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Abstract The adsorption of a reactive dye, Reactive Yellow 84, from aqueous solution onto syn-

thesized hydroxyapatite was investigated. The experiments were carried out to investigate the fac-

tors that influence the dye uptake by the adsorbent, such as the contact time under agitation,

absorbent dosage, initial dye concentration, temperature and pH of dye solution. The experimental

results show that the amount of dye adsorbed increases with an increase in the amount of hydroxy-

apatite. The maximum adsorption occurred at the pH value of 5. The equilibrium uptake was

increased with an increase in the initial dye concentration in solution. The experimental isotherm

data were analyzed using Langmuir isotherm equation. The maximum monolayer adsorption

capacity was 50.25 mg/g. The adsorption has a low temperature dependency and was endothermic

in nature with an enthalpy of adsorption of 2.17 kJ mol�1.
ª 2010 King Saud University. Production and hosting by Elsevier B.V.
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1. Introduction

Wastewaters from dying and finishing operations in the textile
industry are generally high in both color and organic content.

Color removal from textile effluents has been the target of
great attention in the last few years, not only because of its po-
tential toxicity, but mainly due to its visibility problems (Yu-Li

Yeh and Thomas, 1995; Morais et al., 1999). Recent estimates
indicate that approximately 12% of synthetic textile dyes used
each year is lost during manufacture and processing operations
and 20% of these lost dyes enter the environment through

effluents that result from the treatment of industrial wastewa-
ters (Hwang and Chen, 1993; Nawar and Doma, 1989).

From an environmental point of view, the removal of syn-

thetic dyes is of great concern. Among several chemical and
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physical methods, sorption has evolved into one of the most

effective processes for decolorization of textile wastewaters.
The most commonly used adsorbent for color removal is acti-
vated carbon, because of its capability for efficiently adsorbing
a broad range of different types of adsorbates. At present,

there is a growing interest in using low-cost and non conven-
tional alternative materials instead of traditional adsorbents.
Several researchers have been studying the use of alternative

materials, which, although less efficient, involve lower costs.
Calcium hydroxyapatite (HAP), Ca10(PO4)6(OH)2, is an

important inorganic material in biology and chemistry (LeGer-

os, 1991; Elliott, 1994; Arends et al., 1987), their availability
structure, ionic exchange property, adsorption affinity, and
their characteristic to establish bonds with organic molecules

of different sizes, have conferred to this material to attract
more attention during the last two decades. The interaction be-
tween macromolecules and hydroxyapatite has received special
attention because of the physicochemical properties of this

material, which is similar to bone mineral, as well as its bio-
compatibility, osteoconduction, and bioresorption properties
(Urist et al., 1994; Marcus et al., 1996). Hydroxyapatite is

widely used for chromatographic purposes (Kawasaki, 1991;
Gorbunoff, 1984) and is suitable for a number of biomedical
applications, e.g., artificial bone and roofs of teeth as well as

a carrier for drug delivery (Aoki, 1994; Barroug and Glimcher,
2002; Cannon and Bajpai, 1995). In addition, this material can
be efficient matrixes of water purification. As of now, this
material is very much studied in the removal of rare earths

and heavy metals (Gómez del Rı́o et al., 2004; Krestou
et al., 2004; Vega et al., 2003; Misra, 1998; Middelburg and
Comans, 1991), but limited studies are investigated in the re-

moval of organic molecules (Bensaoud et al., 1999; Lin
et al., 2009; Wei et al., 2010).

