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1. INTRODUCTION

This paper is a response to the following question of Raoul Bott. Take a Spinc

manifold M with an action of a torus T of half the dimension of the manifold.
The equivariant index of the Dirac operator is then a virtual representation of
T. In this representation are all the nonzero multiplicities equal to \1?

The answer is no. We show that the multiplicity of a weight : # t* is
equal to the winding number around : of a certain map into t*. This num-
ber can be any integer. We remark that Bott's question was motivated by
the Bott�Samelson manifolds which are relevant to representation theory
and for which the multiplicities are \1 [GK].

The answer ``no'' was already discovered in [KT]; Sue Tolman found a
complex line bundle on a toric variety for which the multiplicities are &1
and &2. We generalize the results of [KT] to manifolds other than toric
varieties and to Spinc structures instead of holomorphic line bundles.

This paper can be viewed in the context of geometric quantization; more
specifically, Ka� hler quantization. In Ka� hler quantization one usually starts
from a symplectic manifold (M, |). If there is a complex structure on M
such that | is Ka� hler, and a holomorphic Hermitian line bundle L � M
whose curvature is i|, then the holomorphic sections of L �k form a (finite
dimensional) Hilbert space which for large k can be recovered from the
symplectic data through the Riemann�Roch formula. The only place where
this uses the nondegeneracy of | is that if | is Ka� hler then by the Kodaira
vanishing theorem [We] the higher cohomology groups vanish for large k,
and so the space of holomorphic section coincides with the index. In this
paper we remove the demand that | be Ka� hler and we replace the space
of holomorphic sections by the index �(&1) i H i (M, OL). The two-form |
need not even be symplectic, and we do not require it to be compatible
with the complex structure (or the almost complex structure, or the Spinc

structure). Only the cohomology class of | is important.
The paper consists of two parts; the ``symplectic story'' (Sections 4�7)

and the ``index story'' (Sections 8�13). Sections 2 and 3 are more detailed
introductions to these two parts. (The word ``symplectic'' is not quite in
place; we allow closed degenerate two-forms.) A special case of a Spinc

structure on a manifold, which we discuss in detail, is a complex line
bundle over an almost complex manifold. In Sections 6 and 13 we
construct equivariant connected sums of toric varieties to provide examples
of spaces which are not toric varieties and to which our theorems apply.
Such creatures also occur as natural submanifolds of coadjoint orbits. The
rest of the paper contains definitions, precise statements, proofs of the
theorems, and examples.

From Bott we learned to look at the index instead of at the space of
holomorphic sections (as in the Borel�Weil�Bott theorem [B]). Boutet
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de Monvel and Guillemin have used the twisted Dolbeault operator
for almost complex structures [BG], and Vergne has used the Dirac
spin operator [V2] for quantizing symplectic manifolds. We learned
from Guillemin and Sternberg that the multiplicities of a representation
is related to symplectic geometry and in particular to the Duistermaat�
Heckman measure [GS2, GLS1, GLS2]. Indeed, our computations of mul-
tiplicities go through symplectic machinery. This is different from the
method used in [KT], where the multiplicities were computed directly.

This work evolved from earlier work of the authors and of Tolman [G,
KT]; see the end of Section 3. Earlier versions of this paper appeared as
notes that the authors distributed in a sequence of talks at Tel-Aviv
University in August 1992, and in the second author's thesis [K, Chaps. 2,
3]. The second author was supported by the Weizmann Institute of Science
in the summer of 1992, by the Alfred P. Sloan dissertation fellowship in the
academic year 1992�93, and partially by NSF Grant 9404404-DMS in
1994.

The second author thanks Susan Tolman for explaining the Atiyah�
Bott�Lefschetz fixed point formula for holomorphic torus actions in terms
of multiplicities; this description (and its analogue for Spinc structures) was
the key to our result. We wish to thank Chris Woodward for the wonderful
examples on coadjoint orbits in Section 6.

2. THE (PRE-)SYMPLECTIC STORY

Let M be a C�-smooth oriented manifold and T a torus which acts on
M. This means that we are given a homomorphism from T to the group
of diffeomorphisms of M such that the associated map T_M � M is
smooth. We assume that the action is effective, i.e., that the only element
of T which acts trivially is the identity. If the dimension n of the torus T
is one half of the dimension of the manifold M then we say that the action
is completely integrable.

A symplectic form on M is a differential two-form which is closed and
nondegenerate. If we drop the nondegeneracy requirement then we can still
define the Liouville measure and the moment map (see below). Tradi-
tionally, these have been associated to symplectic forms, therefore we use
the term presymplectic in this context to mean simply a closed two-form.

Let | be a T-invariant closed two-form on M. Let t be the Lie algebra
of T and let t* be the dual vector space. As is usual we define a moment
map 8 : M � t* by the equation

(d8, !)=&@(!M) | for all ! # t, (2.1)
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where !M is the vector field on M which generates the action of the one
parameter subgroup exp(t!), t # R. The following properties are proved
exactly as in the symplectic case: if the moment map 8 exists then it is
unique up to a translation in t*, the obstruction for the existence of 8 lies
in the first De Rham cohomology of the manifold, and the moment map
8 is constant on the orbits of the torus T (see [Au]).

From now on until the end of this section we assume that M is compact.
We define Liouville measure & by

&(U)=|
U

|n

(&2?)n n!
,

where U is an open subset of the manifold M. If the form | is symplectic
and the orientation is chosen appropriately then this is a positive measure.
Otherwise, this defines a signed measure on M. A typical situation is that
| is degenerate along a hypersurface, the measure & is positive on one side
of the hypersurface and negative on the other side; this can be seen by
expressing |n as the product of an arbitrary volume form on M with a real
valued function and looking at a neighborhood of a point where the func-
tion vanishes but its differential is nonzero.

The push-forward of Liouville measure by the moment map is defined by

mDH(W)=&(8&1(W)), (2.2)

where W is an open subset of t*. It is also called the Duistermaat�Heckman
measures. It is a signed measure which is supported on (a subset of) the
image of 8 in t*.

If | is symplectic then the convexity theorem of Atiyah, Guillemin, and
Sternberg [GS1, A] states that the image of the moment map is a convex
polytope in the vector space t*; it is called the moment polytope. If the
torus action is completely integrable then the Duistermaat�Heckman
measure is Lebesgue measure on the moment polytope. We note that all
the compact symplectic manifolds with completely integrable Hamiltonian
torus actions are Ka� hler toric varieties [De, G1, G2].

If | is not symplectic then the image of the moment map can be almost
anything, but the push-forward measure still behaves rigidly; we can then
write

mDH=\(:) } |d:|,

where |d:| denotes Lebesgue measure on t* and where the density function
\(:) is piecewise polynomial on t*. This is known for symplectic forms. It
is perhaps less widely known for closed two-forms, so we will say a few
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words about the proof. Duistermaat and Heckman [DH] showed, for sym-
plectic forms, that the density function \(:) is piecewise polynomial, and
deduced an exact stationary phase formula for the Fourier transform of the
push-forward measure. This formula was later proved by Berline, Vergne,
Atiyah, and Bott [BV, AB3] as a special case of a localization formula in
equivariant cohomology, which also applies when the two-form is
degenerate. Guillemin, Lerman, and Sternberg [GLS1, GLS2] have shown
how the localization formula implies that the density function is piecewise
polynomial; this also works for degenerate two-forms. In particular this
implies that the boundaries of the regions in which \(:) is polynomial are
contained in a finite union of hyperplanes. The above proof involves a
global computation on M. The local result, that the push-forward measure
is polynomial on every region of regular values of 8, can also be derived
as a special case of a recent formula of Vergne [V1, Theorem 7].

The polynomials which form the density function \(:) are of degree at
most 1

2 dim M&dim T. In particular, if the action is completely integrable
then the density function is piecewise constant.

Since the moment map is constant on T-orbits, it descends to a map 8�
defined on the quotient space M�T. If M is locally toric, i.e., is locally
isomorphic to a smooth toric variety, then this quotient is topologically a
manifold with boundary. (``Locally isomorphic'' means equivariantly dif-
feomorphic on small invariant open sets.) If : # t*"8� (�(M�T )) then we can
define the winding number around : of every boundary component; see
Section 5. We prove:

The density function \(:) is equal to the sum of these winding numbers.

Example 2.3. Take the unit sphere, S2=[(x, y, z) # R3 | x2+ y2+z2

=1], with the circle action generated by the vector field ���%, where r, %, and
z are cylindrical coordinates on R3. The standard area form is d%7 dz. An
invariant two-form can be written as |= f (z) dz 7d%. The corresponding
Liouville measure is positive wherever f (z) is positive and is negative
wherever f (z) is negative. The function 8(r, %, z)=F(z) is a moment map
if F(z) satisfies �F��z= f. The quotient M�T is a closed interval,
parametrized by z # [&1, 1]. The function 8� (z)=F(z) is increasing or
decreasing near z according to the sign of f (z). In particular, if we take
|=(2z+1) dz 7d% then 8� (z)=z2+z. The endpoints of the interval
[&1, 1]=M�T map to the points 0 and 2 in R and there is a ``fold'' at
8� (&1�2)=&1�4; see Fig. 1. The image of 8 is the interval [&1�4, 2], but the
contributions of the overlapping pieces cancel each other and the push-forward
measure MDH is Lebesgue measure on the interval [0, 2]. Indeed, if g(:)
is a continuous function on R then �R g(:) dmDH=�S2 (8*g)(&w�2?)=
1�2? �S2 g(F(z)) f (z) d%7 dz=�2

0 g(u) du using the change of variable
u=F(z).
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Fig. 1. A moment map for a presymplectic from on S2.

3. THE STORY OF THE INDEX

Example 3.1. The circle group acts on the vector space of holomorphic
functions on C by (*f )(z)= f (*&1z). In particular, if f (z)=zk then
(*f )(z)=*&kf (z), i.e., the monomial zk is a weight vector with weight &k.
Since any holomorphic function can be expanded into a power series,

f (z)=a0+a1 z+a2z2+ } } } ;

the weights which occur are precisely the nonpositive integers, each of
which occurs with multiplicity 1. Figure 2 shows the multiplicity diagram
for this representation. We note that our representation space is the kernel
of the differential operator �� acting on smooth functions on C. On the
other hand, if we take the moment map 8(z)=&1

2 |z| 2 for the standard
symplectic form r d% 7 dr then the density function for the Duistermaat�
Heckman measure is equal to 1 on negative numbers and 0 on positive
numbers; this gives a picture very similar to Fig. 2.

