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The relationship between the membrane voltage and the gating of voltage activated ion channels and other
systems have been a problem of great current interest. Unfortunately, reliable molecular simulations of
external voltage effects present a major challenge, since meaningful converging microscopic simulations are
not yet available and macroscopic treatments involve major uncertainties in terms of the dielectric used and
other key features. This work extends our coarse grained (CG) model to simulations of membrane/protein
systems under external potential. Special attention is devoted to a consistent modeling of the effect of
external potential due to the electrodes, emphasizing semimacroscopic description of the electrolytes in the
solution regions between the membranes and the electrodes, as well as the coupling between the combined
potential from the electrodes plus the electrolytes and the protein ionized groups. We also provide a clear
connection to microscopic treatment of the electrolytes and thus can explore possible conceptual problems
that are hard to resolve by other current approaches. For example, we obtain a clear description of the charge
distribution in the entire electrolyte system, including near the electrodes in membrane/electrodes systems
(where continuum models do not seem to provide the relevant results). Furthermore, the present treatment
provides an insight on the distribution of the electrolyte charges before and after equilibration across the
membrane, and thus on the nature of the gating charge. The different aspects of themodel have been carefully
validated by considering problems ranging for the simple Debye–Huckel, and the Gouy–Chapman models to
the evaluation of the electrolyte distribution between two electrodes, as well as the effect of extending the
simulation system by periodic replicas. Overall the clear connection to microscopic descriptions combined
with the power of the CG modeling seems to offer a powerful tool for exploring the balance between the
protein conformational energy and the interaction with the external potential in voltage activated channels.
To illustrate these features we present a preliminary study of the gating charge in the voltage activated Kv1.2
channel, using the actual change in the electrolyte charge distribution rather than the conventional
macroscopic estimate.We also discuss other special features of themodel, which include the ability to capture
the effect of changes in the protonation states of the protein residues during the close to open voltage induced
transition. This article is part of a Special Issue entitled: Membrane protein structure and function.
mbrane protein structure and
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1. Introduction

The detailed relationship between the external voltage and the
gating of voltage activated ion channels is a problem of great current
interest [1–8]. Unfortunately, despite great progress in structural and
biophysical studies [1–3,9,10], we still do not have a clear picture of the
corresponding structure–function correlation. Furthermore, although
there has been a significant progress in computational modeling of ion
channels and even some understanding of ion selectivity [11–19], the
understanding of the gating process has been limited. Not only that the
exact structural changes have not been elucidated but also the
energetics of the conformational transition and the coupling to the
external voltage are far from being understood. In fact, despite several
attempts to analyze these issues by molecular simulations [20–22] we
still do not have clear understanding about the nature of the gating and
the corresponding energy balance. That is, the simulation time does not
allow for sufficient convergence of the free energy associated with very
large conformational changes in such a large proteinmembrane system.
Thus the system does not render itself to conclusive brute force
simulations. We believe that at present the best option is to use coarse
grained (CG) modeling that uses effective surfaces with much fewer
minima and traps than the fully atomistic surface and can capture
properly the interplay between the external voltage and the ion
channel.

A part of the problem of modeling voltage activated ion channels
involves the modeling of the effect of the change of the protein
conformation on the ion current. Macroscopic models have studied the
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nature of the ion current in the open channel, but the corresponding
relationship to the actual protein structure has not been completely
clear. Attempts to do so with microscopic models have resulted in free
energy profiles for a single ion transfer and some information on
multiple ion transfer [14–16]. However, the overall selectivity current
has not been reproduced by any microscopic model and the nature of
the selectivity has not been properly evaluated. At present it seems to us
that semimacroscopic studies with a realistic electrostatic treatment
have provided arguably the most effective way for exploring multi-ion
current [17] and providing a probable explanation for the origin of the
observed selectivity (attributing it in part to the change in the effective
ion–ion repulsion) see [11]. As far as the effect of moving to the closed
structure is concerned, to the best of our knowledge the first calculation
of the energetics of ion transfer in the closed channel has been reported
in the semimacroscopicmodel of [17] (whohasnoted that theprofile for
the KcsA channel corresponds to a closed channel).

Now, despite the relative progress in modeling ion current, the
situation is much less promising in studies of the effect of the external
potential. That is, there has been interesting Poisson–Boltzmann (PB)
macroscopic studies that evaluated the gating charges [23], but the
results reflect a macroscopic perspective that may lead to traps as was
the case in early studies of electrostatic effects in proteins (see review
in [24]). Furthermore, although there are recent microscopic attempts
[20], they are either based on assuming a linear potential in the
protein membrane region, or on free energy calculations that are
unlikely to provide fully convergent results due both to the challenge
of obtaining stable solvation free energies in protein interiors and the
difficulties in capturing the response of the ionic atmosphere by
microscopic simulations (see discussion in Section 3).

As stated above, another major challenge in the field is the
evaluation of the energetics of the conformational changes of the
channel upon voltage activation. Here the application of brute force
microscopic simulations is unlikely to provide converging results of
the relevant potential of mean force (PMF) in the near future.

In view of the above challenges it seems to us that CGmodels provide
one of the best option for progressing in this field. Thus we have
developed and refined in this work a CG model for simulations of
membraneproteins in thepresenceof external potential (electrodes) and
electrolyte solution. This includes the development of a semimacroscopic
way for modeling the electrolyte solution between the membrane and
the electrodes. Special emphasis is dedicated to a consistent modeling of
the effect of external potential, focusing on a realistic description of the
electrolytes in the solution regions between the membrane and the
electrodes, as well as the coupling between the combined potential from
the electrodes plus the electrolyte and the protein ionized groups. The
model provides a clear connection to the fully microscopic treatment of
the electrolytes and thus allows us to explore possible conceptual
problems that are hard to resolve by other approaches. This includes the
ability to obtain a clear description of the electrolyte charge distribution
in systems that contains the membrane and electrodes (including near
the electrodes, where continuum models do not seem to provide the
relevant result). Furthermore, the model allows us to evaluate the
distribution of the electrolytes before and after the equilibration between
both sides of the membrane, and thus the nature of the gating current.
The clear connection to the microscopic description, combined with the
power of the CG modeling, offers a powerful tool for exploring the
balance between the protein conformational energy and the interaction
with the external potential in voltage activated channels. This tool is
validated here on several levels and is also used to explore some key
features of the Kv1.2 voltage activated channel.

2. Methods

Our general strategy involves refinement of our recently developed
CG model and the extension of this model to incorporate the
electrodes/electrolytes components in the simulation of the protein/
membrane system. The main features of the model are described
below.

2.1. General features of the coarse grained (CG) model

The present work uses a CG model that describes the main chains
by an explicit model and the side chains by a simplified united atom
model. This CG model, which is a modified version of the model used
in our recent works [25–27], provides a more advanced treatment of
the electrostatic effects than most current CG models. Our model
expresses the overall free energy (in kcal/mol) as:

ΔGtotal = ΔGmain + ΔGmain;side + ΔGside: ð1Þ

The main chain atoms are represented explicitly with implicit
solvent treatment, while the main-side interaction involves van der
Waals and screened electrostatic terms [26]. The major and most
relevant part of our CG treatment comes from the ΔGside term, which
is given by:

ΔGside = ΔGvdw
side + ΔGelec

side + ΔGhyd
side ð2Þ

where the first term describes the effective van derWaals interactions
between simplified side chains and is described in details in ref. [26].
The second term represents the electrostatic interactions between the
ionizable residues (see below) and the last term represents the
hydrophobic contributions which are not included implicitly in the
first term (see below). The ΔGside

elec term is given by:

ΔGelec
side = −2:3RT∑

i
Q i pKw

a;i−pH
� �

+ ΔGQQ + ΔGself ;ion + ΔGself
p ð3Þ

where i runs over the protein ionized residues, pKa, i
w is the pKa of the

ith residue in water and Qi is the charge of the ith residue in the given
ionization state. Here “ion” and “p” designate, respectively, ionized
and polar residues, where each residue can have only one of these two
contributions (note that the polar term has not been used in our
previous works). The ΔGQQ term represents the charge–charge
interaction free energy, which is given by:

ΔGQQ = 332∑
i<j

Q iQj

rijεeff
ð4Þ

where the free energy is given in kcal/mol, the charge–charge
distances (r) in Å and the charges (Q) in electronic charge units. εeff
is the effective dielectric for charge–charge interaction, which reflects
the idea established in many of our earlier works (e.g. refs. [28,29])
that the optimal value of εeff is large even in protein interiors (namely
εeffN20). This type of dielectric has been found recently to provide
very powerful insight in studies of protein stability (see refs. [28,30]).
The ionization state of the protein residues were determined by a
Monte Carlo approach of ref. [26] for the given pH.