In our laboratory, the work is in process to evaluate the

possibility of the use of synthetic hydroxyapatite for wastewa-
ter pollution management. Our previous study has shown that
the synthesized hydroxyapatite can totally remove disperse

dye; disperse blue SBL, from aqueous solutions (Barka et al.,
2008). The aim of the present study was to determine the opti-
mum conditions for the removal of an azo reactive dye, Reac-
tive Yellow 84 (CI) from aqueous solutions by synthesized

hydroxyapatite. The factors that influence the dye uptake by
the adsorbent were investigated.
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Figure 1 Chemical structure of Reactive Yellow 84.
2. Materials and methods

All reagents used in the preparation and the adsorption studies

were of analytical grade. Calcium hydroxyapatite HAP was
synthesized by double decomposition according to the proce-
dure described by Rey et al. (1989). A solution composed of

35.4 g of Ca(NO3)2Æ4H2O (Scharlau, Spain) in 0.5 l of distilled
water was immediately poured at room temperature into a
solution composed of 34.8 g of di-ammonium hydrogenphos-

phate (NH4)2HPO4 (Riedel-de Haën, Germany) in 1 l of dis-
tilled water. The pH of the solution was adjusted to seven by
ammoniac solution. After low agitation for 2 h, the suspension
was briefly filtered on a large Büchner funnel, washed with dis-

tilled water, dried at 70 �C for 48 h and sieved in particles sizes
lower than 63 lm.

XRD patterns of a sample powered by a XPERT-PRO dif-

fractometer system (Philips, Netherlands) showed reflections
characteristic of poorly crystalline apatite similar to bone min-

eral. No other crystalline phase was detected. The generated
IR spectra obtained by using VERTEX 70 spectrophotometer
(Bruker Optics, Germany) was dominated mainly by bands
characteristic of apatitic phosphates and water molecules.

The spectra showed bands assigned to apatitic OH� and
HPO2�

4 ions, which indicates the non-stoichiometry of the apa-
tite. These results were confirmed by the chemical analyses

which showed that the apatite is calcium deficient, its Ca/P ra-
tion was 1.42. This value is lower than that of stoichiometric
hydroxyapatite (1.67). The specific surface area of the synthetic

apatite determined according to the BET method using N2

adsorption was 137 m2/g.
The Reactive Yellow 84 was obtained from a textile firm as

a commercial available dye formulation designed as Suncion
Yellow H-E4R. The chemical structure of the dye is shown
in Fig. 1. Solutions were prepared by dissolving requisite quan-
tity of the dye in distilled water. The volume of colored solu-

tion was 500 mL.
Adsorption experiments were carried out by varying the ini-

tial concentration from 10 to 40 mg L�1, the amount of

hydroxyapatite from 0.4 to 1.6 g L�1, the temperature from
20 to 50 �C and the pH from 2.1 to 10. The pH was adjusted
to a given value by the addition of HCl (1 mol L�1) or NaOH

(1 mol L�1) and was measured using a Schott titroline (TE96)
pH-meter.

The dye solutions were filtered by Millipore membrane fil-
ter type 0.45 lm HA, and the concentrations of dyes were

determined from its UV-Vis absorbance characteristic with
the calibration method. A Jenway 6405 UV/Visible spectro-
photometer was used. For this measurement, the wavelength

of maximum absorption (kmax) was 226 nm. The quantity ad-
sorbed was calculated by measuring the concentration of the
solution before and after adsorption using the following

equation:

q ¼ ðC0 � CÞ
R

ð1Þ

where q (mg g�1) is the quantity of dye adsorbed per unit mass

of adsorbent, C0 (mg L�1) is the initial dye concentration, C
(mg L�1) is the dye concentration at any time and R (g L�1)
is the mass of adsorbent per litre of aqueous solution.

3. Results and discussion

3.1. Effect of adsorbent mass on the kinetics of adsorption

Kinetics of retention describes speeds of reactions that permit

to determine the contact time under agitation put to reach the
adsorption equilibrium. The adsorption kinetics of Reactive
Yellow 84 on hydroxyapatite was studied by changing the

quantity of adsorbent (0.4 to 1.6 g L�1) in the test solution
and keeping unchangeable the initial dye concentration
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Figure 2 Kinetics of adsorption of Reactive Yellow 84 on HAP