In this paper we describe and generalize a relationship between symplec-
tic data and holomorphic data as was illustrated in the above example. We
now give an outline of our story.

Take a compact smooth oriented manifold M with a completely
integrable action of a torus T. We consider a certain extra (equivariant)
structure on M. The simplest such structure could be a complex structure
on M and a holomorphic line bundle over M. More generally, we can work
with an almost complex structure on M and a smooth line bundle. Even
more generally, we can take a Spinc structure on M. This structure deter-
mines a virtual representation of the torus, the equivariant index of the

Fig. 2. Multiplicity diagram for the circle action on holomorphic functions on C.
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Dirac operator, which can be described in terms of its multiplicity function,
mult : l* � Z, where l* is the integral weight lattice in t*. The extra struc-
ture (holomorphic line bundle, Spinc structure...) also determines a closed
two-form on M (essentially the curvature), so we can define the push-
forward of Liouville measure Let \(:) be its density function. Our main
theorem states:

mult(:)=\(:) for all : # l*.

If we combine this with the previous description of the density function
then, for locally toric spaces, we get:

There exists a map 8� : M�T � t* such that 8� (�(M�T )) & l*=< and
such that the multiplicity of the weight : in the equivariant index is equal
to the sum of the winding numbers of the boundary components of M�T
around :.

The motivation to look for winding numbers came from the first author's
thesis [G]; he computed the twisted Dolbeault index in the special case of
Bott towers and obtained shapes which he called twisted cubes (also see
[GK]).

In the paper [KT], Tolman and the second author computed the
twisted Dolbeault index for a holomorphic line bundle over a toric variety
and identified the multiplicities as certain winding numbers which come
from a map 8� of M�T into t*. They showed that the density function for
the Duistermaat�Heckman measure is given by the same winding numbers
and, hence,

mult(:)=\(:) (3.2)

when both are defined. There is a subset of t* which is contained in a finite
union of hyperplanes and where the function \(:) is not defined; \(:) is
locally constant outside this subset and is discontinuous along it. The mul-
tiplicity for : in this subset required a special treatment.

The results of [KT] generalize some classical results on toric varieties;
Danilov showed that if the line bundle is positive then mult(:)=1 for : in
a certain polytope and mult(:)=0 otherwise. Atiyah observed that this
polytope coincides with the image of the moment map 8. We note that
Danilov computed the twisted Dolbeault cohomology for an arbitrary
holomorphic line bundle but did not interpret the index in terms of wind-
ing numbers.

In this paper we generalize [KT] in two ways: our results apply to
manifolds with torus actions which are not toric varieties, and we replace
the twisted Dolbeault index by the more general Dirac Spinc index. The
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statement of our theorem is cleaner for the Dirac operator than it is for the
Dolbeault operator because in the case of the Dirac operator the hyper-
planes in t* which contain the problematic :'s do not intersect the weight
lattice l* and (3.2) holds for all : # l*. On the other hand, our proof relies
on heavier machinery��localization formulas��whereas in [KT] Tolman
computed the index directly and explicitly.

Our proof of (3.2) is quite simple. We express the density function \(:)
by a localization formula of Guillemin, Lerman, and Sternberg (the ``GLS
formula'' [GLS1] as a sum of contributions from fixed point data. We
express the equivariant index as a sum of power series, again using the
methods of [GLS1]. This yields an expression for multiplicities as a sum
of contributions from the fixed point data. We then show that the two for-
mulas, for the density function and for the multiplicities, coincide term by
term when dim T= 1

2dim M.
A similar proof should give a relationship between the functions mult(:)

and \(:) in the nonintegrable case, when dim T< 1
2dim M, and where T

acts with isolated fixed points: Denote by multk the multiplicity function
associated to the line bundle L �k and let r= 1

2dim M&dim T, then

lim
k � �

1
kr multk(k:)=\(:). (3.3)

This generalizes results of Heckman [He] for flag manifolds, and of
Guillemin and Sternberg [GS2] for arbitrary Ka� hler manifolds. As in
Section 12 we can express both sides of (3.3) as sums of terms which
correspond to the fixed points in M. For each fixed point p, the term on
the right can be interpreted as \ the area of a convex polytope 2 in Rr.
The term on the left is \ the number of points in the intersection
2 & (1�k) Zr. This can be viewed as a Riemann sum which approaches the
integral of 1, i.e., the area of the polytope, when k � �.

4. THE TORUS

In this section we establish the sign conventions and 2? factors used
throughout the paper. We urge the reader to skip this section and refer to
it as necessary. The circle group is S1=[* # C | |*|=1]. Its Lie algebra is
iR. The standard n-dimensional torus is T n=S 1_ } } } _S1 (n factors).
An n-dimensional torus T is a group which is isomorphic to T n. Denote
its Lie algebra by t. We have the exponential map, exp : t � T. Its
kernel is a lattice, l/t. The integral weight lattice is defined as l*=
[: # t*�C | (:, ;) # 2?iZ \; # l]. For the standard torus we have t=iRn,
l=2?iZn, and l*=Zn.
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Every : # l* defines a homomorphism \ : T � S1 by exp(;) [ e(:, ;) for
; # t. Equivalently, we write \(*)=*: for * # T. For the standard torus this
makes sense as multi-index notation, so that : # Zn and *:=*:(1)

1 } } } * (n)
n .

The homomorphism \ gives a one-dimensional representation of T by
* : z [ \(*) z. We denote this representation by C: .

Suppose that we are given a linear representation of T on a real vector
space W. If the dimension of W is even then there exist weights
:1 , ..., :r # l* such that W$C:1

� } } } �C:r as real representations of T. If
dim W is odd then we can write W$C:1

� } } } �C:r �R and T acts tri-
vially on the last factor R. The weights :i are determined only up to sign
because C: and C&: are isomorphic as real representations. If we are given
an orientation of W and we require the isomorphism W$Cn to respect this
orientation then the weights are determined up to a simultaneous sign
change of an even number of weights. If dim T=n and dim W=2n then
the linear T-action on W is effective if and only if det(:1 } } } :n)=\1. In
this case no nonzero vector is fixed by the action. It follows, via Koszul's
slice theorem [Au], that a completely integrable torus action on a smooth
manifold has only isolated fixed points.

Convention 4.1. Suppose that we have an effective action of a torus T
on an oriented manifold M with dim T= 1

2dim M=n. A tubular
neighborhood U of a free orbit in M is equivariantly diffeomorphic to the
product T_D, where D is an n-dimensional disc. Choose coordinates
x1 , ..., xn (mod 2?) on T and y1 , ..., yn on D such that the top-form
dy1 7 dx1 7 } } } 7 dyn 7 dxn on U is positive relative to the given orienta-
tion. The choice of an orientation on T determines an orientation on the
quotient space M�T in the following way. If dx1 7 } } } 7 dxn is positive on
T then we declare dy1 7 } } } 7 dyn to be positive on M�T. Such a choice
also determines an orientation on t*; take a positive basis on t and declare
the dual basis to be positive on t*.

The following example is helpful in determining any ambiguities with
regard to plus�minus signs and factors of 2?.

Example 4.2. Take the hyperplane bundle over CP1:

[([z : w], f ) | f is a linear functional on the complex line in C2

spanned by (z, w)].

Its total space has two coordinate charts, (z, a) and (w, b), with transition
functions w=z&1, b=wa. ((z, a) denotes the point ([z : 1], f ) with
f (*z, *)=a*.)
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Take the connection one-form

;=
da
a

&
|z| 2

1+|z| 2

dz
z

=
db
b

&
|w| 2

1+|w| 2

dw
w

.

Its curvature is

F=d;=
dw 7 dw�

(1+|w| 2)2 ;

it takes values in Lie(S1)=iR. To get a real valued two-form we take
|=&iF. Most people prefer the two-form (i�2?) F because if Fn is the cur-
vature of the bundle O(n) then �CP1 ((i�2?) Fn)=n. Our choice makes the
moment map look nicer and more closely related to multiplicities, as we
shall soon see, but causes a factor of (&2?)n to appear in the definition of
Liouville measure.

For the hyperplane bundle we have |=(&2r dr 7 d%)�(1+r2)2 in the
polar coordinates w=rei%. The moment map is determined by the equation
@(���%) |=&d8; we get 8=1�(1+r2). The image of the moment map is
the interval [0, 1]. Liouville measure is (r dr d%)�?(1+r2)2; its push-
forward is Lebesgue measure on the interval [0, 1].

Now we pass to the holomorphic picture. The space H0(CP1, O(1)) of
global holomorphic sections is spanned by two sections, which are locally
given by b=w and b=1. (In the other local charts these are a=1 and
a=z, respectively.) The circle group fixes the first section and acts on the
second section with the weight 1. (I.e., * # S 1 acts as multiplication by *.)
So the weights are 0, 1 with both multiplicities =1. Note that these are
exactly the integral points in the image of the moment map.

Remark 4.3. To be absolutely precise, we should think of the curvature
F as taking values in Lie(S 1). If we take the curvature F itself, instead of
the two-form |=iF, then the moment map defined by d8!=&@(!M) F
takes values in t*�Lie(S1). The weights are elements of t*�Lie(S 1)
because a weight is the differential of a homomorphism T � S 1. So the
weights and the moment map both take values in the same space,
t*�Lie(S1). The multiplicity of a weight : # t*�Lie(S1) is equal to the
density function at : of the push-forward measure 8

*
&, where Liouvile

measure & is defined by integrating ((i�2?) F )n.

5. THE PUSH-FORWARD MEASURE AS
A TOPOLOGICAL DEGREE

Throughout this section we consider an effective action of a torus T on
a compact oriented manifold M with dim T= 1

2dim M, a two-form | on M
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which is closed and invariant, and a moment map 8 : M � t* as defined in
the introduction (2.1).

