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Abstract MicroRNAs (miRNAs) repress target genes at the
post-transcriptional level and play important roles in develop-
ment and cell lineage decision. However, in vertebrates, both
the targets of miRNAs and their expression profile during devel-
opment are poorly understood. Here, we report the detailed
expression profiles of miRNAs from oocyte stage to tadpole
stage in Xenopus laevis. As development proceeds, a variety of
miRNAs start to be expressed. Most miRNAs emerged at a spe-
cific stage and were continuously expressed until the tadpole
stage. In addition, we identified a novel miRNA that was ex-
pressed only at specific stages of development and that is likely
to have roles in midblastula transition.
� 2004 Federation of European Biochemical Societies. Published
by Elsevier B.V. All rights reserved.
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1. Introduction

MicroRNAs (miRNAs) are non-coding 21–23 nucleotide

RNA molecules that regulate the expressions of other genes

by inhibiting translation or cleaving complementary target

mRNAs [1]. miRNAs originate from genes that are transcribed

by RNA pol-II [2]. miRNA primary transcripts (pri-miRNAs)

are trimmed into miRNA precursors (pre-miRNAs) by RNa-

seIII-like enzyme called Drosha [3] and subsequently processed

by another RNaseIII-like enzyme (Dicer) into miRNA du-

plexes [4]. One strand of the duplex (miRNA) is then incorpo-

rated into the RNA-induced silencing complex (RISC) and the

other strand (miRNA*) is degraded [1].

The total number of miRNAs is estimated to be no more

than 255 in the human genome, representing about 1% of

the predicted genes in human [5]. Of the estimated 255 human

miRNAs, about 200 human miRNAs have been identified and

most of these were cloned from tissues and cultured cells [6–8].

The sequences of many miRNAs are conserved among dis-

tantly related organisms [9].
Abbreviations: miRNA, microRNA; pri-miRNA, miRNA primary
transcript; pre-miRNA, miRNA precursor; MBT, midblastula transi-
tion; siRNA, small interfering RNA
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miRNAs are not the only functional small RNA in verte-

brates. Three other classes of small RNAs have been described

in vertebrates: (I) small modulatory RNAs (smRNAs) trigger

gene expression through interaction with transcriptional

machinery [10], (II) artificial small interfering RNAs (siRNAs)

complementary to mRNA or the promoter region and inhibit

the gene expression translationally or transcriptionally [11],

and (III) endogenous siRNA derived from centromeric repeats

are thought to be involved in the formation of the heterochro-

matin [12].

Previous studies have revealed the importance of miRNAs

and other small RNAs in animal and plant development. In

Caenorhabditis elegans, lin-4 and let-7 miRNAs are expressed

at distinct stages of development to regulate the timing of lar-

val developmental transition [13,14]. In vertebrates, post-tran-

scriptional restriction of HOX gene expression is mediated by

miRNA [15]. Mutations in the Dicer gene cause germ line de-

fects in C. elegans [16], abnormal embryogenesis in Arabidopsis

thaliana [17], developmental arrest in zebrafish [18] and deple-

tion of ICM in mouse [19].

Despite important roles in development, expression profile of

miRNAs in vertebrate development is poorly understood. In the

present study, we examined the expression profile of miRNAs in

various developmental stages ofXenopus laevis and report a new

temporally expressed miRNA, maternally derived small RNAs

and a small RNA that corresponds to a promoter region.
2. Materials and methods

2.1. Preparation of oocytes and embryos
Ovaries were surgically removed from three mature Xenopus laevis

females (Kato S Kagaku) and then suspended in modified Barth�s sal-
ine (MBS) [88 mM NaCl/1 mM KCl/0.7 mM CaCl2/1 mM MgSO4/2.5
mM NaHCO3/5 mMHEPES, pH 7.4]. The ovaries were cut into pieces
and incubated in MBS containing 0.25% collagenase for 2 h at room
temperature. A mixture of different size oocytes was filtered through
nylon mesh to separate by diameter according to the Dumont stage
[20]. To remove the follicular layer completely, oocytes dissected from
the ovarian tissues were selected and then treated again with collage-
nase for 1 h [21]. To obtain ovulated eggs and embryos, females were
injected with 500 IU of hCG. Embryos were prepared by artificial fer-
tilization in 0.1· Marc�s modified Ringer�s (MMR) (100 mM NaCl/2
mM KCl/1 mM MgSO4/2 mM CaCl2/5 mM HEPES, pH 7.4) and
maintained at 25 �C, ensuring that they were accurately staged accord-
ing to the Nieukwoop and Faber stage [22].
2.2. Low molecular weight RNA preparation and cloning of small RNA
Total RNA was isolated using the guanidium thiocyanate-phenol-

chloroform method [23]. To obtain low molecular weight RNA, total
RNA was precipitated by equal amount of PEG solution [1.6 M NaCl,
blished by Elsevier B.V. All rights reserved.
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13% (w/v, PEG 6000)] and the supernatant was precipitated using iso-
propanol. For cloning of small RNAs, 50 lg of low molecular weight
RNA was used. Small RNA were cloned as described [24].