at different adsorbent dosages. Adsorbent dosages: * 0.4 g L�1; ¤
0.6 g L�1; m 0.8 g L�1; n 1 g L�1; · 1.2 g L�1; } 1.6 g L�1.
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Figure 4 Adsorption isotherm of Reactive Yellow 84 on

hydroxyapatite. Continues curve: Langmuir isotherm model.
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(20 mg L�1), temperature and pH. Fig. 2 shows change of ad-
sorbed quantity per gram of adsorbent, the adsorption was
found to be rapid at the initial period of contact time and then

to be slower with the increase in contact time. In another case,
as adsorbent dose increases, the quantity of dye adsorbed per
mass of adsorbent and the equilibrium time decrease conse-

quently. Additionally, the percentage of decoloration increases
from 52% to 92% by increasing the amount of hydroxyapatite
from 0.4 to 1.6 g L�1, this is due to the surface area available

by more adsorbent particles.

3.2. Effect of initial dye concentration on adsorption process

The kinetics of adsorption of Reactive Yellow 84 at different
initial concentrations was achieved. Fig. 3 shows the extent
of dye adsorption as function of reaction time. It was found

that, as the initial concentration increases, the equilibrium time
and the amount of dye adsorbed per gram amount of adsor-
bent increase. It is further noted that the amount of Reactive

Yellow 84 increases from 11.48 to 26.19 mg g�1 by increasing
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Figure 3 Kinetics of adsorption of Reactive Yellow 84 at

different initial concentrations. Initial concentrations: ·
10 mg L�1; ¤ 15 mg L�1; n 20 mg L�1; m 30 mg L�1; * 40 mg L�1.
the initial concentration from 10 to 40 mg L�1. The kinetics
adsorption curves are smooth and continuous leading to satu-
ration of hydroxyapatite by Reactive Yellow 84. This result

suggests the possibility of mono-layer coverage adsorption of
Reactive Yellow 84 on hydroxyapatite (Yadava et al., 1987).
From the kinetics curves, the amounts of dye adsorbed after

180 min of contact time are illustrated in Fig. 4. This isotherm
belongs to type L of the Giles et al. (1960) classification, which
indicates that, as more sites in the substrate are filled, it be-
comes increasingly difficult for the solute molecules to find

an available vacant site. This could be either because the ad-
sorbed molecules are more likely to be adsorbed on mono-
layer on a surface containing a finite number of identical sites

and there is no strong competition from the solvent.
The description of adsorption isotherm has been achieved

by applying the linear form of Langmuir equation proposed

by Stumm and Morgan (1981):

1

qe
¼ 1

qm
þ 1

K � qm �
1

Ce

ð2Þ

where qm (mg g�1) is the mono-layer coverage of the adsorbent

particle in terms of mg dye/g of adsorbent, qe (mg g�1) is the
amount of dye adsorbed at equilibrium, K (L mg�1) is the
Langmuir equilibrium constant and Ce (mg L�1) is equilibrium

concentration.
A plot of 1/qe versus 1/Ce yields qm and K. From the data

obtained, the maximum adsorption capacity qm and the con-

stant K estimated are respectively 50.25 mg g�1 and
0.089 L mg�1. The Langmuir maximum adsorption capacity
of hydroxyapatite for Reactive Yellow 84 was lower than that

of Disperse Blue SBL (243.90 mg g�1) obtained in our previous
work (Barka et al., 2008). This result can be due to the differ-
ence of molecular structure and the interactions between each
dye and the surface of hydrodyapatite.

Although the affinity of hydroxyapatite for the removal of
dyes from aqueous solution was less than that of activated car-
bon cited in previous works (Al-Degs et al., 2000; Barka et al.,

2006), it can take a good place between low-cost adsorbents
investigated in the removal of dyes (Barka et al., 2009; Akkaya
et al., 2007; Ceyhan and Baybas, 2001; Yener et al., 2006).

3.3. Effect of temperature on adsorption process

The temperature has two major effects on the adsorption pro-

cess. Increasing the temperature is known to increase the rate
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Figure 5 Effect of temperature on the kinetics of adsorption of

Reactive Yellow 84 on HAP. Temperature: n 20 �C; } 30 �C; m

30 �C; ·50 �C.