Denote by Mfree the set of points in M with a trivial stabilizer. The image
of Mfree in M�T consists precisely of the smooth points of M�T, i.e., the
points whose neighborhood is diffeomorphic to Rn; this follows from the
equivariant tubular neighborhood theorem. (The smooth structure on M�T
is defined by declaring a function to be smooth if it lifts to a smooth
T-invariant function on M.) Take a point p in Mfree and let q be its image
in M�T. Then p is a regular point for 8 if and only if the differential d8� q

is an isomorphism from Tq(M�T ) to t* (by a dimension count).

Definition 5.1. Let q be a smooth point of M�T, where 8� is regular;
then we define sign(d8� q) to be 1 or &1, according to whether the map
d8� q : Tq(M�T ) � t* preserves or reverses orientation. (Although these
orientations depend on the orientation of T, sign(d8� q) is independent of
this choice; see Convention 4.1.)

Proposition 5.2. Let p # M be a regular point for the moment map 8
and let q be its image in M�T, then q is a smooth point of M�T and is a
regular point for the descended moment map 8� . In particular, sign(d8� q) is
well defined.

Proposition 5.3. Let p # M be a regular point for the moment map 8
and let q be its image in M�T. Then there is a T-invariant neighborhood U
of p in M such that the push-forward of Liouville measure from U to t* is
equal to Lebesgue measure on the image, 8(U), times sign(d8� q).

Propositions 5.2 and 5.3 will be proved by a series of lemmas.

Lemma 5.4. Suppose that p # M is a regular point for 8. Then the stabi-
lizer of p is trivial and the two-form | is nondegenerate on a neighborhood
of p.

Proof of Lemma 5.4. Take any nonzero element ! # t. We have

@(!M) |p=&d8!|p {0 (5.5)

because d8|p is onto t*. Therefore !M {0 and hence the stabilizer of p in
T is discrete. Moreover, (5.5) implies that the tangent space to the orbit at
p is transverse to the null-space of |p . But the orbit is isotropic (the proof
of this is identical to the proof in the symplectic case; see [KKS]) and we
have just shown that it has dimension n. Therefore the null-space of |p is
trivial, i.e., | is nondegenerate at p (and hence, on a neighborhood of p).

We have shown that the stabilizer group of p is finite and we will now
show that it is trivial. By the equivariant tubular theorem there is an
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invariant neighborhood U of the orbit of P and a T-equivariant fibration
? : U � T } p whose fibers are transverse to the T-orbits. The moment map
provides a trivialization, 8 : U � t*; therefore the neighborhood U of the
orbit looks like the product (T } p)_Bn with Bn a ball in t*, and the torus
T acts on the first factor only. The torus action is effective on M, therefore
it is effective on U, and so T must act freely on the orbit. K

Proof of Proposition 5.2. By Lemma 5.4 p # Mfree , therefore q is a
smooth point of M�T. It is regular for 8� because p is regular for 8. K

Lemma 5.6. Suppose that p # M is a regular point for 8 and that
Liouville measure &, defined by integrating (&|�2?)n�n !, is positive near p.
Then there exists an invariant neighborhood U of the orbit T } p such that

8
*

(&|U)=Lebesgue measure on 8(U).

Proof. This is a special case of the Duistermaat�Heckman theorem. As
in the proof of Lemma 5.4 we can write U=(T } p)_Bn. Since the orbit is
Lagrangian we can choose a slice to the orbit which is Lagrangian and
then the fibers of U � T } p are Lagrangian. By a suitable choice of coor-
dinates x1 , ..., xn (mod 2?) on T and y1 , ..., yn on t* we can write the sym-
plectic form in a standard way,

|= :
n

i=1

dyi 7 dxi .

Liouville measure is then equal to the Haar measure on t* with total
measure 1, times Lebesgue measure on t*. Its push-forward via the moment
map,

(x1 , y1 , ..., xn , yn) [ ( y1 , ..., yn),

is Lebesgue measure |dy1 7 } } } 7 dyn |. K

Let p # M be a regular point for 8. If Liouville measure is positive on a
neighborhood of p then we write up &p>0 and sign &p=1; if it is negative
then we write &p<0 and sign &p=&1. Lemma 5.4 guarantees that one of
these two cases must occur.

Lemma 5.7. If p # M is a regular point for 8 then

sign &p=sign(d8� q),

where q is the image of p in M�T.
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Proof. We use the notation of the proof of Lemma 5.6. The yi 's denote
coordinates on M�T and, also, coordinates on t*. The descended moment
map is then

8� ( y1 , ..., yn)=( y1 , ..., yn).

It preserves orientation if and only if the coordinates x1 , y1 , ..., xn , yn give
a positive orientation on M (where we use Convention 4.1), i.e., if and only
if dx1 7 dy1 7 } } } 7 dxn 7 dyn=(&|)n�n !=(2?)n & is positive. K

Proof of Proposition 5.3. Lemma 5.6 implies that

8
*

(&|U)=sign(&p) } (Lebesgue measure on 8(U)),

and by Lemma 5.7, sign &p=sign(d8� q). K

Theorem 5.1. Consider an effective action of a torus T on a compact
oriented manifold M with dim T= 1

2dim M=n. Let | be a closed T-in-
variant two-form on M and let 8 : M � t* be a moment map. The topological
degree of the descended moment map 8� : M�T � t* at :,

\(:)= :
q # 8� &1(:)

sign(d8� q), (5.8)

is defined for an open dense set of :'s in t*. It is equal to the density function
for the push-forward measure with respect to Lebesgue measure on t*.

Proof. The right-hand side of (5.8) is well defined whenever : is a
regular value for the moment map 8. Indeed, the summands are well
defined by Proposition 5.2, and the sum is finite because 8 is proper. The
set of regular values is open and dense because 8 is proper and by Sard's
theorem. Let [qi] be the pre-images of : in M�T. There is a neighborhood
V of : in t* whose pre-image in M�T consists of a finite disjoint union of
open sets U$i on which 8 is a diffeomorphism U$i � V; this follows from
Proposition 5.2 and from the properness of 8. Denote by Ui the pre-image
of U$i in M. Then the push-forward measure, restricted to V, is equal to the
sum of the push-forwards from the individual Ui 's. If we choose V small
enough then, by Proposition 5.3, the push-forward measure from Ui to V
has a density function equal to \1=sign(d8� qi). The sum of these is what
we need. K

Remark 5.9. If we have a torus action on a manifold and a closed
invariant two-form | whose cohomology class is integral then, even if there
is no moment map into t*, one can still define a moment map which takes
values in a torus [MD, Wei]. Theorem 5.1 remains valid in this case.
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Definition 5.10. A locally toric space is an oriented manifold M 2n with
a completely integrable action of a torus T such that every point has an
invariant neighborhood which is equivariantly diffeomorphic to an open
subset of a toric variety.

Equivalently, every point has a neighborhood which is equivariantly dif-
feomorphic to a neighborhood of the zero section in T_H (Ck_Rn&k)
with T acting by left translations and where the stabilizer H is a k-dimen-
sional subtorus of T which acts effectively on Ck and trivially on Rn&k. For
a locally toric space, the quotient M�T is homeomorphic (but not dif-
feomorphic) to an oriented manifold with boundary (M"Mfree)�T.

Theorem 5.2. Let M be a compact locally toric space of dimension 2n
with a closed invariant two-form and a moment map 8 : M � t*. Then the
push-forward measure can be expressed as a sum of winding numbers as
follows. Suppose that : # t* is not in the image of the boundary �(M�T ). For
every boundary component Ni ��(M�T ) we consider the descended moment
map 8� : Ni � t*": and the induced map

Hn&1(Ni) � Hn&1(t*":). (5.11)

These homology groups are isomorphic to Z; an isomorphism is determined
by the choices of orientations as in Convention 4.1. We define the winding
number of Ni around : to be the image of the number 1 under the map (5.11)
and we denote it di (:). The density function for the push-forward measure is
then equal to the sum of these winding numbers;

\(:)=:
i

di (:).

Remark 5.13. In particular, if we fix the manifold M and the T-action,
then the push-forward measure only depends on the restriction of the
moment map to the boundary of M�T. Furthermore, it only depends on
the images of the fixed points; this follows from the GLS formula
(Theorem 7.1).

Proof of Theorem 5.2. Let : be a regular value of the moment map. By
Proposition 5.4, 8&1(:)�Mfree . Since �(M�T )=(M"M free)�T, : is not in
the image of �(M�T ), and so the right-hand side of (5.12) is well defined.
The map 8� : M�T � t* intertwines the long exact sequences for the pairs
(M�T, �(M�T )) and (t*, t*":). We get
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8�
*

$

Hn(M�T, �(M�T )) w�$ Hn&1(�(M�T ))
8�

* (5.14)

Hn(t*, t*":) Hn&1(t*":)

Theorem 5.1 says that \(:)=8�
*

([M�T]), where [M�T] denotes the gen-
erator of Hn(M�T, �(M�T )). Since the diagram (5.14) commutes, we also
have \(:)=8

*
$([M�T]), where we identify Hn&1(t*, t*":) with Z. But

$([M�T])=�i [Ni], where [Ni] is the generator of Hn&1(Ni). This shows
that \(:) is equal to �i 8�

*
([Ni])=�i di (:) for every regular :. Since the

set of regular :s is open and dense, we are done. K

6. EXAMPLES OF COMPLETELY INTEGRABLE SPACES

In this section we give examples of compact manifolds with completely
integrable torus actions.

Example 6.1. Take CP1 with the circle action * } [z, w]=[z, *w]. This
space is isomorphic to the two-sphere being rotated as in Example 2.3.

Example 6.2. The standard two-torus acts on the complex projective
plane CP2 by (*1 , *2) } [z0 , z1 , z2]=[z0 , *1z1 , *2z2]. The Fubini�Study
symplectic form on CP2 is induced from the standard symplectic form on
C3 restricted to the unit sphere. The moment map is [z0 , z1 , z2] [
(&1

2 |z1 | 2, &1
2 |z2 |2) when |z0 | 2+|z1 | 2+|z2 | 2=1. This map identifies the

quotient M�T with the triangle [(x, y) | x�0, y�0, x+ y� &1�2] in R2.