2.3. Bioinformatics analysis
Database searches were performed at the NCBI Blast (http://

www.ncbi.nlm.nih.gov/) and the miRNA Registry (http://www.san-
ger.ac.uk/Software/Rfam/mirna/index.shtml). The secondary struc-
tures of sequences covering cloned small RNAs were predicted using
MFOLD 3.1 (http://www.bioinfo.rpi.edu/applications/mfold/).

2.4. Northern blot analysis
Low molecular weight RNA (5 lg) from each developmental stage

was loaded on a 15% denaturing polyacrylamide gel. Probes were pre-
pared and hybridized as described [25]. The oligonucleotide probes
were complementary to cloned miRNAs or the spacer promoter se-
quence. miR-106b sequence was derived from mammal. Imaging plate
was exposed for one day or three days according to the signal intensity
and signals were detected by using a BAS2500 phosphoimager. Blotted
membranes were prepared for each probe.
Table 1
Type and the number of small RNAs cloned from Xenopus eggs and
embryos

Type Number of clones

Non-coding
RNA

miRNA/miRNA* 407
New miRNAa 20
rRNA 257
tRNA 39
snRNA 4
rRNA spacer promoter 1

Others Found in vertebrate
EST or genome

21

Observed several timesb 179
Observed only once 165
Total 1093

amiRNAs that were newly identified in this study.
bUnknown small RNAs that were not found in databases and were
cloned several times at different stages.
3. Results and discussion

3.1. Cloning of small RNAs in various developmental stages

To identify the small RNAs expressed in Xenopus develop-

ment, oocytes and embryos (up to tadpole stage) were collected

and then divided into eight classes as described in Table 2. The

same number of eggs or embryos from each developmental

stage was mixed at each class, and eight independent cDNA li-

braries were generated from small RNAs in the size range of

15–27 nt by linker ligation method [24]. We obtained a total

of 1093 clones with 99–205 clones in each class.

To annotate these clones, vertebrate databases in NCBI

Blast and The miRNA registry [26] were used, because the

Xenopus genome project has not been completed [27]. One or

two nucleotides difference was allowed to annotate the clones.

We cloned 23 kinds of previously identified miRNAs. Of these

23 kinds, 17 completely matched the mammalian miRNAs,

five (miR-20, miR-124, miR-181a, miR-196a, and miR-367)

differ from the mammalian sequences by 1 nt, and one

(miR-16) differs by 2 nt. In the cloned small RNA, the most

abundant classes were miRNA and miRNA* (408 clones),

non-coding functional RNA breakdown products such as

rRNA (257 clones), tRNA (39 clones) and snRNA (4 clones)

(Table 1).

It seems possible that the remaining 386 clones include new

miRNAs, because miRNAs have not been identified in Xeno-

pus and because mammalian miRNAs have been mainly
Mouse miR-429

C   UG CU    U
GAUGGAUG U   UUACCAGACA  GUUAGAU GGA G
CUACCUGC G AAUGGUCUGU UAAUCUG UCU     C

C U CA A

Xenopus laevis miR-427

A C  UG  C  U
AGC   CCCAAAACGGG   GCU  UCUC   U     UGA G
UUG GGGUUUUGUCU UGA AGAG   A  AUU    A

C UUCG A U   GU   A

Fig. 1. Predicted secondary structures of miRNA precursors. The putative pr
the putative precursor of miR-429 was derived from mouse genome due to a
underlined.
cloned from adult tissues or cultured cells in previous studies

[6–8]. To find miRNAs not registered in the database, we

sorted the remaining 386 clones into 203 non-redundant se-

quences and then searched vertebrate genomes and ESTs for

these sequences to obtain the flanking sequences. The obtained

sequences were examined to see whether these were fold into a

hairpin structure that is characteristic of miRNA precursors.

Consequently, three sequences fulfilled this criterion (Fig. 1),

suggesting that these three sequences are novel miRNAs.

