X)"qk (d1`2`dn~1)#O(qk(d1`2`dn~1)@2). (4.1)

It would be interesting to establish such sharp estimates in various important
cases arising from applications. For instance, if d

i
"d for all 14i4n, then

(4.1) is true for a su$ciently smooth a$ne hypersurface X. This is a conse-
quence of Deligne's theorem [De1]. If d

1
"1 and d

i
"d for all 24i4n, then

one can show that estimate (4.1) is also true if X is a su$ciently nice family
(Lefschetz pencil) of hypersurfaces in An~1 parametrized by x

1
. Again, the

exact number of zeros and poles of the partial zeta function Z
1,d ,2, d

(X, ¹)
seems to be out of reach due to possible cancellation of zeros. In this example,
the reader may be more comfortable using the "bred variety version and
considering a nice family of smooth projective hypersurfaces. It would be
important for applications to have a systematic and thorough study of the
estimate of type (4.1) by fully exploiting the theory of l-adic cohomology and
by "nding simple conditions on X for which estimate (4.1) holds. A similar
question can be asked in the more general situation when the d

i
's do not

satisfy the dividing condition. In this case, one would need to understand the
detailed geometry of the variety> (d

1
,2, d

n
, X) in Faltings' construction and

hopefully establish some strong cohomological vanishing theorems. Very
little is known.

The p-adic variation of the partial zeta function is closely related to
Dwork's conjecture [Dw2]. As an example, let us consider the special case

d
1
"2"d

r
"1, d

r`1
"2"d

n
"d#pmD,
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where 14r(n is a "xed positive integer and D is some positive integer. Let

f :XPAr, (x
1
,2,x

n
)P(x

1
,2,x

r
)

be the natural projection map. It is not hard to show that for certain choices
of D, we have the congruence

Z
1 ,2,1,d`pmD ,2,d`pmD

(X, ¹),Z
1 ,2,1,d`pm`1D ,2,d`pm`1D

(X, ¹ ) (modpm )

for all positive integers m. This p-adic continuity relation implies that the
p-adic limit

lim
m?=

Z
1 ,2,1,d`pmD ,2,d`pmD

(X, ¹)"¸*d+ (0, f, ¹ )

exists as a p-adic power series. This limiting function coincides with Dwork's
slope zero ¸-function attached to the family f. In terms of p-adic eH tale
cohomology, one derives the formula

¸*d+(0, f, ¹)" <
i50

¸ ((Ri f!Zp
)d, ¹)(~1)i~1,

where the ¸-factor on the right side denotes the ¸-function of the dth power
(iterate) of the relative p-adic eH tale cohomology Rif!Zp

with compact support.
Dwork's conjecture says that the ¸-function ¸*d+(0, f, ¹) is p-adic meromor-
phic; see the survey paper [W6] for further information and [W3-5] for the
proof of Dwork's conjecture.

It is our hope that the observations and questions included in this short
paper would give adequate motivation for interested readers to study further
properties of the partial zeta function and to explore their potential applica-
tions.
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