A key element in our approach is the treatment of the self energy,
ΔGself, ion, associated with charging each ionized group in its specific
environment. This term is given by

ΔGself ;ion = ∑
i

Uself ;ion
np Ni

np

� �
+ Uself ;ion

p Ni
p

� �
+ Uself ;ion

mem Ni
mem

� �� �
ð5Þ

where U designates an effective potential and i runs over all ionized
residues (designated by “ion”). Unp

self, ion, Up
self, ion and Umem

self, ion are the
contributions to the self-energy from nonpolar residues, polar
residues and membrane grid points, respectively. Here, Nnp

i , Np
i and

Nmem
i are, respectively, the effective number of nonpolar residues,

polar residues and membrane atoms in the neighborhood of the ith
residue. Note that the nonpolar contribution for the membrane is
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taken into account separately in the hydrophobic term (described
below).

The empirical functions Unp
self,ion and Up

self,ion are given by

USelf ;ion
np =

BSelf ;ion
np exp −0:2 Nnp−6

� �2� �
0 < Nnp ≤ 6

BSelf ;ion
np Nnp > 6

8><
>: ð6Þ

and

USelf ;ion
p =

BSelf ;ion
p exp −0:2 Np−4

� �2� �
0 < Np≤4

BSelf ;ion
p Np > 4

:

8><
>: ð7Þ

The values of Bnpself, ion and Bp
self, ion are taken as 4 and −2 kcal/mol,

respectively, based on available experimental data and microscopic
simulations. The treatment of Umem

self will be described below.
The number of nonpolar residues around the ith ionized residue,

Nnp
i , is expressed by the analytical function

Ni
np = ∑

j
F rij
� �

ð8Þ

with

F rij
� �

=
1 rij ≤ rnp

exp −6 rij−rnp
� �2� �

rij > rnp

8<
: ð9Þ

where rnp is the cutoff range of nonpolar neighboring residues (the
current model uses typically rnp=7 Å and rij is the distance between
the ionized residue i and nonpolar residue j). The same expression is
used for the neighboring polar residues (Np), where rp=7 Å. This
treatment is aimed at capturing the fact that an ionized group has to
pay a large energy for moving from water to a nonpolar environment
[31,32] and is usually surrounded by polar residues or water
molecules [31,33]. It should be mentioned that, due to the way the
neighboring residues are calculated, Nnp

i and Np
i may not have integer

values. The validation of our treatment in proteins is reported in ref.
[26].

The membrane is represented by a grid of unified atoms, as we
have done in our previous studies since 1989 (e.g. see ref. [34]), and
this grid is used in evaluating Nmem by the equivalent of Eq. (8). The
number of the membrane grid points that are reconsidered as
neighbors of a given protein residue is calculated by counting the
number of membrane atoms inside a sphere with cut-off radius given
by the membrane spacing (Dmem) multiplied by 2.05 (namely,
rmem=2.05Dmem). This cut-off radius gives results, which are (almost)
independent of the membrane spacing (in the range of 2 to 5 Å). In
this way we basically count the number of neighbors in the first two
solvation shell of the given residue.

In the case of themembrane it seems essential to include the effect
of the electrostatic field from the solvent in the self energy term,
whereas in the case of proteins (particularly because of the small
value of Bnp) this was not crucial. More specifically, as is clear from
studies of the solvation profile inmembrane (e.g. [27]), the self energy
depends strongly on the distance from the solvent. One option is use
Langevin Dipoles (LD) grid (as we did in our early work [35]) but this
would have led to a partial double counting of the self energy penalty
in the center of the membrane. Thus we use a Umem

self,ion term of the form

Uself; ion
mem =

Uself ;ion;0
mem exp − Rmin−18ð Þ=12ð Þ2

h i
Rmin ≤ 18

Uself ;ion;0
mem Rmin > 18

8<
: ð10Þ
with

Uself ;ion;0
mem =

Bself ;ion
mem exp −0:2 Nmem−28ð Þ½ � 0 < Nmem ≤ 28

Bself ;ion
mem Nmem > 28

(
ð11Þ

where Rmin is the distance to the nearest solvent molecule, which is
determined by using the distance to the closest grid point. The
interaction with the grid points vanishes continuously when the
protein moves to a contact with them (see below). The validation of
our treatment in membranes is reported in the SI of [27].

The new term ΔGp
self in Eq. (3) is evaluated in the same way as

ΔGself, ion with the Bnp
self, pol, Bpself, pol and Bmem

self,pol given in Table 1.
All the above electrostatic treatment involves a self-consistent

evaluationof the interdependent self-energy, charge–charge interaction
and the external pH (where the ionization state is determined by a
Monte Carlo treatment of the energetics of Eq. (3)).

In considering the hydrophobic effect we noted that the
corresponding interaction between the protein residues is reflected
implicitly in the van der Waals parameters used. However, the
corresponding calibration has not been done in a very systematic way
in the protein and was not done at all for the membrane model. Thus
we considered here a unified treatment of the hydrophobic effect in
the membrane and in the protein, adopting the same model used in
the self energy calculations, expressing ΔGhyd

side

ΔGhyd
side = ∑

i
Uhyd
np Ni

np

� �
+ Uhyd

p Ni
p

� �
+ Uhyd

mem Ni
mem

� �h i
ð12Þ

where i runsover allnonpolar residues andNnp
i andNmem

i are thenumber
of nonpolar residues and membrane atoms within a cutoff range of the
ith residue. The functions of Unp

hyd, Up
hyd and Umem

hyd are given by the same
type of expression as in Eq. (6), where the coefficients, Bnphyd, Bnphyd and
Bmem
hyd , are given in Table 1.
In order to avoid double counting of the implicit hydrophobic effect

of the protein–protein van derWaals interactionwe did not include the
van derWaals energy of Eq. (2) in our current determination of the total
free energy.

A new feature of the model is the use of a membrane grid with
continuous forces. This reduces the need for generating a new grid
when the protein is displaced or changes its structure. This was done
by building an analytically continuous membrane (instead of deleting
membrane points, which are in direct contact with the protein).
Accounting for the fact that the membrane grid should be deleted
upon contact with the protein atoms we have replaced the standard
van der Waals interaction between the protein and the membrane by

Umem
vdw = ∑

i< j

Aij

α + r6ij
� �2 − Bij

α + r6ij

2
64

3
75 ð13Þ

where Aij and Bij are the vdw parameters for the interaction of the ith
protein atom and the jth membrane grid point, rij is the distance
between the two atoms, andα is a vdwcutoff parameter. The parameter
α has been adjusted for each type of interaction so that the vdw energy
will become zero when r=0 (Uvdw(r=0,α0)=0). The average α was
then used as a general α in Eq. (13), although this choice led to a slight
variation in Uvdw(r=0) for different types of interactions (between
−0.1 and 0.1 kcal/mol). The parameters Aij and Bij for the interaction
between the side chain CG atoms with the membrane grid points were
evaluated by using the relations Aij=4εij0(rij0)12, Bij=4εij0(rij0)6 and
α = 7452:75. On the other hand, the interaction of the main chain
atomswith themembrane grid pointswere represented using Aij=AiAj,
Bij=BiBj with α = 2871:33. Since the entire membrane grid points
were represented by the same parameters we have used only one set of
ε0, r0 for membrane–side chain interactions and one set of A, B for
membrane–main chain interactions (see Table 1). The parameters for



Table 1
CG parameters.a

Electrostatic self energy parameters for the ionizable residues

Bp
self, ion Equation Bnp

self, ion Equation Bmem
self, ion Equation

ARG Ionizable −1.0 (7) 4.26 (6) 15.0 (11)
LYS Ionizable −1.0 (7) 5.40 (6) 15.0 (11)
GLU Ionizable −1.3 (7) 5.14 (6) 15.0 (11)
ASP Ionizable −1.3 (7) 3.07 (6) 15.0 (11)
HIS Ionizable −1.0 (7) 2.28 (6) 15.0 (11)
HIE Ionizable −1.0 (7) 2.28 (6) 15.0 (11)