3.2. Novel miRNAs in Xenopus development

Of the 3 novel miRNAs, miR-428 was found in the Xenopus

EST database, not in other vertebrate databases. However, its

5 0 region had some similarity to previously identified mamma-

lian miR-302 and miR-20. Other 2 miRNAs (miR-427, miR-

429) or their homologs were found in genomes of other verte-

brates. miR-429 was found in the mammalian genome and it is

clearly related to miR-200b. miR-427 was found in the zebra-

fish genome but not in mammalian genomes. However, miR-

427 had some similarity to mouse miR-294 (19 nucleotides

identity per 23 nucleotides) and human miR-372 (18 nucleo-

tides identity per 23 nucleotides), which were cloned from ES

cells [7,28].

3.3. Expression pattern of microRNAs in Xenopus development

Twenty-six miRNAs and 2 miRNA*s were isolated by stage

specific cloning (Table 2). To examine the expression pattern

of cloned miRNA, Northern blot analysis was performed
Xenopus tropicalis miR-428

GU U C  GU U G
CAC    CGGCC   AACU    GGAGC  CU  CUCAU     C
GUG GUUGG UUGA UCUCG GA GAGUG A

AGUC    C UC U AU G C U

ecursors of miR-427 and miR-428 were derived from Xenopus EST, and
lack of this miRNA in Xenopus database. The miRNA sequences are

http://www.ncbi.nlm.nih.gov/
http://www.ncbi.nlm.nih.gov/
http://www.sanger.ac.uk/Software/Rfam/mirna/index.shtml
http://www.sanger.ac.uk/Software/Rfam/mirna/index.shtml
http://www.bioinfo.rpi.edu/applications/mfold/


Table 2
miRNAs cloned at defined developmental stages

miRNAa Sequenceb Numbers of clones Xenopus EST (stage)f Presence in mammal
or zebrafishg

Size
(nt)

Oocyte,
I–VIc

Egg,
Ed

Morula,
1–8e

Blastula,
9–12

Gastrula,
13–17

Neurula,
18–22

Tailbud,
23–30

Tadpole,
31–42

miR-106b* CCGCACUGUGGGUACUUGCUGC 22 41 35 34 23 32 27 1 2 m
miR-210 CUGUGCGUGUGACAGCGGCUGA 22 8 8 10 9 9 6 1 m, z
miR-214 ACAGCAGGCACAGACAGGCAGU 22 6 5 3 1 2 m, z
miR-427 AAAGUGCUUCCUGUUUUGGGCGU 23 6 2 7 BX844791 (10) z
miR-206 UGGAAUGUAAGGAAGUGUGUGG 22 3 4 6 37 45 m, z
miR-92-1* AGGUUGGGAUUGGUUGCAAUGCU 23 2 3 4 1 BJ042773 (15) m
miR-7 UGGAAGACUAGUGAUUUUGUUGU 23 1 1 m, z
miR-16 UAGCAGCACGUAAAUACUGGAG 22 1 1 m, z
miR-19b UGUGCAAAUCCAUGCAAAACUGA 23 1 BJ641506 (10.5) m
miR-200b UAAUACUGCCUGGUAAUGAUGAU 23 1 m
miR-367 AUUGCACUGUAGCAAUGGUGA 21 1 AL662758 (10.5–12) m
miR-428 UAAGUGCUCUCUAGUUCGGUUG 22 1 1 AL594612 (10.5–12)
let-7f UGAGGUAGUAGAUUGUAUAGU 21 1 m, z
miR-20 CAAAGUGCUCAUAGUGCAGGUAG 23 1 1 1 BJ641506 (10.5) m
miR-126 UCGUACCGUGAGUAAUAAUGCG 22 1 m
miR-18 UAAGGUGCAUCUAGUGCAGUUAG 23 1 BJ641506 (10.5) m
miR-26a UUCAAGUAAUCCAGGAUAGGCU 22 1 5 5 m, z
miR-124 UAAGGCACGCGGUGAAUACCAA 22 1 CN113428 (25–35) m, z
miR-196a AGGUAGUUUCAUGUUGUUGGGA 22 1 m, z
miR-10b ACCCUGUAGAACCGAAUUUGUG 23 2 m, z
miR-1 UGGAAUGUAAAGAAGUAUGUAU 22 1 3 CD811161 (62) m, z
miR-24 UGGCUCAGUUCAGCAGGAACAG 22 1 m
miR-130b CAGUGCAAUGAUGAAAGGGCAU 22 1 m
miR-133a UUGGUCCCCUUCAACCAGCUGU 22 1 BJ052054 (15) m, z
miR-133b UUUGGUCCCCUUCAACCAGCUA 22 1 m, z
miR-429 UAAUACUGUCUGGUAAUGCCG 21 1 m, z
miR-181a GACAUUCAACGCUGUCGGUGAGG 23 2 m, z
miR-301 AGUGCAAUAGUAUUGUCAAAGCA 23 1 m, z

