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Abstract

The Cayley transform, F :=F(A) = (I + A)−1(I − A), with A ∈ Cn,n and −1 /∈ σ(A), where σ(·)
denotes spectrum, and its extrapolated counterpart F(ωA), ω ∈ C\{0} and −1 /∈ σ(ωA), are of significant
theoretical and practical importance (see, e.g. [A. Hadjidimos, M. Tzoumas, On the principle of extrapolation
and the Cayley transform, Linear Algebra Appl., in press]). In this work, we extend the theory in [8] to cover
the complex case. Specifically, we determine the optimal extrapolation parameter ω ∈ C\{0} for which the
spectral radius of the extrapolated Cayley transform ρ(F(ωA)) is minimized assuming that σ(A) ⊂ H,
where H is the smallest closed convex polygon, and satisfies O(0) /∈ H. As an application, we show how
a complex linear system, with coefficient a certain class of indefinite matrices, which the ADI-type method
of Hermitian/Skew-Hermitian splitting fails to solve, can be solved in a “best” way by the aforementioned
method.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction and preliminaries

The Cayley transform and the extrapolated Cayley tranform are of significant theoretical
interest and have many applications (see [4,8]). Their definitions are as follows:

Definition 1.1. Given

A ∈ Cn,n with − 1 /∈ σ(A), (1.1)

the Cayley transform F(A) is defined to be

F :=F(A) = (I + A)−1(I − A). (1.2)

Definition 1.2. Under the assumptions of Definition 1.1, we call extrapolated Cayley transform,
with extrapolation parameter ω, the matrix function (1.2) where A is replaced by ωA

Fω :=F(ωA) = (I + ωA)−1(I − ωA), ω ∈ C\{0}, −1 /∈ σ(ωA). (1.3)

In what follows the definition and assumptions below are needed.

Definition 1.3. Let A ∈ Cn,n and σ(A) be its spectrum. The closed convex hull of σ(A), denoted
by H(A) or simply by H, is the smallest closed convex polygon such that σ(A) ⊂ H.

Main Assumption 1: In the following it will be assumed that O(0) /∈ H.
In many cases, Fω is the iteration matrix of an iterative method [8]. Therefore, ρ(Fω)

constitutes a measure of its convergence. Hence, it must be maxa∈σ(A)⊂H

∣∣∣ 1−ωa
1+ωa

∣∣∣ < 1 and

this holds if and only if (iff) Re (ωa) > 0. So, we also make the following assumption:
Main Assumption 2: In what follows it will be assumed that

Re (ωa) > 0 ∀a ∈ σ(A) ⊂ H and ω ∈ C. (1.4)

Our main objective in this paper is to solve the following problem.
Problem I: Based on the hypotheses of Definitions 1.1–1.3 and Main Assumptions 1 and 2,

determine the extrapolation parameter ω that minimizes the spectral radius of the extrapolated
Cayley transform, i.e.

min
ω∈C\{0}, −1/∈σ(ωA)

ρ(Fω) = min
ω∈C\{0},−1/∈σ(ωA)

max
a∈σ(A)⊂H

∣∣∣∣1 − ωa

1 + ωa

∣∣∣∣ . (1.5)

This work is organized as follows. In Section 2, an analysis similar to but more compli-
cated than that in [8] leads to an algorithm for the determination of the optimal ω which is
identical to the one in [6,7]. However, the expressions for the optimal values involved are dif-
ferent from those in [6]. Next, in Section 3, the algorithm is briefly presented, where one of its
main steps is improved over that in [6]. In Section 4, the proof of uniqueness of the solution
which was not quite mathematically complete in [6] is given. Then, in Section 5, it is shown
how a class of complex linear systems with indefinite matrix coefficient can be solved by the
ADI-type method of Hermitian/Skew-Hermitian splitting [2], which linear systems the aforemen-
tioned method fails to solve. In Section 6, we give a number of concluding remarks, and finally,
in an appendix, we present a Theorem in connection with the present improved form of our
algorithm.
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2. The solution to the minimax Problem I

To solve Problem I we seek the solution to the more general Problem II below. As will be seen
Problem II is easier to solve and its solution is identical to that of Problem I.