Electrostatic self energy parameters for the polar residues

Bp
self, pol Equation Bnp

self, pol Equation Bmem
self, pol Equation

THR Polar −0.15 (7) 0.20 (6) 2.0 (11)
SER Polar −0.15 (7) 0.20 (6) 2.0 (11)
CYS Polar −0.15 (7) 0.20 (6) 2.0 (11)
ASN Polar −0.15 (7) 0.20 (6) 2.0 (11)
TYR Polar −0.15 (7) 0.20 (6) 2.0 (11)
GLN Polar −0.15 (7) 0.20 (6) 2.0 (11)

Hydrophobic parametersb

Bp
hyd Equation Bnp

hyd Equation Bmem
hyd Equation

MET Hydro 0.5 (7) −0.18 (6) −1.0 (11)
ILE Hydro 0.5 (7) −0.29 (6) −1.0 (11)
VAL Hydro 0.5 (7) −0.25 (6) −1.0 (11)
LEU Hydro 0.5 (7) −0.29 (6) −1.0 (11)
ALA Hydro 0.5 (7) −0.18 (6) −1.0 (11)
PRO Hydro 0.5 (7) −0.25 (6) −1.0 (11)
PHE Hydro 0.5 (7) −0.3 (6) −1.0 (11)
TRP Hydro 0.5 (7) −0.3 (6) −1.0 (11)

Parameters for the protein/membrane grid interaction (for side chains)

α0 r0 ε0

MEM 7452.75 4.24 0.05

Parameters for the protein/membrane grid interaction (for main chain atoms)

α0 A B

MEM 2871.33 1956 32

a The parameters that are not listed here are given in ref. [26].
b The hydrophobic terms were evaluated by starting from the hydrophobic energy in

solution (obtained by the ChemSol program [75] and scaling it down). At present we
assume that the polar residues do not have hydrophobic contribution.
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the protein atoms are given in ref. [26]. To prevent the presence of
membrane grid inside channel interiors we eliminate the membrane
grid within a cylinder of 4 Å radius around the channel axis.

Another new feature is the description of the effect of zwitterionic
membrane head groups. This effectwas simulated by placing positive and
negative charges on theouter and the subsequent layers of themembrane
grid, respectively. The corresponding electrostatic interactions with the
protein chargeswere treatedwith εeff=20,which is justifiedby studies of
the field frommembrane head groups [36]. However, this element of our
model has not been verified in detailed study. Obviously more careful
studies are needed to consider recent simulations of the “dipole potential”
by Allen and coworkers [37]. Note, however, a careful study of the
solvation of hydrophobic ions [38], that were supposed to establish
experimentally a large dipole potential, has shown that the conventional
interpretation is extremely problematic.

It is also important to emphasize that our current free energy
calculations do not involve free energy perturbation (FEP) or potential
of mean force (PMF) calculations, since our CG model represents the
apparent free energy and the evaluation of the effective potential
energy provides a good estimate of the corresponding result obtained
with sampling on the same shallow potential energy surface. Note,
however, that in principle it is possible to evaluate the PMF of the CG
model as we have done in the studies of protein folding problems [35].
2.2. Modeling the electrolytes

A crucial issue in modeling the effect of external potential on
membrane proteins is the proper modeling of the effect of the solvent
molecules and the bulk ions (electrolytes). The solvent is modeled here
implicitly by the above CG model although we could have used a
Langevin Dipoles (LD) grid (as done in our earlier work [35]). However
asmentioned above, this would have led to a partial double counting of
the self energy penalty, as long as we use the treatment of Eq. (2). Thus
we still represent here the solvent in an implicit way. However, in
evaluating the effect of external potential it is crucial to consider more
explicitly the ions in solution at a given ionic strength, and the
corresponding treatment of the electrolytes is described below.

In trying to introduce the electrolytes it is important to retain the
option of multilevel modeling by describing a key part of the system in
a fully discretemodel. For example, we can treat the immediate region
near the protein by a primitivemodel with the explicit ionsmoving by
Langevin dynamics treatment [11].While keeping this option inmind,
we will focus below on the next layer of the surrounding, where the
electrolytes are described in a simpler way. More specifically, the
surrounding electrolytes can be treated macroscopically, going back
to the ideas behind the Debye–Huckel (DH) and the Gouy–Chapman
(GC) models and subsequent analytical [39,40] and numerical PB
models [41,42]. Onemay also follow themicroscopic strategy thatwas
used in Monte Carlo (MC) studies [42–51] and in more recent
Langevin Dynamics (LD) and MD studies [52]. Here, however, we try
to take a compromise between full MC and grid-type approaches. That
is in principle, we would like to start conceptually by placing the ions
on grid points (with an assumed separation) and then to use a MC
model of type we and others applied in determining the ionization
states in proteins [26,53]. However, for practical purposes we will try
to introduce some additional simplifications (which can also be
removed). The first possible simplification involves creating a grid for
the positions of the ions and placing k1 positive ions and k2 negative
ions on n grid points by a Monte Carlo procedure. This would lead to:

qih i =
∑
m

q mð Þ
i exp −ΔG mð Þβ

n o
∑
m

exp −ΔG mð Þβ
n o ð14Þ

where 〈qi〉 is the average charge at the i-th grid point,m designates the
configurations of the charges on the grid points and ΔG(m) is the free
energy of the m-th configuration. The next simplification would be to
adopt a approach similar to the Tanford–Roxby model for ionization
states in proteins [54], using self-consistent iterationswith the potential
from the other grid points instead of the MC configurational averaging
[55]. This model can be implemented obtained by considering
configurations with +1 and 0 charges for the positive ion and −1
and 0 charges for the negative ions. Of course, we can still use a hybrid
approach where the nearest neighbors are treated by MC. Next we can
further simplify our approachbyplacing ionpairs on the samegrid point
(this simplification will be removed in some treatments).

The above approximations lead to the semimacroscopic strategy
applied in our previous electrostatic modeling [56], which is similar to
the approach introduced originally by Pack and coworkers [57], but
retains a much more microscopic view. The grid spacing is taken here
as Δ and the volume element τ=Δ3, centered at the ith grid point,
contains a residual charge (qig) determined by:

qgi = qþi + q−i ð15Þ

where

q�i =
Z�N�

boxe
∓βϕi

A� =
Q�

boxe
∓βϕi

A� ð16Þ
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where qi+ and qi
− are, respectively, the positive and negative fractional

charges that are assigned to the ith grid point, z± is the ion charge of
the electrolyte ions in atomic units (namely, ±1 for the monovalent
electrolyte used in our calculations), Nbox

± is the total number of
cations/anions in the simulation box,Qbox

± is the total charge of cations/
anions in the simulation system given by Qbox

± =z±Nbox
± , ϕi is the

electrostatic potential (times unit charge) at the ith grid point and β=
(kBT)−1. A± is a normalization constant. In the initial step of the
calculation Nbox

± is obtained as follows for a 1:1 electrolyte.

N�
box = nbulkτN

grid
box ð17Þ

wherenbulk is number density (number of ions/Å3),which is connected
to the molar concentration (C) by:

nbulk =
C

1666
ð18Þ

and Nbox
grid is number of grid points within the simulation box (outside

membrane and protein).
To determine the normalization constant A±, we impose the

condition that sum of the charges on all grid points must be equal to
the total charge of the system for both cations and anions, i.e.
Q�

box = ∑
i
q�i . Using Eq. (16) we obtain

Q�
box =

Q�
box ∑

i
e∓βϕi

A� ð19Þ

Rearrangement of the above equation gives the normalization
constant as:

A� = ∑
i
e∓βϕi : ð20Þ

Thus, we obtain from Eq. (16):

q�i =
Q�
boxe

∓βϕi

∑
i
e∓βϕi

=
Z�N�

boxe
∓βϕi

∑
i
e∓βϕi

: ð21Þ

Our normalization treatment, which is different than the common
use of the bulk density, helps to obtain a clearer physical picture (see
Section 3.2). However for a very large simulation system and at the
limit of ϕi→0, we obtain

A� = ∑
i
e∓βϕi→Ngrid

box : ð22Þ

Thus, using Eq. (17) we establish that qi± converges to Z±nbulkτ at
this limit. An additional discussion of the normalization and related
modification will be presented below.