Example 6.3 (Toric varieties). Toric varieties are algebraic varieties
which can be encoded in certain combinatorial objects, called fans. Special
cases are CPn and spaces obtained from them by taking products and com-
plex blow-ups. They come equipped with completely integrable torus
actions.

For a smooth compact toric variety, the quotient M�T is homeomorphic
to a closed ball. By Theorem 5.2, for any closed invariant 2-form, the push-
forward measure is given by the winding numbers of a map Sn&1 � t*
around the points in t*; also see [KT].

Example 6.4 (Delzant spaces). Take a symplectic manifold with a
completely integrable Hamiltonian torus action. By Delzant [De], this
space is equivariantly symplectomorphic to a Ka� hler toric variety. The
moment map descends to a diffeomorphism 8� of the quotient M�T with a
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compact convex polytope in t*, so the quotient is topologically a closed
ball. The winding number of its boundary �(M�T ) around a point : # t* is
equal to 1 for : in the interior of the polytope and 0 for : in the exterior.
The push-forward measure is equal to Lebesgue measure on the polytope
and zero outside.

Example 6.5 (Bott towers). The spaces which initially motivated our
work were Bott�Samelson manifolds. These are diffeomorphic to certain
toric varieties which we call Bott Towers [GK] and which are higher
dimensional analogues of Hirzebruch surfaces. For a Bott tower, the den-
sity function for the push-forward measure only takes the values \1 on its
support.

Example 6.6. The torus action on CP2 in Example 6.2 has three fixed
points: [1, 0, 0], [0, 1, 0], and [0, 0, 1]. Let M be the space obtained by
performing a complex blow-up of CP2 at these three points. The action of
T lifts to M. There is a closed invariant two-form | on M for which the
push-forward measure is given by Fig. 3, with winding numbers &1 and
&2; see [KT]. (We get this picture if the integral of | over CP1 is 1 and
over every exceptional divisor it is < &1.)

Example 6.7. Let a circle act on a two-torus by translations. The
quotient M�T is a circle. There is a symplectic structure (the area form) but
it has no moment map; an obstruction lies in H1(M, R). Any closed,
invariant two-form which admits a moment map is exact. The degree of the
map 8� : M�T � R is zero at every point of R. (The degree is constant
because M�T is a closed manifold but 8� is not onto because M�T is com-
pact.) The push-forward of Liouville measure is the zero measure on t*.
This is guaranteed by the absence of fixed points; see Section 7.

Example 6.8. Locally toric spaces were defined in 5.10. There is a use-
ful criterion for being locally toric: We define a decomposition of our
manifold by partitioning it into the connected components of points which
have the same isotropy subgroup. We shall call these sets the orbit-type
strata in M. If the closure of every stratum contains a fixed point then M

Fig. 3. CP2 blown up at three points.
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is locally toric. This follows by noting that the T-action on the normal to
the stratum does not change along the stratum and that a neighborhood
of a fixed point is always toric.

Example 6.9. One can construct new examples from old ones by tak-
ing equivariant connected sums. We now describe this construction.

Let M1 and M2 be two completely integrable T-spaces. Pick two points
pi # Mi which have the same stabilizer H�T and for which the isotropy
actions (i.e., the linear H-representations Tpi Mi) are isomorphic. Each orbit
Oi=T } pi has a tubular neighborhood Ui which is equivariantly dif-
feomorphic to T_H Dn+k, where Dn+k is a disk in the linear H-representa-
tion Tpi Mi and k=dim H. The deleted neighborhood Ui "Oi is equivariantly
diffeomorphic to T_H Sn+k&1_I, where I is the interval (&=, =) and
where H acts on the sphere Sn+k&1. We glue these neighborhoods by the
equivariant diffeomorphism � which is the identity on T_H Sn+k&1 and
which sends t [ &t on the I component. This produces the equivariant
connected sum of M1 and M2 along the orbits O1 and O2 . To produce an
oriented manifold we reverse the orientation on the M2 factor. We write

M1>T M� 2=(M1 , O1)>T (M� 2 , O2)=(M1"O1) _ � (M� 2"O2).

The connected sum depends on the choice of the orbits Oi . For example,
connecting two copies of CP2 at a fixed point gives a manifold M such that
M�T has one boundary component (see Fig. 4), whereas connecting along
a free orbit gives an M�T with two boundary components (see Fig. 5).

We will use the short notation M1>T M2 , but we will always specify
along which orbits we are gluing. The definition above depends not just on
the orbits but also on the gluing map. We conjecture that if M1 and M2

are locally toric then different gluing maps should give rise to isomorphic
spaces, and in fact that one only needs to specify the orbit-type strata in
which the orbits lie.

The two extremal cases of equivariant connected sums are: (1) connect-
ing at fixed points and (2) connecting along free orbits. Connecting at a

Fig. 4. Connecting two CP2's at a fixed point.
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Fig. 5. Connecting two CP2's at free orbits, or two kissing triangles.

fixed point produces an ordinary connected sum: M1>T M2=M1>M2 .
Connecting along a free orbit produces an ordinary connected sum on the
level of quotient spaces: (M1>T M2)�T=(M1 �T)>(M2 �T ). This can be seen
as follows. If Di is a small disk in Mi which is transversal to the orbit
Oi=T } pi then a tubular neighborhood of the orbit is isomorphic to the
product T_Di . We glue the Ui 's by taking the connected sums of the
disks; locally we get (T_D1)>T (T_D2)=T_(D1>D2).

Any two closed invariant two-forms on M1 and M2 extend to the new
manifold M1>T M� 2 in the following way. The restriction of |1 to U1 is
exact because U1 retracts to the orbit T } p1 and |1 is zero on the tangents
to the orbit. Thus we can write |1=d;1 on U1 and, similarly, |2=d;2

on U2 . The manifolds M1 and M2 are connected by the ``tube''
T_H Sn+k&1_I. Let ; be a one-form on the tube which coincides with ;1

near one end of the tube and which coincides with ;2 on the other end.
(Explicitly, ;=\1;&1+\2 ;2 , where \i are smooth cutoff functions, each
supported on a small neighborhood of an endpoint of I.) The two-form
|=d; coincides with |1 near one end of the tube and with |2 near the
other end and, therefore, extends to a two-form on the rest of the manifold.

We would like to extend not just the two-forms but also the moment
maps. This can be done under the assumption:

8!
1( p1)=8!

2( p2) for all ! # h, (6.10)

where h is the Lie algebra of the stabilizer. Note that this condition is
empty if we glue along free orbits.

To extend the moment maps we need to modify the above construction.
As before, we choose primitive one-forms ;� i such that d;� i=|i on Ui . Since
d(;� i , !M) =&@(!M) |i=d8!

i , we have

8!
i =(;� i , !M) + fi (!) for all ! # t (6.11)

for some fi # t*. The linear functional ! [ (;� i ( pi), !M) annihilates h. This
fact, together with our assumption (6.10) and with (6.11), implies that
f1(!)= f2(!) for all ! # h. The linear functional 2= f1& f2 annihilates h so
it defines a linear functional on the vector space t�h and, hence, a one-form
with constant coefficients on the orbit T } p1 $T�H. The pull-back to U1 is
a closed invariant one-form 2� with the property (2� , !M)=2(!). Define
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;1=;� 1+2� on U1 and ;2=;� 2 on U2 ; then d;i=|i on Ui . One can easily
check that

8!
1= f2(!)+(;1 , !M) , 8!

2= f2(!)+(;2 , !M) .

On the tube we define ;=\1;1+\2;2 , |=d;, and 8!= f2(!)+(;, !M).
We note that as far as the push-forward measure is concerned we get

nothing new.

Proposition 6.12. The push-forward measure for M1>T M� 2 is the same
as that for the disjoint union M1_4 M� 2 .

Proof. If we glue along free orbits then the proposition is an immediate
consequence of the GLS formula (Theorem 7.1), because the fixed-point
data for M1>T M� 2 and for the disjoint union M1 _4 M� 2 are the same.

Otherwise, Theorem 7.1 still implies that the push-forward measure for
M1>T M� 2 is independent of how we glue the two-forms and the moment
maps. In particular, by choosing the ``gluing tube'' arbitrarily small, we can
arrange that the two-form on M1>T M� 2 is arbitrarily close to the two-
forms |1 and |2 on the disjoint union (M1 "O1)_4 (M2"O2) (embedded in
M1>T M� 2). K

Example 6.13. We can produce locally toric spaces which are not toric
varieties by taking the equivariant connected sums of toric varieties. Recall,
for a smooth compact toric variety, the quotient space M�T is
homeomorphic to a closed ball. In particular, if M1 and M2 are toric
varieties and we connect them along a free orbit then the quotient
(M1>T M� 2)�T is homeomorphic to the connected sum of two closed balls
and, hence, M1>T M� 2 is not a toric variety.

Example 6.14. If M1=M2=CP2 then the quotients Mi�T are (dif-
feomorphic to) triangles; see Example 6.2. If we glue along free orbits then
the quotient (M1>T M� 2)�T can be pictured as ``two kissing triangles'' (see
Fig. 5) and is topologically an annulus I_S1. If we glue at fixed points
then (M1>T M2)�T is topologically a disc. In fact, M1>T M2� is then a toric
variety; it is a Hirzebruch surface. On the other hand, if Mi=S2_S2 and
we glue at fixed points then M1>T M2 is not a toric variety, although
M1>T M� 2 �T is a disc; see Example 6.16.

Example 6.15. Take the six-dimensional manifold M=CP1_
(CP2>T CP2). Then the boundary of M�T is a torus, �(I_(I_S 1)). In a
similar way we can obtain examples with �(M�T ) being a surface of any
genus. We start by connecting a sequence of g+1 copies of CP2 along free
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orbits. The quotient space is homeomorphic to a disc with g holes. If M is
the product of this space with CP1 then �(M�T ) is a surface of genus g.

The rest of this section is devoted to an example which we learned from
Chris Woodward and from Victor Guillemin. It occurs as a natural sub-
manifold of a coadjoint orbit. It is not a toric variety but it is locally toric
and it is isomorphic to the equivariant connected sum of two copies of
S2_S2 at a fixed point.