Figure 6 Plot of ln(qe) versus 1/T.
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Figure 7 Effect of pH on the adsorption of Reactive Yellow 84

onto hydroxyapatite.
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of diffusion of the adsorbed molecules across the external
boundary layer and the internal pores of the adsorbent parti-
cles, owing to the decrease in the viscosity of the solution. In
addition, changing temperature will change the equilibrium

capacity of the adsorbent for a particular adsorbate (Al-qodah
et al., 2000). Fig. 5 shows the results of experiments carried out
at different solution temperatures. The removal of Reactive

Yellow 84 increases from 24.31 to 26.45 mg g�1 by increasing
the temperature of the solution from 20 to 50 �C, indicating
that the process to be endothermic. This kind of temperature

dependence of the amount of the dye adsorbed may be due
to the fact that a possible mechanism of interaction is the reac-
tion between the sulfonyl groups of Reactive Yellow 84 and

the cationic sites of hydroxyapatite such a reaction could be fa-
voured at higher temperatures.

The enthalpy of adsorption (DH) has been calculated using
the following equation:

qe ¼ q0 exp �
DH
RT

� �� �
ð3Þ

where qe (mg g�1) is the amount of dye adsorbed at equilib-

rium, q0 is the temperature independent factor (mg g�1), DH
is the enthalpy of adsorption (J mol�1), R is the gas constant
(8.31 J K�1 mol�1). The linear transformation of this equation

expressed by ln (qe) as function of 1/T gives a straight line
whose slope is equal to �DH/R; the result was shown in
Fig. 6. The slope of the linear curve was �262.6, which corre-
spond to an enthalpy of adsorption of 2.17 kJ mol�1. The en-

thalpy of adsorption was very lower and positive indicating
that the process is endothermic, and hence it can be concluded
that the process is governed by interactions of physical nature

(Netpradit et al., 2004).

3.4. Effect of pH on the adsorption process

The pH is one of the most important factors controlling the
adsorption of dyes onto suspended particles, because both ad-

sorbed molecules and adsorbent particles may have functional
groups which are affected by the concentration of hydrogen
ions (H+) in the solution and which are involved in the molec-
ular adsorption process at the active sites of adsorbent. Fig. 7
shows the amount of Reactive Yellow 84 adsorbed for differ-
ent pHs. It was found that above pH = 7 and below
pH = 3 the adsorption of the dye decreases.

The pH of the zero charge pHzc of the hydroxyapatite is
known to be 7.4 (Corami et al., 2008), for pH values higher
than 7.4, the surface of the hydroxyapatite becomes negatively

charged and this is the opposite for pH < 7.4. Moreover, the
dye is a weak acid, it dissociate less towards an acid pH and
is found consequently in neutral electrical form.

From the figure, it can be seen that the amount of dye ad-
sorbed on the hydroxyapatite is high for pH between 3 and 7.5,
which indicates that the positive form of hydroxyapatite is
responsible for adsorption in this range. For basic pH, the de-

crease of the amount of adsorbed dye molecules is prevented
by the repulsive electrostatic forces existing between the nega-
tive charged surface of hydroxyapatite and /-SO�3 groups of

the dye predominant in this range of pH.
The decrease of the amount of adsorption below pH = 3

can be due to the ionization of the amine and amide groups

of the dye with H+, which leads the molecules of the dye to
be positively charged. The repulsive electrostatic forces of
dye molecules positively charged with the positively charged

surface of the adsorbent increase. Consequently, adsorption
decreases.