With the above grid charges we can express the potential times
unit charge φi (which is actually potential of mean force (PMF)) as:

φi = Vext
i + 332∑

j

qPj
εgpeff rij

+ 332∑
k≠i

qgk
εwatrik

+ K qþi −q−i
� �2 ð23Þ

where, Viext represents the external potential on ith grid point, that will
be described in Section 2.3. Here, qjP is the charge of the jth protein
residue (these charges are evaluated byMC procedure described above)
and qk

g is the total charge at the kth grid point given by Eq. (15)
(representing the excess net charge of the kth volume element). The last
term represents the work invested in polarizing the implicit ion pair on
the ith grid point. This is equivalent to the energy of separating the
positive and negative part of the implicit ion pairwhich has been treated
explicitly later in this section.We have found K~10 kcal/mol to provide
consistent energetics.
The PMF of Eq. (23) does not include the self-energy of the ion
since they are the same (for all ions of a given type) in the bulk
reference state, but the interaction between the ions in the same grid
point are considered in some versions of our model (see below). We
also leave out, at present, the RT ln(Ci/C0) concentration dependence,
which will be important in case of membrane potential with different
concentration of electrolytes in the two sides of the membrane.

The long range effect of the regions that are not included in the
simulation system is represented by using a partially periodic treatment
for computational efficiency. This approach uses multiple replica of the
simulation cell along the XY planewith the same box length along the Z
direction. These replica grid points are generated explicitly using
periodic boundary condition for the nearest neighbor cells (8 cells). The
images beyond that are simplified replicas where the charges are
averaged on the XY plane and assigned to the central point of every slab
along the Z axis,which has coordinate (NXLX,NYLY,Z),where LX and LY are
the simulation box lengths alongX andY axes andNX andNY are integers
in the range [−N, N]with |NX|, |NY|N1. Thus the total number of periodic
images considered (including the simulation box) is nimage=(2N+1)2.
The charges are computed only for the primary simulation cell taking
into account of the electrostatic energy due to the replicas and then the
charges of the replicas are updated in an iterative way. This approach
allows us to simulate an effectively large system while minimizing the
computational time. In principlewe could have used a treatment similar
to ref. [58], but we felt more comfortable with the current treatment (of
course after properly validating it).

It should be noted that we ignored here the image charge effect,
namely the change of the surface charges due to the accumulation of
opposing charges near the electrode [59].

The dielectric εeff
gp represents charge–charge dielectric for interaction

between the protein and the grid points. This parameter can be
approximated by a large number between 40 and 80 or by the function
(see ref. [24])

εgpij = 1 + 60 1− exp −0:1⋅ rij
� �h i

: ð24Þ

At this point we can expand on the normalization by the sum in
Eq. (19). As stated above our normalization is different than nbulk,
which is the standard normalization in continuum and Poisson–
Boltzmann (PB) studies (e.g. [40]), where the charge density is
normalized by the bulk density. The difference is expressed basically in
the PMF used and in most cases we obtain the same result as that
obtained with by PBmodels for very large simulation system. For such a
systemwe like to retain the optionof usinga general treatmentof a small
part of the overall system and thus introduce the following expression:

q�i =
Z� N�

box + N�
bulk

� �
e∓βϕi

A� =
Q�
box + Q�

bulk

� �
e∓βϕi

A� ; ð25Þ

where the nonexplicit system is represented by a bulk region.
By implementing the normalization condition on the charges both

in the simulation system and in the bulk, we obtain

A� = ∑
i∈box

e∓βϕi + Ngrid
bulke

∓βϕbulk

� �
ð26Þ

where the sum in the first term goes over the grid points within the
simulation box and Nbulk

grid is the number of grid points within the bulk
system. Here ϕbulk is a constant potential on the bulk grid points. Thus,
we can rewrite Eq. (25) as

q�i =
Z� N�

box + N�
bulk

� �
e∓βϕi

∑
i∈box

e∓βϕi + Ngrid
bulke

∓βϕbulk

� � : ð27Þ



Fig. 1. A schematic representation of the membrane/electrodes system (the membrane
can also contain a protein).
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Using Eq. (17) for the bulk system and going to the limit ϕbulk→0,
and Nbulk

± ≫Nbox
± we obtain the standard form:

q�i →Z� N�
bulk

Ngrid
bulk

 !
e∓βϕi = Z�nbulkτe

∓βϕi : ð28Þ

However, we feel that the use of our normalization conditions can
help to avoid some traps by having a clear microscopic view (see
Section 2.3). More discussion of our bulk model is given in Section 3.3.

Our default treatment of using grid points, where each ion pair is
placed on a grid point, is similar in spirit to our Langevin diploes (LD)
treatment. That is,we aredealingherewith simplifiedexplicit ions butwe
consider only the polarization caused by the change of the equilibrium
distribution of the ions from the casewithout any external potential. Thus
for example, the initial distribution of the ions in the system (without an
external potential) as well as the corresponding radial distribution
function, are not evaluated and the corresponding ion–ionpotential in the
first solvation cell is taken as the reference potential (see Appendix 5 in
[36] for the related case of the LD type models).

In view of the uncertainty associated with the above approach of
grouping the charges of the ion pair in each grid point, we have also
developed a more microscopic model, with the explicit positions of
the positive and negative charges. The corresponding ionic positions
are generated by placing the ions in each step along the field from the
surrounding, while keeping them at a fixed separation (r0) which is
taken here as 4 Å. Now, the final set of the grid charges is obtained by
solving Eq. (16) or (27) and Eq. (23) iteratively, where the free energy
of the ionic grid, ΔGig, is given by:

ΔGig = 332∑
i;j

qgi q
P
j

εgpeff rij
+ 332∑

i>i′

qgi q
g

i′
εwatrii′

+ 332∑
i

qþi q
−
i −1

� 	
εwatr0

+ ∑
i
Vext
i qgi :

ð29Þ

Here the 3rd term represents the interaction between the ion pairs
(the equivalent of the last term in Eq. (23)) and is activated only in the
version of the model that includes the separated ion pairs. The model
with the explicit ion pairs should be particularly useful in future MC
simulations.

The evaluation of the residual charges in our model is subjected to
the constraint of electroneutrality of the entire protein–membrane
system. For example, when the protein charge is +Qp we move −Qp

charge to the electrolyte system and replace (Qbox
+ +Qbulk

+ ) in Eq. (25)
by (Qbox

+ +Qbulk
+ )−Qp. If the bulk is not used we introduce the same

correction to the Qbox
+ in Eq. (21). Note that this modification can be

done on either cations or anions since the system will be equilibrated.

2.3. Treating external potentials and membrane potential

One of themajor challenges in the present work is the treatment of
the membrane potential. Of course, there already exist a number of
instructive studies [60–63]. However, these studies have focused
primarily on macroscopic descriptions which may be problematic in
view of the uncertainties about the dielectric used [24]. This is serious
in particular when one uses a dielectric constant of around 2 for the
protein and the membrane. Basically using such dielectric constant
cannot account for the energetics of ions on the surface of the
membrane or in proteins interiors (see e.g. discussion of the helix
dipole effect in [24]). Furthermore, macroscopic models may have
involve some restrictive assumptions in treating the electrode
potential and the electrolytes. Here one may try to use MD
simulations with explicit models, but at present we believe that
such an approach is not likely to provide converging results, even if
one succeeds to generate a few trajectories of the conformational
change between the open and close conformations under different
external potentials. Probably the most effective treatment should
involve the use of CG models with proper electrostatics and with a
semimacroscopic ionic grid of the type developed in the previous
section.

Our implementation of the CG treatment in models of voltage
activated membrane proteins under external potential, starts by
considering formally the membrane/protein/water system as a
capacitor. That is, in principlewe can use thewell-knownmacroscopic
capacitor model (e.g. [64,65]), where the external potential induces
surface charges (σf)whose valuewill be definedbelow, and creates the
corresponding D0 as defined below (see Fig. 1).

D0 = 4πσf ð30Þ

where D0 is not affected by the medium (the 4π factor is needed in
Gaussian units). The determination of the value of D0 will be
considered below. We also have the relationship:

E =
D0

ε
= D0−4πP ð31Þ

where ε is the macroscopic local dielectric constant (which is not
equal to the above εij), E is the macroscopic field and P is the
macroscopic polarization.

The above macroscopic vectors are uniquely related to the
corresponding microscopic functions by [36]:

E = ξh i
P = μh i ð32Þ

where 〈〉 designates an average, and 〈ξ〉 denotes the average over the
microscopic field and μh i denotes the average over the microscopic
dipoles.