In what follows the results which we state without proof are either
explained in [Wo, Section 2]; [GS3, Section 45], or they can be checked
by an easy computation.

Example 6.16. Let O be a generic coadjoint orbit of the group SU(3).
The group U(2) embeds as a subgroup of SU(3) and thus acts on O. Let
8 : O � u(2)* be the moment map. Let T be the maximal torus of U(2).
The dual of its Lie algebra, t*, embeds in u(2)* as the space of vectors
fixed by T. The moment map 8 is transverse to t* and so the pre-image
M=8&1(t*) is a submanifold of O on which T acts. This will be our space.
We have dim M=4 and dim T=2.

Figure 6 shows the image of the moment map, 8(M). It is the intersec-
tion t* & 8(O). The solid line separates the two Weyl chambers in t*. We
choose the positive Weyl chamber t*+ to be the bottom one. The rectangle
in it is Kirwan polytope for the action of U(2) on O, i.e., the intersection
8(O) & t*+ . The rest of the picture is obtained by taking the images of this
polytope under the action of the Weyl group Z�2Z.

If : # t* lies in the interior of one of these rectangles then the level set
8&1(:) is a single T-orbit. For the : on the solid line, where the two rec-
tangles intersect, 8&1(:) is a 3-sphere in M.

The structure of M as a T-space is as follows. There are six fixed points.
Their images in t* are the vertices which lie in the interiors of the two
chambers; we call these interior vertices. Two circles in T occur as stabi-
lizers (and T is the product of these circles). For each of these, the fixed
point set has three components. The images of these components in t* are

Fig. 6. The intersection of t* with the moment image in u(2)*, for U(2) acting on a coad-
joint orbit of SU(3).
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the horizontal and vertical intervals which connect the interior vertices.
At all other points of M the T-action is free. Since the closure of every
orbit-type stratum of M contains a fixed point, M is locally toric; see
Example 6.8. The space M is not a toric variety; otherwise the fixed point
set of a circle in T could have at most two components.

M can be obtained from two copies of S2_S 2 via an equivariant con-
nected sum at fixed points. This follows from the Guillemin local model
[Wo, Section 4]. The two rectangles in Fig. 6 are the images of the
moment maps for the two copies of S2_S 2.

Topologically, M�T is a closed two dimensional disk. Its two halves map
to the two pieces in Fig. 6 but in opposite orientations. The disk twists as
it maps to t* and the line which separates its two halves gets squashed to
one point.

We choose an orientation on M arbitrarily. (The choice of a positive
Weyl chamber determines an orientation on M.) Then the density function
for the push-forward measure will be 1 on one piece of Fig. 6 and &1 on
the other piece.

7. THE GUILLEMIN�LERMAN�STERNBERG FORMULA

Duistermaat and Heckman [DH] wrote a formula which expresses the
Fourier transform of the push-forward measure in terms of the fixed point
data of the torus action. Guillemin, Lerman, and Sternberg [GLS1, GLS2]
have transformed this into a formula for the push-forward measure itself.
We describe this formula in the special case of a completely integrable
action.

Let M be a compact-oriented manifold of dimension 2n with an effective
action of a torus T of dimension n and let | be a closed and invariant two-
form on M. If p # M is a fixed point then the action of T on the manifold
M induces a linear action of T on the tangent space TpM called the
isotropy representation. As was explained in Section 4, we can identify the
vector space TpM with Cn and express the T-action as * } (z1 , ..., zn)=
(*:1z1 , ..., *:nzn). The elements :j=:j, p # l* are called the isotropy weights
at p.

Choose a vector ! # t such that (:j, p , !) {0 for every 1� j�n and for
every fixed point p. Define =j, p=sign(:j, p , !) and =p=>j =j, p . Define the
polarized weights by :$j, p==j, p :j, p , so that (:$j, p , !) >0. Consider the
following function on t*:

\!
p(:)={=p

0
if :=8( p)&�n

j=1 rj :$j, p for some rj�0
otherwise.
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Its support is a polyhedral cone emanating from 8( p) and pointing in the
direction of &!.

Theorem 7.1 (Guillemin�Lerman�Sternberg). The Duistermaat�Heckman
measure is equal to Lebesgue measure on t* times the density function �p \!

p(:).

Proof. This is a special case of the Theorem in [GLS1, Section 3]. K

8. EQUIVARIANT STRUCTURES

Background material for Sections 8�13 can be found in [AB1; AB2;
LM]. We consider three types of structures on M, of increasing generality:

(i) a complex structure on M and a holomorphic line bundle
L � M, or

(ii) an almost complex structure on M and a smooth line bundle
L � M, or

(iii) a Spinc structure on M.

Spinc structure. The Spin group is the double covering:

Spin(2n) w�p SO(2n) (8.1)

with kernel =Z2 . We take the central extension,

Spinc(2n)=Spin(2n)_Z2
U(1), (8.2)

where U(1) are the complex numbers of norm 1 and Z2 is the subgroup
[1, &1]. The map [A, *] [ [ p(A), *2] defines a double covering,

Spinc(2n) � SO(2n)_SO(2). (8.3)

We think of U(1) as a double covering of SO(2); this notation will be con-
venient later.

Let M be a smooth manifold. Choose a Riemann metric on M, an orien-
tation, and a complex Hermitian line bundle L� � M. This data determines
a principal bundle over M with a structure group SO(2n)_SO(2). (Its
fiber over p # M consists of pairs of an oriented orthogonal frame of TpM
and an element of the unit circle in L� p). A Spinc structure on M is a prin-
cipal Spinc bundle and a double covering PSpinc(2n) � PSO(2n)_SO(2) which is
equivariant with respect to the group homomorphism (8.3).

Example 8.4. A Spin structure determines a Spinc structure in which
the U(1) bundle is trivial. We can twist this Spinc structure by a line bundle
L � M to produce a new Spinc structure in which L� is replaced by
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L� �L �2. The converse is not true��given a Spinc structure we cannot in
general separate it into a U(1) bundle and a Spin bundle. And even if this
is possible, it might not be possible equivariantly. In fact, under a com-
pletely integrable torus action this is never possible.

Example 8.5. Every almost complex manifold is also a Spinc manifold.
The associated line bundle L� is the determinant bundle �n

C TM. This is
because there is a group homomorphisms ; : U(n) � Spinc(2n) which
allows us to define PSpinc(2n)=PU(n)_; Spinc(2n).

Liftings of torus actions. Suppose that we have a torus action on a
smooth manifold M. If M has an extra structure (for example, a Spinc

structure) then we define a lifting of the torus action in the following way.
A lifting of the torus action to a principal bundle P � M is defined to be

a smooth left action of T on the total space of P, which commutes with the
principal right action of the structure group and such that the bundle map
P � M is T-equivariant.

A lifting of the torus action to a vector bundle E � M is defined to be
a smooth action of T on E which sends each fiber linearly onto another
fiber and such that the bundle map E � M is T-equivariant.

Suppose that M is a complex manifold of dimension n and L � M is a
holomorphic line bundle. A torus action on this structure is a holomorphic
torus action on M, together with a lifting to a holomorphic action on L.

Suppose that M has an almost complex structure and that L � M is a
smooth line bundle. A torus action on this structure is a smooth torus
action on M which preserves the almost complex structure and a smooth
lifting of the action to L.

Finally, suppose that M has a Spinc structure. A torus action on the
Spinc structure consists of a lifting of the torus action to the bundle
PSpinc(2n) . Such a lifting induces actions of T on the principal bundles
PSO(2n) and PSO(2n) . We require the action on PSO(2n) to be induced from
the action on M (in particular, the action on M must preserve the Riemann
metric). Note that the action on the principle circle bundle induces an
action on the line bundle L� which preserves the Hermitian metric.

9. THE DOLBEAULT AND DIRAC OPERATORS

An almost complex structure on a smooth manifold M determines a bi-
grading �r (T*M�C)=�p+q=r � p, q T*M and, hence, a decomposition
of the complex-valued differential forms:

0r(M, C)= �
p+q=r

0 p, q(M). (9.1)
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If the almost complex structure is integrable and z1 , ..., zn are local
holomorphic coordinates then 0 p, q(M) consists of the forms � aI, J dzi1 7
} } } 7dzip 7 dz� j1 7 } } } 7 dz� jq , where the coefficients aI, J are smooth
complex-valued functions on M.

The Dolbeault operator �� : 0 p, q(M) � 0 p, q+1(M) is defined to be the
exterior differentiation d followed by the projection 0 p+q+1(M, C) �
0p, q+1(M).

In the presence of a smooth line bundle L � M we consider the differen-
tial forms with coefficients in L, denoted 0 p, q(M, L); these are the smooth
sections of � p, qT*M�L. A connection on L determines a map
{L : 1(L) � 1(T*M�L). It decomposes as {L ={$L +{"L , where {$L and
{"L take values in 01, 0(M, L) and 00, 1(M, L), respectively. We then define
�� L : 0 p, q(M, L) � 0 p, q+1(M, L) by

�� L (.�s)=(�� .)�s+(&1)q . 7 {"Ls,

where . is a smooth ( p, q)-form on M and where s is a smooth section of
L. In general �� 2

L {0, so we cannot use it to define cohomology as we do
for (integrable) complex structures. Instead, we consider the ``rolled-up
operator''

DL : 00, even(M, L) � 00, odd(M, L),

where DL =(�� +�� *)�1+1� ({"L +{"*L ) and �� * and {"*L are adjoints of
�� and {"L with respect to some Hermitian metrics on M and L.

Now assume that we have a Spinc structure on M. The group Spin(2n)
has two real representations, called the Spin representations and denoted
2+ and 2&. These fit together with the scalar action of U(1) to give
representations of the group Spinc(2n) on the complex vector spaces
2\

C =2\�C.
The group Spin(2n) acts on R2n via the action of SO(2n). There exists a

natural map

_ : R2n �2+ � 2& (9.2)

which is equivariant with respect to the actions of Spin(2n). (This map
comes from multiplication in the Clifford algebra in which these objects
actually live; see [LM].)

If M is a Spinc manifold then the Spinor bundles over M are the
associated bundles S \

C =P_G 2\
C , where G=Spinc(2n) and P=PSpinc(2n) .