aNovel miRNAs are showed in bold.
bThe most frequently obtained sequences are listed.
cRoman numerals represent developmental stages at oocyte according to Dumont [20].
dE represents ovulated egg.
eArabic numbers represent developmental stages of embryos according to Nieukwoop and Faber [21].
fPrimary transcripts found in EST are indicated in accession number with cloned stage of the EST.
gThe presence of homologous miRNAs in mammals and zebrafish is represented as m and z, respectively.
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(Fig. 2). Oocytes were divided into three stages and samples

were prepared from ten kinds of developmental stages as de-

scribed in Fig. 2. Since oligonucleotide probes complementary

to the miRNA sequences might cross-react to their isoforms
Fig. 2. Expression profile of identified miRNA by Northern blot analysis. R
Dumont. E indicates ovulated egg; M, morula (stage 7); B, blastula (stage 9);
tadpole (stage 42). (A) miRNAs that are generally expressed. (B) miRNAs tha
a certain stage after MBT and continue to be detectable until tadpole stage.
stained with EtBr. 5S rRNA and tRNAs serve as a loading controls.
(e.g., let7f probe to other let7 isoforms), all of the miRNAs

and miRNA*s except miR-133b (which is a homolog of

miR-133a) were analyzed. We also analyzed miR-106b, which

is another strand of miR-106b* in the miRNA duplex. Distinct
oman numerals represent developmental stages at oocyte according to
G, gastrula (stage 12); N, neurula (stage 18); Tb, tailbud (stage 26); Tp,
t are detectable at defined stages. (C) miRNAs that are detectable from
(D) One-tenth amount of RNA (500 ng) was loaded on each lane and
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bands at �22 nt were observed in all three novel miRNAs

(Figs. 2B and C), and other 22 miRNAs except miR-106b,

miR-106b* and miR-214 were also detectable. Some discrep-

ancies are observed between cloning and Northern blot results.

It is because cloning method includes multiple steps such as gel

excision, linker ligation, RT-PCR and concatemerization, so

that specific miRNAs would be preferentially amplified at

every stage, and because the number that we sequenced would

be too small to quantify. miRNAs were categorized into three

groups (I–III) according to the Northern blot pattern. Group I

miRNAs were detected at the oocyte stage. Their amounts de-

creased at the ovulated egg and gradually increased thereafter

until the tadpole stage (Fig. 2A). This group includes miR-16,

miR-18, miR-19b, miR-20, miR-26a and miR-92-1*. Group II

miRNAs were temporally expressed at defined stages (Fig. 2B).

This group consists of miR-367 and miR-427. Group III miR-

NAs emerged at a specific stage after stage 9 and were contin-

uously detectable until the tadpole stage (Fig. 2C). This group

includes miR-1, miR-7, miR-10b, miR-24, miR-124, miR-126,

miR-130b, miR-133a, miR-181a, miR-196a, miR-200b, miR-

206, miR-210, miR-301, miR-428, miR-429, and let-7f.

miRNAs of group (I) were detectable almost continuously

from the oocyte stage to the tadpole stage. The signals of

group I miRNAs diminished from stage V and VI to ovulated

egg stage (Fig. 3A). It is possible that the difference in signal

between oocytes and eggs is due to the presence of follicle cell

around the oocyte, because our method used here might not be

sufficient to remove all of the follicle cells completely. How-

ever, we could detect the signal in the completely defolliculated

oocytes [21] (data not shown). Therefore, miRNAs of group (I)

would be expressed generally throughout the development.