Our first task is to determine the membrane potential and the
electrolytes charges, so we can evaluate the free energy of the protein
charges in the presence of this potential. Thus we express the external
potential (Vext

i ) of Eq. (23) as

Vi
ext = ∫

Zi

Z0

D0
z=ε Zð ÞdZ ð33Þ

where Z0 is the Z coordinate at the left electrode (in the current work
we define the Z coordinate to be increasing from left to right). We can
further write

Vi
ext = D0

Z Zi−Z0ð Þ=εwat ; when Zi ≤ Z1

Vi
ext = D0

Z Z1−Z0ð Þ=εwat + D0
Z = εloc Zi−Z1ð Þ; when Z1 ≤ Zi ≤ Z2

Vi
ext = D0

Z Z1−Z0ð Þ=εwat + D0
Z=εloc Z2−Z1ð Þ + D0

Z Zi−Z2ð Þ=εwat ; when Zi ≥ Z2
ð34Þ
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here εwat is the dielectric of the water solution, εloc is the local
dielectric in the membrane/protein system; the Z coordinate of the ith
grid point is denoted by Zi, Z1 is the point where themembrane (or the
protein) has boundary with the left electrolyte solution, Z2 is the point
where the membrane (or the protein) has boundary with the right
electrolyte solution (see Fig. 1). The actual value of D0 is determined
by starting with the approximation:

D0
Z =

V
Δzmem

εmem
+

Δzsys−Δzmem

εwat

ð35Þ

where V is the applied potential. We next perform actual calculations
and adjust D0 until the total change of electrolyte potential across the
membrane becomes equal to the applied potential.

The problem with the strategy of Eq. (34) is that the potential
reflects an infinitely large electrode, while our simulation system is
finite (unless we use infinite series like the one used in [46]). Thus the
electrolytes will not screen the surface charge from the distant
electrode regions (large X and or Y) and the potential Vext will
approach infinity at a very large distance from the electrode, reflecting
the trend of Eq. (34) for ZibZ1 where for finite value of D0 wewill have
a very large (Zi−Z0)/εwat.

Oneway to deal with this problem is to introduce periodicity in the
electrolyte system and this strategy will be considered here (see
below). The other way is to replace the treatment of Eqs. (33) and
(34) by simply generating two finite grids (surfaces) of point charges
on the two electrodes. In this approach we use:

Vi
ext = ∑

NE

j

qlefte

εeff rij
+

qrighte

εeff rij

 !
ð36Þ

where NE is number of point charges on the electrode (we place an
equal number of points for the left and right electrode), here qe

left and
qe
right are the charges of the individual grid points of the electrodes on

the right and on the left, taken as equal in the magnitude and opposite
in sign. The electrode charge density, σf, is determined by requiring
that the total potential difference between the electrodes will be equal
to the value of the applied potential. This is done by considering a path
through the membrane in places where there is no protein (the final
potential is path independent) so that we can use Eq. (34) with a
simple set of dielectric constants. Although the calculations of the
external potential with explicit point charges on the electrode is
computationally more demanding than the approach that uses D0, we
only need to calculate this term once. Thus the overall increase in the
simulation time is negligible.

It should be noted, with regards to the quasi-periodic treatment,
(see section 3.1), that in the direct approach (where D0 represents an
infinite electrode) we only create replicas of the electrolytes boxes,
while in the approach that uses explicit surface charges we also
replicate the electrode surfaces to the same level of periodicity as the
electrolyte box. Further details and validation studies of the long
range treatment will be presented in Section 3.1.

In evaluating the energetics of the protein/membrane system in
the presence of the electrolytes and the external potential we focus on
having a clear microscopic (or semimicroscopic) description. This is
done by writing

ΔGtot = ΔGCG + 332∑
i;j

qpi q
g
j

εgpeff rij
+ 332 ∑

i;k>j

qgj q
g
k

εwatrjk
+ ∑

j
Vext
j qpj + ∑

i
Vext
i qgi

ð37Þ

where the leading term is the free energy of the Eq. (1) in the absence
of the external potential and the electrolytes.

The overall simulation system for studies of membrane potential
can be described schematically by converting Fig. 1 to the system of
Fig. 2. This diagram is related to the normalization concept of Eq. (26).
That is, we start with the explicit simulation box that includes the
membrane (region I), an optional region (region II) with explicit ions
(which has not been considered in the present study) and the explicit
grid of the ions (region III). However, now we add a bulk region
(region IV), where we require that the electrolyte density will
correspond to the bulk density, nbulk, and that the potential will
correspond to the electrode potential (Vbulk). The assumption that
Vbulk is equal to the electrode potential is confirmed by our
calculations rather than being assumed. The introduction of the bulk
region is a way to avoid using enormous grids to span the space
between the membranes to the electrodes. The bulk region is coupled
to the explicit grid by the fact that the potential of the grid at a
sufficient distance from the membrane converges to Vbulk, while the
ions are allowed to be in the bulk by the use of the normalization
condition. The introduction of region IV allows us, in principle, to look
for charge accumulation near the electrode. Apparently, the charge
distribution in region IVmay be different than in the bulk. However, in
treatments that do not include region IV explicitly (e.g. in the present
case), we consider the charge in the bulk and at the end of the grid
region as being somewhere far from the membrane, where the
potential reaches a constant value. We may also assume (for the left
side) that region IV is the left of the grid, which is in contact with the
electrode and the bulk is the region, where the potential start to be
constant (this point will be illustrated and discussed using Fig. 2).
More details and validation studies will be presented in Section 3.2.

In the practical implementation of the above model we have to
take special care of the charges of the ionic atmosphere. This involves,
as explained in Section 2.2, satisfaction of the requirement of
electroneutrality by balancing the protein charges with the ionic
charges in the solution. The placement of the balancing ions can be
done in either sides of the membrane, since we allow equilibration of
the ions under the applied potential, before we consider the response
of the protein and the generation of gating charges (see Section 3.4).

The use of Eq. (34) is valid when we do not have a membrane
between the electrodes, as the effective dielectric can be taken as the
water dielectric. However, the proper dielectric in the membrane
region is less obvious (although the formulation for that system is
currently under development looking for strategies that can simplify
the electrostatic calculations in systems with several regions with
different dielectrics). Thus we prefer to use the D0 approach (with a
periodic electrolyte box) for membrane type systems. In such cases
one may wonder what should be the effect of the dielectric that will
reproduce the potential from the electrolytes at the membrane.
Fortunately, this is not a major problem. That is, the potential in the
left side of the membrane, due to the contributions from D0 and the
electrolytes in the right region, is obtained reliably with the water
dielectric. At the same time the contributions from the left side of the
membrane are independent of the dielectric used for the electrolytes,
since the electrolytes near the right electrode and near the right side
of the membrane can be viewed as the sources of two opposing
vacuum fields that approximately cancel each other. The remaining
effect from the right hand side is due to D0 from the right electrode
which is handled consistently through Eq. (34).

3. Results and discussion

3.1. Validation studies

In order to establish the validity of ourmodel we have examined it on
several levels. First we have examined our ability to reproduce the
Debye–Huckel (DH)analytical approximations for the chargedistribution
around an ion. More specifically, as in the classical DH model we have
represented the ionexplicitly bya charge (+1charge in this case) and the
rest of the system was represented by our grid model. In order to get
results which are independent of grid spacing and positionwe have used



Fig. 2. A schematic description of the treatment of the simulation system. The regions considered are: (a) The protein/membrane system (region I) (b) The region of solution and ions
that is treated explicit ions and LD simulation (region II). This region is optional and is not being used in the present study. (c) The region with explicit grid (region III). (d) The bulk
region (region IV). (e) The region between the bulk and the electrodes (region V). The indexes L and R stand for the left and right sides respectively.
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a similar strategy to that used in our PDLD model, namely generating
several shifted and sparse grids (with a spacing of 5 Å between the grid
points) and then averaged over the corresponding potential and charge
distribution. The simulation results, which are summarized in Fig. 3, have
reproduced the DH analytical results quite well. In this respect we must
clarify that reproducing the DH results by a semimacroscopic model is
very different than reproducing this model by a continuum approxima-
tion following theDHassumption (which is rather trivial since theDH is a
continuum model). Thus, it is not obvious that our semimacroscopic
treatment should reproduce the DH result since it assumes a different
normalization and is not a continuum model. Apparently, as seen from
Fig. 3 we were indeed able to reproduce the DH results.