The Dirac operator D3 : 1(S +
C ) � 1(S &

C ) is constructed in the following way.
The map (9.2) induces a map on the spaces of sections, _~ : 1(T*M�S +

C ) �
1(S &

C ).
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A connection on the principal Spinc-bundle induces a connection on the
associated spinor bundle S +

C and thus a covariant differentiation map
1(S +

C ) w�{ 1(T*M�S +
C ). The Dirac operator is the composition,

1(S +
C ) w�{ 1(T*M�S +

C ) w�_~ 1(S &
C ). The map _~ is the symbol of this

operator.
Recall that every almost complex manifold is also a Spinc manifold.

In this case, the spinor bundles are the anti-holomorphic forms,
S +

C $�0, even(M) and S &
C $�0, odd(M).

10. THE EQUIVARIANT INDEX

We described two elliptic differential operators D : H+ � H&. In one
case D was the twisted Dolbeault operator and H+, H& were the spaces
of smooth sections of �0, evenM�L and �0, oddM�L. In the other case D

was the Dirac operator and H+, H& were the spaces of smooth sections
of the spinor bundles over M.

Ellipticity implies that D has a finite-dimensional kernel and cokernel.
(We omit the analytic details; see [BB].) The index of D is the virtual vec-
tor space, [ker D]&[coker D]. This is an element of the K-theory of a
point, and it is independent of the choices of metrics and connections used
in defining the Dolbeault and Dirac operators. It should be thought of as
a formal difference of vector spaces.

In the case of a complex manifold with a holomorphic line bundle, the
index coincides with the alternating sum of the cohomology groups for the
sheaf of holomorphic sections, �(&1) i Hi (M, OL ). In the almost complex
or Spinc case the individual Hi 's are not defined; however, the index
provides us with the desired ``cohomology.'' The first author, in his thesis
[G], applied this technique of ``rolling up the operator'' to compute a cer-
tain Dolbeault index by deforming the complex structure into an almost
complex structure for which the index of the rolled-up operator could be
computed more easily.

In the presence of a torus action which preserves every structure in sight,
the operator D is equivariant, so its kernel and cokernel are finite-dimen-
sional representations of T. Again by forming their formal difference
(modulo the appropriate equivalence relation) the index becomes a virtual
representation of T. It is determined by its multiplicity function,
mult : l* � Z, defined by: mult(:)=mult+(:)&mult&(:), where mult+(:),
mult&(:) are the multiplicities of : in the representations ker D and
coker D, respectively. Alternatively, the equivariant index is determined by
its virtual character, / : T � C, defined by

/(*)=/+(*)&/&(*),
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where /+(*) and /&(*) are the traces of the respective operators
[* : ker D � ker D] and [* : coker D � coker D]. We have /(*)=
�: # l* mult(:) *:, so the multiplicity function is simply the Fourier trans-
form of the virtual character.

We now describe explicitly how the torus acts on the vector spaces H\.
First assume that we have an almost complex structure on M and a
smooth line bundle L. The torus action on M induces an action on the
space of smooth functions by

(* } f )( p)= f (*&1 } p). (10.1)

Similarly, * # T acts on differential forms by pulling-back via the action of
*&1. This preserves the spaces 0 p, q(M) because the T-action preserves the
almost complex structure. Next, the T-action on the line bundle L induces
an action on the space of sections by

(* } s)( p)=*(s(*&1p)). (10.2)

These two actions fit together to an action on the space of twisted forms
0p, q(M, L) and thus to actions of T on the spaces H+=00, even(M, L)
and H&=00, odd(M, L).

In the presence of a T-equivariant Spinc structure, the action of T on
the principal bundle PSpinc(2n) induces an action on the associated Spinor
bundles S \

C and on their spaces of sections, H\.

11. THE ATIYAH�BOTT FORMULA

Let E � M be a vector bundle and let f : M � M be a smooth map.
Atiyah and Bott define a lifting of f to be a bundle map . : f *E � E, so
at each point p # M we get a linear isomorphism .p : Ef ( p) � Ep . This
gives rise to a map on the space of sections, T : 1(E) � 1(E), by
(Ts)( p)=.(s( f ( p))).

A torus action on M gives, for each element * of the torus, a dif-
feomorphism f* : M � M. A lifting of the torus action to a bundle E � M
gives linear isomorphisms Ep � Ef ( p) . In the notation of Atiyah and Bott
this is a lifting of the inverse map ( f*)&1, not of f* .

In our setting we have two vector bundles, E+ and E&, and an elliptic
differential operator D between their spaces of smooth sections. The torus
T acts on everything. We get two representations of the torus, \+ and \&,
on the kernel and cokernel of D, respectively. The virtual character of the
representation of T on the index of D was defined as

/(*)=trace \+(*)&trace \&(*).
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The torus T is of half the dimension of the manifold M and the action is
effective, therefore the fixed points are isolated. For an open dense set of *'s
in T, the graph of the action map f* : M � M is transversal to the diagonal
in M_M and the set of fixed points of f* coincides with the set of fixed
points for the torus action. For such *'s we can apply the formula of Atiyah
and Bott, which computes the Lefschetz number as a sum over fixed
points:

/(*)=:
p

traceC (.+
* )p&traceC (.&

* )p

|detR (1&(df &1
* )p)|

, (11.1)

where (.+
* )p is the automorphism of the fiber E +

p which is given by the
action of the element * # T, and (.&

* )p is similar.
In the rest of this section we compute (11.1) for the Dirac and Dolbeault

operators.

Proposition 11.2 (The virtual character for the Dolbeault operator). Take
an almost complex manifold M and a smooth line bundle L � M. Suppose
that we have a torus action on M which preserves the almost complex struc-
ture and a lifting of this action to L. We form the twisted Dolbeault operator
DL . Its virtual character is then given by a sum over the fixed points,
/(*)=�p &( p)(*), and the contribution of the fixed point p is

&( p)(*)=
*+

>n
i=1 (1&*&:i)

,

where :1 , ..., :n are the weights for the torus action on the complex vector
space TpM and where + is the weight for the torus action on the complex
line Lp .

Proof. This computation was already done by Atiyah and Bott in
[AB2, p. 457]. We will now translate their argument into our notation.

We have E+=(�0, evenT*M)�L and E &=(�0, oddT*M)�L. An ele-
ment of (�0, qT*pM)�Lp can be written as u dz� i1 7 } } } 7 dz� iq , where ���zi

are a basis for the complex linear space Tp M and where u is a vector in
the fiber Lp . If p is a fixed point we may make a linear change of basis so
the dzi 's are eigenvectors for the torus action on T*pM then
* } dzi=*&:i dzi . The minus sign is because the action of * # T on the dif-
ferential forms was defined by pulling back via the action of *&1 on M.
We get * } (u dz� i1

7 } } } 7 dz� iq)=*++:i1+ } } } +:iq(u dz� i1
7 } } } 7 dz� iq); i.e., the
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weights for the torus action on E \
p are [++:i1+ } } } +:iq]i1< } } } <iq . The

numerator in the term &( p)(*) is

traceC .+
p &traceC .&

p

=:
q

(&1)q :
i1< } } } <iq

*++:i1+ } } } +:iq=*+(1&*:1) } } } (1&*:n).

Downstairs, if f =f &1
* then dfp=diag(*&:1, ..., *&:n) and so

|detR (1&dfp)|= `
n

i=1

(1&*&:i)(1&*:i)

(because detR w=ww� for every complex number w). K

Proposition 11.3 (The virtual character for the Dirac operator). Let
M be a Spinc manifold with a torus action and with a lifting of this action
to the Spinc structure. Then the virtual character of the Dirac operator is
given by a sum over the fixed points, /(*)=�p &( p)(*), and the contribution
of the fixed point p is

&( p)(*)=
*+�2 >n

i=1 (*&:i�2&*:i�2)
>n

i=1 (1&*:i)(1&*&:i)
, (11.4)

where :1 , ..., :n are weights for the linear action of T on Tp M and where +
is the weight for the torus action on the fiber L� p of the line bundle associated
to the Spinc structure.

Note that (11.4) only depends on pointwise data: the actions of our
torus on the tangent space TpM and on the fiber L� p . Also, recall that the
:i 's are only determined up to a simultaneous sign change of an even num-
ber of them. Since &( p) flips its sign when we flip the sign of an :i , it is well
defined, although the individual :i 's are not well defined.

Proof. The relevant Lie groups are Spinc(2n), Spin(2n), and SO(2n).
The relations (8.1), (8.2), and (8.3), between these Lie groups give similar
relations between their maximal tori. We denote by TG the standard maximal
torus in the group G which is one of the above. Then we have a double covering
TSpin(2n) � TSO(2n) , a central extension TSpinc(2n)=TSpin(2n)_Z2

U(1), and a
double covering TSpinc(2n) � TSO(2n)_SO(2).

We write TSO(2n)=Rn�Zn. Let x1 , ..., xn be the standard basis for the
weight lattice in t*SO(2n)=Rn. The double covering TSpin(2n) � TSO(2n)

induces an isomorphism t*SO(2n) w�$ t*Spin(2n) . With this identification, the
weight lattice of Spin(2n) is generated by x1 , ..., xn and 1

2(x1+ } } } +xn).
Let y be the standard generator for the weight lattice of SO(2) and remem-
ber that the map U(1) � SO(2) is a double covering, then the weight lattice
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of U(1) is generated by y�2. Finally, the weight lattice of TSpinc(2n)=TSpin(2n)

_Z2
U(1) in Rn_R is generated by x1 , ..., xn , y, and 1

2(x1+ } } } +xn+ y).
Let 2\

C =W1 � } } } �W2n&1 be the weight decomposition of the Spin
representation with respect to the actions of the maximal torus. The
weights are :j=

1
2(\x1\x2\ } } } \xn). The weights occurring in 2+

C are
those with an even numbers of plus signs in :j , and those occurring in 2&

C

are with an odd numbers of plus signs. With this convention the Dirac
index coincides with the Dolbeault index if the manifold is almost complex
and the orientation is determined by the almost complex structure.

The standard action of U(1) on C is given by the weight y�2; hence,
TSpinc(2n) acts on Wj with a weight of :j+ y�2.