4. Conclusion

Hydroxyapatite is efficiently utilized as an adsorbent for the
removal of Reactive Yellow 84 dye from the aqueous
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solutions. It has been found that, the adsorbed quantity of dye

increases with an increase in the amount of hydroxyapatite.
The amount of dye adsorbed was high with high initial dye
concentration according to Langmuir model. The Langmuir
adsorption capacity was 50.25 mg g�1. The adsorption has a

low temperature dependency and was endothermic with an en-
thalpy of adsorption of 2.17 kJ mol�1. The pH of solution af-
fects both the surface of hydroxyapatite and dye molecule

charge. It was found that adsorption was disfavoured in acidic
and basic ranges. The interactions between Reactive Yellow 84
molecules and hydroxyapatite particles are essentially of phys-

ical nature. Finally, the use of hydroxyapatite shows a greater
potential for the removal of reactive textile dyes, as no costly
equipment is required.
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Akkaya, G., Uzun, I., Güzel, F., 2007. Kinetics of the adsorption of

reactive dyes by chitin. Dyes Pigments 73, 168–177.

Al-Degs, Y., Khraisheh, M.A.M., Allen, S.J., Ahmad, M.N., 2000.

Effect of carbon surface chemistry on the removal of reactive dyes

from textile effluent. Water Res. 34, 927–935.

Al-qodah, Z., 2000. Adsorption of dyes using shale oil ash. Water Res.

34, 4295–4303.

Aoki, H., 1994. Science and Medical Applications of Hydroxyapatite.

Ishiyaku Euro America, Tokyo.

Arends, J., Christoffersen, J., Christoffersen, M.R., Eckert, H.,

Fowler, B.O., Heughebaert, J.C., Nancollas, G.H., Yesinowski,

J.P., Zawacki, S.J., 1987. A calcium hydroxyapatite precipitated

from an aqueous solution. An international multimethod analysis.

J. Crystal. Growth 84, 515–532.

Barka, N., Assabbane, A., Nounah, A., Laanab, L., Aı̂t-Ichou, Y.,

2009. Removal textile dyes from aqueous solution by natural

phosphate as new adsorbent. Desalination 235, 264–275.

Barka, N., Qourzal, S., Assabbane, A., Nounah, A., Ait-Ichou, Y.,

2008. Adsorption of disperse blue SBL dye by synthesized poorly

crystalline hydroxyapatite. J. Environ. Sci. 20, 1268–1272.

Barka, N., Assabbane, A., Aı̂t-Ichou, Y., Nounah, A., 2006. Decan-

tamination of textile wastewater by powdered activated carbon. J.

Appl. Sci. 6, 692–695.

Barroug, A., Glimcher, M.J., 2002. Hydroxyapatite crystals as a local

delivery system for cisplatin: adsorption and release of cisplatin

in vitro. J. Orthop. Res. 20, 274–280.

Bensaoud, A., El Azouzi, M., Mechraf, E., Bouhaouss, A., Dahchour,

A., Mansour, M., 1999. Removal of imazapyr from aqueous

solution by synthetic apatites. Fresen. Environ. Bull. 8, 486–492.

Cannon, M.R., Bajpai, P.K., 1995. Continuous delivery of azidothy-

midine by hydroxyapatite or tricalcium phosphate ceramics.

Biomed. Sci. Instrum. 31, 159–164.

Ceyhan, O., Baybas, D., 2001. Adsorption of some textile dyes by

hexadecyltrimethyl-ammonium bentonite. Turk. J. Chem. 25, 193–

200.

Corami, A., Mignardi, S., Ferrini, V., 2008. Cadmium removal from

single- and multi-metal (Cd+ Pb+ Zn+ Cu) solutions by sorption

on hydroxyapatite. J. Colloid Interface Sci. 317, 402–408.

Elliott, J.C., 1994. Structure and Chemistry of the Apatites and Other

Calcium Orthophosphates, Elsevier, Amsterdam.

Giles, C.H., Macewan, T.H., Smith, D.J., 1960. Studies in adsorption.

Part XI. A system of classification of solution adsorption

isotherms, and its use in diagnosis of adsorption mechanisms and

in measurement of specific surface areas of solids. Chem. Soc. XI,

3973–3993.
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