Next we explore our ability to model the charge distribution and
potential of the electrolytes near a charged surface at a given ionic
strength, which is usually described by the Gouy-Chapman (GC)
approximation [66]. This type of problem has been the subject of
extensive studies including PB, MC and MD [41–50,52]. For this
system we have built an explicit sheet of charges on a simulated
electrode surface and generated our electrolyte grid on one side of the
charged surface. The grid was then allowed to interact with the
explicit charges of the electrode as well as with the charges of the
different grid points, and the corresponding calculated potential is
given in Fig. 4. The calculations have established the ability of our
model to reproduce the GC screened electrostatic potential and the
condition that the net charge of the electrolytes is equal to the total
surface charge. We have also reproduced the correct decay of the
potential at the Debye length (30 Å for the system under consider-
ation). More specifically the electrostatic potential becomes zero
around 150 Å which corresponds to the analytical result (being
approximately equal to five times the Debye length).

We have also explored the performance of our approach on a system
composed of two electrodes and electrolytes. The corresponding results
(Fig. 5) did provide further major validation, reproducing the trend
obtained in MC simulations of the related systems [46].

Nextwe have explored the performance of ourmodel for a systemof
the type presented in Fig 2,with two electrodes, electrolyte solution and
a neutral membrane. The calculations were done while keeping each
side of themembrane electroneutral. This corresponds to application of
the potential, while preventing the electrolytes from reaching equilib-
rium across the membrane (see below). The calculated profiles for the
potential along the Z coordinate,where the external potential is 100 mV,
are depicted inFig. 6a.An instructivepoint thatemerges fromthisfigure,
is the fact that the application of our model allows us to obtain a
reasonable potential around the membrane, even when the electrodes
are at a very large distance (this will be impossible without the extra
screening effect due to the ions). The calculations demonstrate that the
ions in solution provide almost a complete screening to the external
potential, which start to increase only when it reaches the membrane
boundaries. This behavior is similar to what is expected from
macroscopic considerations, but it involves a more challenging
treatment since the electrodes are included explicitly here.

We have also evaluated the behavior of the charge distribution and
presented in Fig. 6b the corresponding results. Here we obtain results
that are different than the conventional PB results [40]. That is, the PB

image of Fig.�2


Fig. 3. The potential around a charge obtained by our simulation and by the Debye–
Huckel (D–H) theory as well as Coulombic (unscreened) potential.

Fig. 5. (a) The electrolyte potential (in Volt) and (b) the electrolyte charge distribution
along Z-axis for a system with two electrodes (external potential 100 mV). We have
shown the results for two different electrolyte concentrations: 10 mM (red) and
100 mM (blue). Fig. 5(a) also shows the linear electrode potential (in absence of
electrolyte) as reference (black). These calculations have been performed with
(17X17) periodic images in the XY plane (see Fig. 7 for convergence study).
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results are normalized with nbulk rather than by Eq. (27). The PB
treatment leads to resultswhere the chargedistribution is not conserved
on the left side (or the right side) of the membrane. This creates a
conceptual problem, since the initial conditions and the constraint in the
short time before the ions pass through the membrane or a membrane
channel, correspond to an electroneutral solution on each side of the
Fig. 4. The Gouy–Chapman potential.
membrane (zero net charge on each side). It is, of course, very likely that
the accumulated positive charge next to the left side of themembrane is
balanced by negative charges in the bulk or near the electrode (on the
left side), and the neglect of the explicit charge near the electrode in the
PB treatment does not change the PB results near the membrane.
However, the formulationused in calculationsof the capacity (where the
capacity charges is evaluated in the PB treatment by integrating the
charge on the left side of the membrane from minus infinity [40]), is
formally problematic, since this charge is zero in the complete treatment
of the system. The relationship between our treatment that keeps
explicit counts of the ions and the PB treatment needs clearly a further
study. However, it seems to us that the PB treatment does not look at the
ions in the bulk or near the electrode as explicit ions that should be
combined with the ions near the membrane when considering the
specific charge balance on each side of the membrane. Thus the PB
approach considers the electrolytes that move to the electrode in the
same way that one would consider the electrons in the electric wires
(namely does not consider them explicitly). We believe that looking at
theelectrolytes that balance thechargemigration toward themembrane
can provide an interesting time dependent insight.

An important requirement for the validation of our (or any other)
model is the ability to reproduce the capacitance of the membrane
system. Examining the performance of the present model we found
out that the computed capacitance of our membrane system agrees
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Fig. 6. (a) The electrostatic potential (in kcal/mol) and (b) electrolyte charge
distribution along Z-axis for a system with two electrodes (external potential
100 mV), 40 A thick membrane at the center of the box (marked by red vertical
lines) and electrolyte with concentration 100 mM. For schematic diagram of the system
see Fig. 2. The present case required the use of (17×17) periodic images (in the XY
plane) to reach convergence. For this system, the computed capacitance is
2.2×10−3 CV−1m−2 and the analytical capacitance is 4.3×10−3 CV−1m−2 [40].

Fig. 7. The convergence of the electrolyte potential (in Volt) with increasing number of
periodic images (see Section 2.2 for details about construction of the images) for a
system with two electrodes (external potential 100 mV) and electrolyte solution
(10 mM). Here we have checked the convergence for two different representations of
the electrode system as described in Section 2.3, namely: (i) Explicit electrodes: where
the electrodes are finite grid of point charges as given by Eq. 36 (solid line), and (ii)
Continuum electrodes using D0 as given by Eq. 34 (dashed line). Electrolyte potential
for each system has been computed for two different numbers of periodic images in XY
plane: 3X3 (black) and 17X17 (red). The difference between the electrolyte potential
obtained by explicit and continuum representations of electrode potential is large for
fewer images (3X3: black lines), but they become almost identical at the limit of large
number of images (17X17: red lines). Note that with increasing number of images the
potential gets enhanced for the explicit electrodes, whereas it gets suppressed for the
continuum electrodes due to the screening issues discussed in Section 2.3.

Fig. 8. A simplified model for exploring the gating charges. The model involves a
membrane and positive charges that are moved from one side to the other.

312 A. Dryga et al. / Biochimica et Biophysica Acta 1818 (2012) 303–317
quite well with the corresponding analytical expression of Lauger
[40]. For example the system described in Fig. 6, the computed
capacitance is 2.2×10−3 CV−1m−2, whereas the analytical estimate is
4.3×10−3 CV−1m−2 [40].

Another useful analysis is presented in Fig. 7, where we consider
the convergence of the calculations with the number of replica cells.
Here wemust note the difference between the two types of electrodes
models that we have implemented in our study. Namely, (i) the
explicit electrode with finite size where the charge is assigned to
every electrode grid point and (ii) the continuum electrode (D0

approach) as described above in Eqs. (30)–(34). Evidently the
continuum electrode corresponds to an infinite electrode and Fig. 7
confirms that the electrode potential due to the explicit electrode
converges to the linear form of the continuum electrode at the limit of
large number of periodic images (17×17 in the XY plane). We have
also shown that in presence of the electrolyte, the difference between
these two approaches become lower and we obtained practical
convergence by using 17×17 periodic images. It is instructive to note
that for the explicit electrodes the potential across the simulation box
increases with increasing number of images, whereas for the
continuum D0 approach it decreases. This reflects the fact that a
considerable part of the infinite electrode, in the D0 approach, exerts
an unscreened potential on the grid points, which is higher than the
corresponding value when an infinite box of electrolyte is present.
Thus we consider the explicit electrode to be a more consistent
approach that correctly captures the behavior of the system at
different finite sizes (where we can progressively increase the size
and examine the overall convergence).