Remember that the Spinc structure is a principal bundle P over M with
structure group Spinc and the spinor bundles are the associated bundles
E\=P_Spinc 2\

C . Let p be a fixed point in M. The torus T acts on the
fiber E \

p ; we need to determine the weights for this representation.
Fix a basepoint in the fiber of P over p. This determines: (i) an identifica-

tion of that fiber with the group Spinc(2n), (ii) an identification of the
fibers E \

p with the representation space 2\
C , and (iii) an identification of

the tangent space Tp M with R2n. The isotropy representation is given by
an inclusion T/�SO(2n) followed by the left action of SO(2n) on
R2n$TpM. Similarly, the action of T on E \

p is given by an inclusion
ip : T/�Spinc(2n) followed by the left action of Spinc(2n) on 2\

C . The
images of T lie in the standard maximal tori TSpinc(2n) and TSO(2n) if we
chose the basepoint appropriately. Recall that the Spinc structure has an
associated line bundle L� . The action of T on the fiber L� p defines a map
T � SO(2). All these maps fit into a commuting diagram,

id double cover double cover

/ww�
ip /wwww�T TSpinc(2n) Spinc(2n)

T /� TSO(2n)_SO(2) /� SO(2n)_SO(2)

Pick an element of the torus, * # T, and let *p=ip(*) be its image in
TSpinc(2n) . The numerator of &( p)(*) in (11.1) is then

:

plus signs
even number of

* (1�2)(\x1\x2\ } } } \xn+ y)
p & :

plus signs
odd number of

* (1�2)(\x1\x2\ } } } \xn+ y)
p

=* y�2
p `

n

i=1

(*&xi�2
p &*xi�2

p ). (11.5)
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The denominator in (11.1) is

`
n

i=1

(1&*xi
p )(1&*&xi

p ). (11.6)

To see this, note that the complexified tangent space splits, under the torus
action, into 2n weight spaces with weights \xi , i.e., TpM�C$Cn,
consider the linear operator A=1&df &1

* , and remember that detR (A)|TpM=
detC (A�1)|TpM�C .

Now suppose that T acts on TpM with weights \:1 , ..., \:n and that
T acts on the fiber L� with a weight +. This means that :i=i*pxi and
+=i*p y. By taking the pullbacks of (11.5) and (11.6) we get the desired
expression (11.4). K

12. EXPANDING THE TERMS

We have obtained localization formulas for the virtual character of the
Dolbeault or Dirac operator as a sum over the fixed points p in M:

/(*)=:
p

&( p)(*). (12.1)

Recall that the virtual character is a Laurent polynomial in * # T:

/(*)= :
: # l*

mult(:) *:.

We are interested in its coefficients. In particular, we would like to express
them as sums:

mult(:)=:
p

multp(:).

Such expressions will come from Laurent series expansions for the
individual terms,

&( p)(*)= :
: # l*

multp(:) *:.

The tricky point is that we can choose from several possible Laurent
expansions for &( p) and that if we are not careful about our choices then
the sum of the multp(:)'s will not give the right answer. We will expand the
terms using the recipe of Guillemin�Lerman�Sternberg [GLS1].
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Expanding the terms for the Dolbeault operator. By Proposition 11.2 we
have &( p)(*)=*+ >n

i=1 1�(1&*&:i). Each factor can be expanded in two
different ways:

1
1&*&:i

=1+*&:i+*&2:i+ } } } (12.2)

1
1&*&:i

=
&*:i

1&*:i
=&*:i&*2:i&*3:i& } } } . (12.3)

Denote by :1p , ..., :np the isotropy weights at p. (Remember, these are
elements of the integral weight lattice l*.) Choose an element ! # t such
that (!, :ip){0 for all i and p. We choose the expansion of 1�(1&*&:ip),
according to the sign of (!, :ip); if it is positive then we expand by (12.2);
if it is negative then we expand by (12.3). By multiplying the power series
for the 1�(1&*&:i), we get a power series:

&( p)(*)=*+ `
n

i=1

1
1&*&:i

= :
: # l*

mult!
p(:) *:. (12.4)

Proposition 12.5. If mult!
p(:) are defined as above then for every : # l*,

mult(:)=:
p

mult!
p(:).

Proof. We expand both sides of (12.1) as Laurent series in *:

:
:

mult(:) *:=:
p

:
:

mult!
p(:) *:. (12.6)

By our choice of the expansions, the summands on the right converge when
we substitute *=exp(i') if ' is close to !. (The character /(*) is defined for
all * in the complexified torus, TC , by analytic continuation.) Since (12.6)
holds on an open set of ''s, it also holds formally, as an equality between
formal power series. K

Let Cp be the convex polyhedral cone with vertex at + and with edges
spanned by the vectors :$ip , i=1, ..., n, where :$ip=\:ip according to the
sign of (:ip , !). Denote =p=(&1)wp, where wp is the number of indices i
for which :$ip=&:ip , i.e., for which (:ip , !) <0. One can easily see that if
: is in the interior of the cone Cp then its multiplicity, given in (12.4), is
mult!

p(:)==p and that if : is in the exterior then mult!
p(:)=0.
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Proposition 12.7. Consider an effective action of a torus T on a
manifold M, where dim T= 1

2dim M. Let L w�? M be a complex Hermitian
line bundle and fix a lifting to L of the T-action. Suppose that M has an
invariant almost complex structure. Consider the twisted Dolbeault operator
( for any choice of metric and connection) and its virtual character,
/(*)=� mult(:) *:. Now take any T-invariant connection on L and let | be
&i times its curvature. The action of the torus on L determines a moment
map 8 : M � t*. Consider the Liouville measure on M and its push-forward
via 8, as defined in Section 2. Let \(:) be the density function for the
push-forward measure. Then

mult(:)=\(:)

for every : # l* outside a finite union of hyperplanes in t*.

Remark 12.8. A priori, the density function lies in the space L1 so it is
meaningless to evaluate it at a point. In our case, the density function can
be represented by a function which is locally constant on t* minus a finite
union of hyperplanes. This is the function \ which appears in the above
statement.

Proof of Proposition 12.7. Pick a generic element ! # t. We have shown
that mult(:)=�p mult!

p(:). The GLS formula (Theorem 7.1) gave
\(:)=�p \!

p(:). We need to show that mult!
p(:)=\!

p(:) for all : # l* out-
side a finite union of hyperplanes. We will recall the explicit descriptions of
the functions mult!

p and \!
p .

In both cases, we considered the isotropy weights :ip , the polarized
weights :$ip=\:ip , and =p=\1=the parity of the number of i 's such that
:$ip=&:ip . In both cases we considered a convex polyhedral cone Cp �t*
whose rays were generated by the polarized weights.

For the multiplicities, the vertex of the cone was at the weight + by
which the torus acts on the fiber Lp over the fixed point. For the D-H
measure, the vertex of the cone was at the value of the moment map at p.
We will show that 8( p)=+. Assuming this, we showed that if : is in the
interior of Cp then multp(:)=\p(:)==p , and if : is in the exterior then
multp(:)=\p(:)=0. On the boundary of Cp , \p(:) was not defined. This
boundary is contained in the union of n hyperplanes.

Now we show that 8( p)=+. The moment map which we are using is
determined by ?*8!=( &i;, !L ) , where ! # t acts on L by the vector field
!L and where ; is the connection form. The vector field !L is tangent to
the fiber Lp and it is equal to (+, !) ���% in polar coordinates on the fiber.
The pullback of the connection form to the fiber is the one-form dz�z.
Hence, (;, !L ) =i(+, !) and we get 8( p)=+ as desired. K
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Expanding the terms for the Dirac index. Each factor in (11.4) can be
expanded either as

*+�2(*&:�2&*:�2)
(1&*:)(1&*&:)

=
*(+&:)�2(1&*:)

(1&*:)(1&*&:)

=*(+&:)�2(1+*&:+*&2:+ } } } ) (12.9)

or as

*+�2(*&:�2&*:�2)
(1&*:)(1&*&:)

=
*(++:)�2(*&:&1)
(1&*:)(1&*&:)

=*(++:)�2(&1&*:&*2:& } } } ). (12.10)

Again as in [GLS1] we choose an element ! of t"�i, p ker :ip and we
choose each expansion (12.9) or (12.10) according to the sign of (:ip , !).
When we multiply these we get the Laurent expansion

&( p)(*)==p*(1�2)(+p&:$ip& } } } &:$np) `
n

i=1

(1+*&:$ip+*&2:$ip+ } } } ). (12.11)

Let Cp be the polyhedral cone with a vertex at 1
2 +p and with rays generated

by the vectors :$ip=\:ip . We claim that if : is in the weight lattice l* then
the coefficient of : in the Laurent expansion (12.11) is =p(=\1) for : in
the interior of Cp and is 0 for : in the exterior and that the boundary of
the cone contains no lattice points. All this follows easily from (12.11)
together with

Lemma 12.12. :=+�2+� ri:i is in the weight lattice l* if and only if
every ri is equal to ni+

1
2 for some integer ni .

Proof. Recall that the weight lattice of TSpinc(2n) is generated over Z by
x1 , ..., xn , y, and 1

2(x1+ } } } +xn+ y). Since +�2+� ri:i is the pull-back of
1
2(x1+ } } } +xn+ y)+� (ri&1�2) xi under an inclusion ip : T � TSpinc(2n) , it
is in the weight lattice if ri&1�2 is an integer. Conversely, since the torus
action on M is effective, the :i 's generate the weight lattice of T, and hence,
if +�2+� ri:i is integral then the ri 's are as required. K

Proposition 12.13. Consider an effective action of a torus T on a
manifold M where dim T= 1

2dim M. Suppose that we have a Spinc structure
on M and a lifting of the torus action to this structure. Consider the equiv-
ariant Dirac index and its virtual character, /(*)=� mult(:) *:. Let L� be
the line bundle associated to the Spinc structure on M. Pick any connection
on it and let | be &i�2 times its curvature. Let 8 : M � t* be the moment
map which is determined by the lifting of the torus action to L� . Consider the
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Liouville measure on M and its push-forward via 8, as defined in Section 2.
Let \(:) be the density function of the push-forward measure. Then

mult(:)=\(:)

for every : # l*.