miRNAs of group (II) were clearly detectable at definite

stages. An intense miR-367 signal was observed at the neurula

(stage 18) (Fig. 2B). In miR-427, which was cloned from stage

9 to stage 22 (Table 2), an intense �22 nt signal was observed

definitely from stage 9 to stage 26 (Fig. 2B). A more intense

signal of �70 nt was detected at stage 9. This �70 nt band is

probably a miRNA precursor, because animal miRNA precur-

sors are usually �70 nt in length [1]. The �70 nt signal gradu-

ally weakened and was difficult to detect after stage 26. These
Fig. 3. Small RNA that is mapped to rRNA spacer promoter region. (A) Sche
Numbers given on the spacer promoter and the small RNA sequence represen
indicate non-coding RNA transcripts. (B) Northern blot analysis of spacer pr
the legend of Fig. 2.
data suggest that miR-427 is transcribed only at the blastula

and gastrula stages, and its mature miRNA is transiently ex-

pressed only at definite developmental stages. To obtain addi-

tional support for this conclusion, we searched the EST

database for miR-427 primary transcript. A large number of

miR-427 primary transcripts were found in the Xenopus EST

database. Consistent with the cloning and Northern blot data,

all of these ESTs were cloned from an early gastrula library. In

Xenopus early development, there is a midblastula transition

(MBT) that involves initiation of transcription, elongation of

the cell cycle, an increase in cell movement, and asynchrony

of cell division [29]. MBT occurs at stage 8.5 [29] and this stage

corresponds to the time when miR-427 begins to be expressed.

Therefore, miR-427 might be involved in developmental tran-

sition, as is the case with lin-4 in C. elegans [13].

miRNAs of group (III) emerged at specific stage after MBT

and were continuously expressed until the tadpole stage. Most

of these miRNAs were cloned from adult mammalian organs

[6]. Based on their expression patterns, these miRNAs are

likely to have some roles in cell lineage decision and maintain-

ing the cell in their differentiated state. It has been reported

that non-coding RNA 7H4, which is remnant produced by

the cutting of miR-206 precursor from its primary transcript

by Drosha, is expressed selectively in the endplate zone of skel-

etal muscle and is upregulated during early postnatal develop-

ment in mammals [30]. For these reasons, miR-206, which is

the most abundant miRNA that we cloned, might be involved

in the formation of the endplate zone of skeletal muscle.

3.4. Small RNA that is mapped to rRNA spacer promoter region

We cloned a 22 nt sequence that is mapped to the Xenopus

laevis spacer promoter region. The typical eukaryotic cell con-

tains hundreds or thousands of rRNA genes organized in

head-to-tail tandem arrays located at one or a few chromo-

somal sites. Each rDNA repeating unit consists of the tran-

scribed pre-rRNA region and repeated intergenic spacer

(IGS). Non-coding RNAs of unknown function are tran-

scribed from the IGS spacer promoter, which share �90%

identity with the rRNA gene promoter and terminate upstream

of the gene promoter [31] (Fig. 3A).
matic representation of rRNA spacer and cloned small RNA sequence.
t the position from the first nucleotide of the spacer promoter. Arrows
omoter small RNA. Abbreviations and loading control are described in
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Recent studies have found two types of small RNA that reg-

ulate gene expression at the transcriptional level in mammalian

cells. One type is smRNAs [10] and the other is siRNAs that

induce methylation at the promoter region of DNA [11]. A dis-

tinct 22 nt band was detected at the tailbud and tadpole stages

by Northern blot using a probe that was antisense to our

cloned sequence (Fig. 3B). Therefore, it is possible that our

cloned sequence is a functional small RNA such as endoge-

nous smRNA or siRNA rather than a degradation product.

However, we cannot exclude the possibility that this signal

comes from cross-reaction to a GC-rich 22 nt RNA, as our

cloned small RNA showed high GC content (86.4%).
3.5. Unknown small RNA that was cloned several times at

different stages

Among the unknown sequences that we cloned (Table 1), 16

sequences were cloned several times at different stages

(Table 3). Most of these were maternally expressed and were

not found at the last stage. These clones had 17–24 nt in

length, and had high contents of G and C with an average

of 71.6%. These small RNAs do not seem to be miRNAs be-

cause miRNAs are usually 21–23 nt in length and do not have

such high GC contents [32]. As all of these sequences except

small RNA11, which was only 18 nt in length and was found

in bacterial genome, were not found in the database of verte-

brate and other genomes, we do not know whether any of

them are siRNAs or other functional small RNAs. The func-

tions of these unknown small RNAs might become clear after

the Xenopus genome project is completed.

In summary, in the present study, the expression profiles

of miRNAs during Xenopus development were revealed.

One of the newly identified miRNAs was expressed tran-

siently after MBT, and 17 of 24 examined miRNAs emerged

at specific stages of development and were continuously ex-

pressed until the tadpole stage. The expression patterns of

these 17 miRNAs suggest that they are involved in

differentiation. MicroRNAs are differentially expressed

during development.
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