Next we consider the effect of moving charges in the membrane
region, as a preparation for exploring the corresponding displacement
charges in Kv1.2. This was done by first applying an external voltage of
0.1 V, placing a charge of +16e near the surface of the membrane (at
the coordinate (0, 0,−10)) and letting the electrolytes equilibrate
separately at each side (Zb0 and ZN0) without any transfer across the
membrane. Subsequently we moved the charge (+16e) to the other
side of the membrane (at the coordinate (0, 0, 10)) and let the
electrolytes equilibrate in the same way as before. We define the
gating charge as the change in the accumulated electrolyte charges, on
either side of the membrane, upon movement of the (protein) charge
inside the membrane (a more quantitative definition will be given in
Eq. (42)). The computed results for such a system is described in Fig. 9
and the gating charge for the described conditions are found to be ~5.
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Fig. 9. The accumulative integration of the charge profiles for the model system
described in Fig. 8 when the+16e charge resides at Z=+10 (black) and Z=-10 (red).
Here we define the gating charge as the change in the accumulated electrolyte charges
(the difference of the maxima in this figure), on either side of the membrane, upon
movement of the (protein) charge inside the membrane (see Eq. 42). The gating charge
for this system is found to be ~5.
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3.2. Treating the bulk in studies of membrane potential

As stated in Section 2.2 we would like to have the option to
represent a part of the electrolyte system, where the potential is
constant, by a “bulk region”, in order to enhance computational
efficiency. To justify this treatment we start with the system described
in Fig. 10(a) and try to reach equivalence with the system of Fig. 10
(b). In Fig 10(a) we schematically describe a very large system, where
all grid points in the shaded regions (II and IV) are very far away from
both electrode and membrane surfaces. The shaded regions, which
will become the bulk regions are much larger compared to the other
regions. The computed electrolyte potential on these grid points are
constant (−V/2 and +V/2 for regions II and IV, respectively) and the
corresponding net charges are equal to zero. Under this condition, we
can easily implement a separation of the bulk grid points from the
explicit electrolyte system, and thus avoid computing the energy and
charges of the bulk grid points during the iterations. The above
Fig. 10. A schematic diagram for the treatment of the bulk regions: (a) fully explicit system
withvery largedimensions, (b) thecorresponding smaller systemwith regions (II) and(IV)
separated out and marked as "bulk regions" that have constant electrolyte potential (VB)
and zero net charge. Regions (II) and (IV) of system (a) coalesce into the planes and in
system(b). The red lines indicate the computedelectrolyte potential for respective systems
(also see Fig. 11).
separation has been schematically described in Fig. 10(b), where we
separate regions II and IV from the explicit system, and these
regions coalesce into two planes at ZBL and ZB

R, respectively. Note that
in this treatment we take into account of the width of the bulk
(ΔZB=ZB

(2)−ZB
(1)=ZB

(4)−ZB
(3)) appropriately, both in the computa-

tion of the electrode potential and the evaluation of the interaction
between the grid points. In computing the electrode (external)
potential on the ith grid point we modify Eq. (34) and use:

Vi
ext = D0

Z Zi−Z0ð Þ=εwat ; when Zi ≤ ZL
B

Vi
ext = D0

Z=εloc Zi−Z0 + ΔZBð Þ; when ZL
B < Zi < Z1

Vi
ext = D0

Z Z1−Z0 + ΔZBð Þ=εwat + D0
Z=εloc Zi−Z1ð Þ; when Z1 ≤ Zi ≤ Z2

Vi
ext = D0

Z Z1−Z0 + ΔZBð Þ=εwat + D0
Z Z2−Z1ð Þ=εloc + D0

Z Zi−Z2ð Þ=εwat ; when Z2 < Zi < ZR
B

Vi
ext = D0

Z Z1−Z0 + ΔZBð Þ=εwat + D0
Z Z2−Z1ð Þ=εloc + D0

Z Zi−Z2 + ΔZBð Þ=εwat ; when Zi ≥ ZR
B

ð38Þ

This modified external potential for a system with a virtual bulk is
shown in Fig. 11. Obviously, we need to modify the distance between
two grid points i and j appropriately when they belong to different
sides of a bulk boundary.

Now that we have a fraction of grid points in our system with
constant potential, we can rewrite the normalization constant of
Eq. (20) as:

A� = ∑
i
e∓βϕi = ∑

i∈box
e∓βϕi + Ngrid

bulke
∓βϕbulk ð39Þ

where, the summation in the first term runs over all the grid points
treated explicitly in the simulation box, while Nbulk

grid grid points are
considered as a part of a “virtual bulk”, using Nsystem

grid =Nbox
grid+Nbulk

grid .
Here, Nbulk

grid is computed using Nbulk
grid=NXYΔZB as the bulk dimension,

whereNXY is the number of grid points on every grid surface on the XY
plane.

Note that in the above treatment we compute the bulk potential on
the fly at every iteration, taking this potential as the potential at the
bulk plane Z=ZB

L for the smaller system of Fig. 10(b). This approach is
valid as long as the computed potential (V(Z)) converges to a
Fig. 11. Validation of the treatment of the virtual bulk regions. The black line shows the
external electrode potential as obtained using Eq. 38. Note that the electrode potential
is obtained by integrating D0 across the bulk dimension, so it is discontinuous across the
planes and of Fig. 10(b) as marked in blue here. But the electrolyte potential (marked in
red) is continuous and constant across the bulk regions with the value being equal to
the bulk potential VB. This validates the consistency of treating the bulk grid points
separately with constants potential and zero net charge. The membrane region
(thickness 40Å) has been marked by parallel dashed lines at Z=-20 and Z=+20.
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complete plateau across the planes at ZBL and ZB
R for the smaller system,

i.e. we must satisfy the conditions:

dV
dZ

� �
Z=ZLB

=
dV
dZ

� �
Z=ZRB

= 0

QZ=ZLB
= QZ=ZRB

= 0
: ð40Þ

In this way we reach a correspondence between the model with a
virtual bulk (Fig. 10(b)) and the model where the bulk region is
treated explicitly (Fig. 10(a)). The validation results of our treatment
of a virtual bulk are presented in Fig. 11.
-400 -200 0 200 400
z [Angstrom]

Fig. 13. The total electrostatic potential in the Kv1.2 system for the open (in red) and
closed (in black) conformations.
3.3. A preliminary evaluation of the potential in the Kv1.2/membrane
system

The CG model developed in this work has been motivated in part
by the challenge of exploring the effect of an external potential on the
Kv1.2 voltage activated channel. Thus we, obviously, would like to use
our model in exploring this important system. However, considering
the fact that this is primarily a method development paper we leave
the careful analysis of voltage activated channels to subsequent works
and only provide here illustrations of the capacity of our model. Our
illustrative study examined the Kv1.2 by considering the open and
closed models of the protein/membrane system. Considering the
tentative nature of our study, we have used the atomistic structural
model built using Rosetta and used by Pathak et al. [67] for both the
open and closed structures.

We started by taking the tentative closed structure in themembrane
electrolyte system (Fig. 12), under zero external potential, and
determining the ionization state (protonation state) of the protein
ionizable groups using the CG model and the MC time dependent
constant pH simulation approach [30]. We have also neutralized the
protein charges (Qp) by adjusting the electrolyte distribution (replacing
in Eq. (25) (Qbox

+ +Qbulk
+ ) by (Qbox

+ +Qbulk
+ )−Qp, and of course, allowing

the electrolytes to equilibrate. Next we change the external potential to
0.1 mV and let the electrolyte equilibrate separately at each side of the
membrane). Next we obtain the electrostatic potential and the
electrolyte charge distribution for the closed channel and the corre-
sponding results are presented in Fig. 13. We have also repeated the
same calculations for the open structure (Fig. 13), allowing the same full
equilibration (note that this procedure is not the one that will be used
below for evaluating the gating charge). At this stage we only want to
note that we can reproduce reasonably behaving potential profiles and
that the potential in themembrane region can be used in calculating the
gating charge (see below).
Fig. 12.Molecular representation of the Kv1.2 channel system in open (red) and closed
green conformations.
3.4. The gating charge

The gating charge is a crucial parameter that reflects the response
of the system following the application of the external potential but
before the ions are allowed to pass through the channel [1]. The
evaluation (and operational definition) of the gating charge is almost
always done in an indirect way, using reasonable but not necessarily
microscopic assumptions. That is, one may simply determine the
fraction of open and closed channels as a function of the applied
potential and ask what is the Boltzmann probability for the voltage
induced structural change [1]. Basically this is equivalent to the
assumption that the energy needed to move the gating charge, Qgate,
in the membrane electric field is equal to the work of moving the
protein charges between the two configurations, under the mem-
brane electric field. This assumption leads to the expression [1,68]:

QgateΔV = ΔGcl→op ð41Þ

where ΔGcl→op is the free energy contribution of the membrane
potential for moving from the closed to open configuration and ΔV is
the change in the electrostatic potential between the initial and final
position of the protein effective charge, and where the practical
determination of Qgate is done by considering the conductance/
voltage curve at low probability of having an open state up to the
limiting potential where Q(V) reach a plateau (see ref. 70). The
problem with the use of eq. (41), or related treatments, is that the
membrane potential is assumed to be linear across the membrane
with identical value for each X,Y that corresponds to a given Z value
(for this assumption see also ref 20). This is likely to be a reasonable
approximation and it has been used in previous macroscopic studies
[67,68]. Obviously, such a picture would be justified if the potential
across the protein/ membrane system was obtained by converging
microscopic simulations. However, in such cases it is unlikely that we
will have the same potential in different sites with the same Z value.
Thus such a treatment does not really provide a microscopic
description even if a few of the relevant quantities (e.g. the average
displacements) are evaluated microscopically [20]. A more micro-
scopic strategy (terms G-route in ref. [20]) involves calculating
the free energy change associated with each residue in the two
configurations under the effect of the external potential. This
approach does provide a fully microscopic treatment of the effect
of the potential on the protein. However, it is not clear how accurate is
the corresponding G-route free energy treatment, since the conver-
gence of applying such procedure to voltage effects has never been
established by reproducing well defined observed effects (namely pKa
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Fig. 15. Gating charge as a function of dielectric constant between protein and
electrolyte.
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changes, redox changes or spectral shifts). One major challenge
involves the ability to capture the equilibration of the electrolytes by
microscopic calculations. Furthermore, calculating charging free
energies at different sites (e.g. after and before the conformational
change) is extremely challenging as has been demonstrated in our
studies of pKa in non-polar protein interiors [69]. Finally, although
equating the calculated free energy to the product of Qgate and ΔV is
very reasonable, it still does not constitute actual calculation of a
gating charge. More specifically, while it is true that is a real
observable (obtained from the Q-V curve [70]), Q gate of Eq. (41)
may not correspond to the integral of the gating current at the limiting
potential. Thus we like to focus of the actual measured Q gate and in
doing so we assume that the gating current is due to the motion and
accumulation of the electrolyte charges. The challenge is of course to
get the observed integrated current and the corresponding gating
charge.

This challenge is met here by first applying an initial potential in the
closed structure, letting the electrolytes equilibrate in this structure and
then fixing the number of positive and negative ions on both side of the
membrane. Next we apply a new potential and change the protein
structure from its closed to the open conformation, while allowing the
electrolytes to equilibrate locally, with the constraint that they cannot
pass through the channel.

In calculating the gating charge, we note that the movement of the
positively chargedprotein residues to theZdirection leads tomovement
of negative solution ions toward the membrane protein system (this
polarization is clearly captured by the PB treatments). However, the
measured current is actually due to themovement of the compensating
positively charged ions toward the electrode green. Of course, this
current is the same (withopposite sign)as theopposite negative current
that moved towards the membrane, but the physics is better described
by considering the actual gating current measured for example in the
work of ref 70. Thus we evaluate the gating charges by

Qgate = ∫
t

0

Δq=Δtð Þ dt = ∫
Z
0

−∞
Δqgrid=ΔZ
� �

dZ ð42Þ

where the first integral is related to the gating current (at the limiting
potential) and the second integral evaluates the charges generated
upon complete structural change, by the current after the current
equilibrates in the left side but before it penetrates the membrane. Z′
is the point to the left of Z1 where the accumulated charge distribution
near the membrane has decayed to zero. The computed charge
Open structure

Closed structure
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Fig. 14. Electrolyte charge profiles for the open and closed conformations, where we do
not allow for ion equilibration (transfer of ions through the membrane) and where we
have allowed the protein ionization states to change while moving between the two
structures. The integral of this profile (see Eq. (42)) gives us the estimate of gating
charge.
distributions (Δqgrid(Z)) for both the open and closed channels are
shown in Fig.14.

One of the most interesting aspects of the present study was the
finding that the protein ionization states change significantly between
the open and closed structures, and that this change can play a
significant role in establishing the correct gating charge, which is a
factor that has not been considered in other studies. With our ability
to model time-dependent proton transfer process [26] it would be
very exciting to find out the realistic ionization states and the
corresponding gating charge. This issue will be considered in further
detail in our subsequent studies.

The value of the gating charge appears to depend on the dielectric
used for the interaction between the electrolytes and the protein
charges and the corresponding dependence is described in Fig. 15. For
example, the gating charge evaluated by Eq. (42) changed from 2 to 9
upon change of the above dielectric from 80 to 20. We note here that
the experimentally observed gating charge for the Shaker and Kv2.1
K+ channel is 3 to 4 charge units per voltage sensor (i.e. 12 to 16
charges per channel) [71] and this value is obtained in our calculation
with an effective dielectric constant below 15. However, we leave a
deeper analysis of our finding to a subsequent work.

The current model can become even more physical if we actually
make it time-dependent. This can be done by running LD on the CG
model and allowing the protein to move (within the given time) and
also allow for time-dependent proton transfer between the protein
groups and the solution. At the same time we may be able to assume
(after proper validation) that the electrolyte equilibration is much
faster than the protein conformational change. Under this condition
we should be able to obtain fluctuating polarization charges that can
be related to the observed gating current.

3.5. The energetics of ion channel systems

The present model can be used to explore the overall energetics of
the open and closed structures. These challenging calculations are
expected to give interesting information at least on a qualitative level,
since the CG model has performed quite well in studies of protein
stability [30] and in exploring some issues about the insertion of
membrane proteins [27]. Our ability to properly simulate the
ionization states and their changes with the structure of the protein
and the external potential, is a key advance over most other related
models of voltage activate channels. For example, we should be able to
examine the nature of the conserved acidic and basic side chains in
the voltage-sensing domains of internal salt-bridge networks whose
ionization state may be state-dependent. We can also examine the
role of the interaction between the basic side chains in the voltage-
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sensing domains and the lipid phosphates (see ref. [71]), since these
interactions have been shown to be indispensable for channel
function (see ref. [72]).

Despite the great interest in the energetics of the Kv1.2 channel,
we focus in this paper on the methodological issues and we prefer to
leave the analysis of the energetics to a subsequent study. Neverthe-
less, our point is that in view of the enormous difficulties in obtaining
the energetics of the closed to open structural transition in voltage
activated channels we see a great potential in the use of our CGmodel.
4. Concluding remarks

The molecular origin of voltage activated channels is a subject of
major current interest. Yet, using non-phenomenological models to
correlate the available structural models with the activation of channels
byexternalpotential hasnot elucidated theenergeticsof suchprocesses.
Furthermore, the description of the effect of external potential on
membrane proteins has not reached the stage where it provides a clear
physical picture. That is, while continuum studies of the potential and
electrolytes near themembranehave been veryuseful [39,40,73,74], the
description of theelectrolytes far away fromthemembrane andnear the
electrodes has not been considered explicitly. Furthermore, the
assumed dielectric in the membrane-protein system has not been
validated. Microscopic and semimicroscopic attempts to describe the
potential and electrolytes have provided some interesting hints, but at
least as much as the electrolytes are concerned we clearly have not
reached at a stagewith a clear quantitative understanding. The situation
is better when one restricts himself to modeling electrolytes in DH and
GC type of problems, where MC models have been very instrumental
[44,59], but such studies have not been extended (to the best of our
knowledge), to the description of membrane potential and in particular
to voltage-activated channels.

This work developed a CG model for studies of the effect of
external potentials on membrane proteins and tried to explore the
utility of CG modeling in simulating general effects of membrane
potentials on membrane proteins and related systems. The model
developed here involves our early CG model of protein membrane
systems and a newly developed model of the electrolyte solution and
the effect of the external potential due to electrodes. The electrolyte
model allows us to navigate between the more microscopic MC
modeling and the faster mean field models and helps in providing
some insight on various aspects that are needed in order to
understand the nature of the effect of external potentials.

Our model was applied for several well defined test cases (e.g. the
DH and GCmodels) as well as to the nature of the potential and charge
distribution between two electrodes. It was then used in studies of
membrane systems, reproducing the expected capacity and shading a
new light on the nature of the electrolyte charge distribution.We have
also explored the trend in gating charge in a simple model with
electrodes/membrane and internal membrane charges.

After the validation studies we have performed preliminary
simulations of the Kv1.2 channel, evaluating the membrane potential
and the gating charge. This was done, however, in a non-standard and
challenging way, looking on the change in the electrolyte charges
rather than on the interaction between the linearized external
potential and the protein charges. The calculations performed were
given only as an illustrative example leaving more systematic and
system specific simulations to a subsequent work, which is now in
progress.

The new model should allow us to focus on key issues such as the
nature and the effect of the dielectric in the protein–membrane
system, and to move beyond the continuum assumptions. Further
work is clearly needed including evaluation of the overall change in
the protein energy. We also expect to be able to simulate the
fluctuations in the gating current and other related effects.
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