Remark 12.14. As in Remark 12.8, the density function is an element of
the space L1 and is represented by the function \. As before, this function
is locally constant on t* minus a finite union of hyperplanes. We show that
the hyperplanes do not intersect the weight lattice l* and hence \(:) is
defined for all : in l*.

Proof of Proposition 12.13. By the same arguments as in Proposi-
tion 12.5, mult(:)=�p mult!

p(:), and we only need to show that
mult!

p(:)=\!
p(:) for all : # l*. As in the proof of Proposition 12.7, both of

these functions are supported on a convex polyhedral cone Cp whose rays
are generated by the polarized weights and whose vertex is 8( p)=+�2,
where + is the weight by which the torus acts on the fiber L� p of the line
bundle associated to the Spinc structure. We have \!

p(:)==p for all : in the
interior of Cp . By Lemma 12.12 and the remarks immediately above it,
mult!

p(:) is also equal to =p for all : in the intersection of l* with the inte-
rior of Cp , and the boundary of Cp is disjoint from l*. Hence,
\!

p(:)=mult!
p(:) for all : # l*. K

Remark 12.15. A holomorphic line bundle L over a complex manifold
M determines a Spinc structure on M for which L� =L �2�det , where
det =�n

C TM is the determinant line bundle. The Dolbeault index then
coincides with the Dirac index, but the two-form |~ associated with the
Spinc structure is different from the two-form | associated with the almost
complex structure: we have |~ =|+1�2|det , where |det is a curvature for
the determinant line bundle. Let \~ and \ be the density functions for the
Duistermaat�Heckman measures which correspond to |~ and to |. Denote
by H� i and by Hi the hyperplanes along which \~ and \ are discontinuous,
respectively. Then the H� i 's are parallel shifts of the Hi 's; see Fig. 7.

Fig. 7. The moment image for CP2 and its holomorphic tangent bundle, as a complex
manifold and as a Spinc manifold.
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Example 12.16. Consider the action of the circle group S1 on the com-
plex manifold M=CP1 with the line bundle L=TM. If we think of M as
a Spinc manifold then the associated line bundle is L� =det(M)�L �2,
where det(M)=�n TM. In the case L=TCP1 we have L� =(TCP1) �3.
There are two fixed points: the north and south poles. The circle acts on
the fiber over the north pole with a weight +n=3 and over the south pole
with a weight +s=&3. The isotropy weights at the poles are :n=1 and
:s=&1. From Proposition 11.3 we get

/(*)=
*3�2(*&1�2&*1�2)
(1&*)(1&*&1)

+
*&3�2(*1�2&*&1�2)
(1&*&1)(1&*)

=*+1+*&1. (12.17)

The D-H measure is Lebesgue measure on the interval [&3�2, 3�2].

We can now present our main theorem.

Theorem 12.1. Let M be a smooth manifold with a Spinc structure.
Assume that we have an effective action of a torus T on M, with
dim T= 1

2dim M and that the torus action lifts to the Spinc structure. Con-
sider the Dirac operator (with respect to an arbitrary choice of connection)
and its virtual character /(*)=�: mult(:) *:. Let L� w�? M be the Hermitian
line bundle associated to the Spinc structure. Let ; be a T-invariant connec-
tion on L� . Define a moment map 8 : M � t* by ?*8!=( &(i�2);, !L ).
Consider the descended moment map 8� : M�T � t*. Take an integral weight
: # l*/t*:

If : is a regular value for 8 then mult(:) is equal to the number of
points in 8� &1(:) counted with appropriate signs.

If (M, T ) is locally toric then mult(:) is equal to the winding number
around : of the descended moment map, restricted to the boundary.

Proof. These statements are immediate consequences of Proposi-
tion 12.13, Theorem 5.1, and Theorem 5.2. K

13. EXAMPLES

In Section 6 we defined the equivariant connected sum of two spaces
with completely integrable torus actions. We now describe how, in some
cases, the extra structure (almost complex structure, line bundles, Spinc

structure) on two spaces carries over to their equivariant connected sum.
In this way we produce new examples of spaces to which our theorems
apply.
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Extending almost complex structures equivariantly. Take two manifolds
M1 and M2 with completely integrable torus actions and with invariant
almost complex structures J1 and J2 . It is impossible to extend these to an
almost complex structure on M1>T M� 2 because J2 is not compatible with
the reversed orientation on M� 2 . Nevertheless, if n is odd then we can
remove this obstruction by replacing J2 by &J2 .

If n is even and we wish to glue at a free orbit then we can use an alter-
native definition of an equivariant connected sum, which does not require
us to reverse the orientation of M2 . Here it is. A neighborhood Ui of a free
orbit in Mi looks like a product of the torus with a disc, T_Di . A
neighborhood of the boundary �Ui looks like T_S n&1_(&=, =). Define
the gluing map , to be the identity on T, the map that sends t � &t on
(&=, =), and a map of degree &1, Sn&1 � S n&1, on the boundary spheres
(instead of the identity map which we used in the previous construction).
We call the resulting manifold M1>$T M2 .

We now discuss the case where dim Mi=2n=4. Assume that we are
given almost complex structures on M1 and M2 . We will show that these
always extend to M=M1>$T M2 . The almost complex structures determine
a principal GL(2, C) bundle on each Mi on which T acts from the left.
Since this group retracts onto U(2), we can find a metric on each Mi which
is compatible with the almost complex structure. We can extend the metrics
on M1 and M2 to a metric on M=M1>$T M2; this determines a principal
SO(4) bundle P whose fiber over p # M is the set of orthonormal oriented
bases of TpM. The subgroup U(2)�SO(4) acts on these fibers from the
right by the restriction of the principal action. The choice of an almost
complex structure compatible with the metric amounts to choosing a
global section of Q=P�U(2). Moreover, we can make all our choices
T-equivariant, and then we get a left action of the torus T on the bundle Q.
Over the set Mfree in M where the torus acts freely, choosing an invariant
almost complex structure compatible with the metric amounts to choosing
a section of the (double) quotient Q�T=T"P�U(2) over Mfree �T. The
almost complex structures on M1 and M2 determine invariant sections of
the Qi 's over the Mi 's. A neighborhood of the gluing locus in
M=M1>$T M2 is a tube of the form T_S 1_I where I is an interval. The
bundle Q�T is trivial over the quotient tube S1_I. (A trivialization comes,
for example, from viewing this tube as punctured disc in M1 �T, whereas the
bundle Qi �T is trivial over the whole disc.) The almost complex structures
on M1 and M2 give sections of the bundles Qi �T which are defined near the
boundary of the tube S 1_I in M�T. We need to extend these sections
across the rest of the tube. Over the tube, Q�T is a trivial bundle with fiber
SO(4)�U(2), which is topologically S 2. The boundaries of the tube are cir-
cles. Since every loop in S 2 is homotopically trivial, the sections can be
extended.
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Extending line bundles equivariantly. Suppose that Li � Mi are equiv-
ariant line bundles. We connect the Mi 's along some T-orbits, as described
in Section 6, to form the equivariant connected sum M1>T M� 2. Let H be
the isotropy group of the orbits at which we glue. Then H acts on the fiber
of L1 over that orbit by a character, say, :1 # h*. We define :2 similarly.
If :1=:2 then we can fit the bundles together into an equivariant bundle
over M1>T M� 2 , in the following way. Locally, we write Li |Ui=
T_H (Dn+k_C), where Ui are neighborhoods of the orbits at which we
glue. Over the deleted neighborhoods we have Li |Ui"T } pi=T_H

(Sn+k&1_C)_I, where I is the interval (&=, =). We glue these by the iden-
tity on T_H (Sn+k&1_C) and by the map t [ &t on the I component. If
:1 {:2 then we can patch the line bundles after changing the action on L2

as follows: we compose the T-action on L2 by the action on the fibers via
any character of T whose restriction to H is exp(:2&:1).

Extending equivariant Spinc structures. Suppose that M1 and M2 have
Spinc structures. These can never extend to M1>T M� 2 because, just as for
almost complex structures, the orientations do not fit. Nevertheless, there
is a canonical way to define a new Spinc structure on M2 which induces the
opposite orientation. We now describe this. We later specify the condition
on the Spinc structures which guarantees that we can glue.

There is a commuting diagram of homomorphisms of Lie groups:

Spin(2n)w�Pin(2n)

SO(2n) w� O(2n)

We define Pinc(2n)=Pin(2n)_Z2
U(1). Suppose that M has a Spinc struc-

ture, given by a principal bundle P with a structure group G=Spinc. We
form the associated bundle P_G Pinc(2n). This bundle has two com-
ponents which lie over the two components of the orthogonal frame bundle
over M. Each of these components is a principal bundle with respect to the
right action of the group Spinc. One of the components is the Spinc struc-
ture that we started with. The other component provides us with a new
Spinc structure which is compatible with the opposite orientation on M.
The associated line bundle L� is the same as for the original structure.

Now take two Spinc manifolds with completely integrable torus actions
and consider their equivariant connected sum along some T-orbits,
M1>T M� 2 . Let H/T be the stabilizer of the orbits at which we glue. Then
H acts on the fiber L� p of the bundle associated to the Spinc structure by
some character. If this character is the same for M1 and for M2 then the
Spinc structures fit together. We now explain why.

This condition implies that the associated bundles L� i fit together equiv-
ariantly; this we showed earlier. The bundles SO(2n) also fit together
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equivariantly; one can use a partition of unity to define a metric on the
equivariant connected sum and then take its average with respect to the
torus action to get an invariant metric. Hence we get a principal bundle
over the ``tube'', T_H Sn+k&1_I, with fiber SO(2n)_SO(2). This bundle
is topologically trivial because it is the restriction to the tube of an equiv-
ariant bundle over T_H Dn+k. The Spinc structures on M1 and M2 provide
double coverings of this bundle over the ends of the ``tube.'' These are
topologically trivial for the same reason. Hence, we can extend these to a
double covering over the whole tube, i.e., to a Spinc structure. We get a
torus action by lifting the vector fields which generate the torus action via
the double covering. Since this integrates to a torus action near the ends of
the tube, it must integrate throughout the tube.
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