Problem II: Under the Main Assumptions 1 and 2, determine the extrapolation parameter ω

that solves the minimax problem

min
ω∈C

max
a∈H

∣∣∣∣1 − ωa

1 + ωa

∣∣∣∣ (<1). (2.1)

The function in (2.1)

w :=w(a) = 1 − ωa

1 + ωa
, a ∈ H, ω ∈ C, Re(ωa) > 0 (2.2)

is a Möbius transformation [9]. It has no poles, because Re(1 + ωa) > 1 ( /= 0), and is not a
constant as is readily checked. Hence, it possesses an inverse Möbius transformation

w−1(w(a)) = a = 1 − w

ω(1 + w)
, w = w(a), a ∈ H, ω ∈ C, Re (ωa) > 0, (2.3)

which has no poles and is not the constant function.
It is reminded that a Möbius transformation is a conformal mapping, i.e. it is a one-to-one

correspondence that preserves angles [9]. In general, it maps a disk onto a disk and a circle onto
the circle of its image. To see how their elements are mapped via (2.2) or (2.3), let an ω ∈ C (with
Re(ωa) > 0, a ∈ H) and Cω be the circle with center O(0) and radius

ρ :=ρ(Cω) = max
a∈H |w(a)| (<1). (2.4)

In view of (2.4), Cω will capture2 w(H) and will pass through a boundary point of it. Therefore,
since (2.2) and (2.3) have no poles, Cω must be the image of a circle C. To find out how C is
derived from Cω and vice versa, we begin with

Cω :=|w| = ρ, (2.5)

use (2.2), go through the equivalences

|w| =ρ ⇔ |w|2 = ρ2 ⇔ ww = ρ2 ⇔ 1 − ωa

1 + ωa
· 1 − ωa

1 + ωa
= ρ2

⇔ ωaωa − (1 + ρ2)

(1 − ρ2)
(ωa + ωa) +

(
(1 + ρ2)

(1 − ρ2)

)2

=
(

(1 + ρ2)

(1 − ρ2)

)2

− 1

⇔
∣∣∣∣a − (1 + ρ2)

ω(1 − ρ2)

∣∣∣∣2 =
(

2ρ

|ω|(1 − ρ2)

)2

⇔ |a − c| = R

and, finally, we obtain

C :=|a − c| = R, (2.6)

which is the equation of a circle C, with center c and radius R given by

c := 1 + ρ2

ω(1 − ρ2)
, R := 2ρ

|ω|(1 − ρ2)
. (2.7)

2 The word “captures” will mean “contains in the closure of its interior”.
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Fig. 1. One of the infinitely many capturing circles.

From the equivalences Cω = w(C) ⇔ C = w−1(Cω). Therefore, the circle C possesses the
properties: (1) It leaves O(0) strictly outside since R < |c|. (2) It captures H (H ⊂ C) since Cω

captures w(H) (w(H) ⊂ Cω ≡ w(C)). (3) It passes through at least one vertex of H, because
by (2.4)Cω captures w(H) and passes through a boundary point of it. Hence, by the equivalences,
C captures H and passes through a boundary point of it, that is a vertex.

Definition 2.1. A circle C satisfying the above three properties will be called a capturing circle
(cc) of H.

Theorem 2.1 (see also Lemma 1 of [6]). Let A ∈ Cn,n, σ (A) be its spectrum and H be the closed
convex hull H ≡ H(A), satisfying Definitions 1.1–1.3 and Main Assumptions 1 and 2. Then,
there are infinitely many capturing circles (cc’s) of H.

Proof. LetPi, i = 1, . . . , l,be thevertices ofH and let I :={1, 2, , . . . , l}. LetOPi, i = 1, . . . , l,

be the semilines through the vertices of H and OPi1 , OPi2 , i1, i2 ∈ I , be the two extreme
ones (Fig. 1). Then ∠Pi1OPi2 < π . Draw Oz1, Oz2 perpendicular to OPi1 , OPi2 at O so that
∠Pi1OPi2 + ∠z1Oz2 = π , and any semiline Oz within ∠z1Oz2. Draw also the perpendicular
bisectors to OPi, i = 1, . . . , l, and let Ki be their intersections with Oz. The circle with cen-
ter any K ∈ Oz such that (OK) > maxi∈I (OKi) and radius R = maxi∈I (KPi) is a cc of H.
Consequently, given H, there are infinitely many cc’s. �

Note: The notion of a cc of H is a particular case of the one defined in [6] (see also [7]).
One more consequence of our analysis is the validity of the following statement.

Theorem 2.2. Under the Main Assumptions 1 and 2, the solutions to Problem II and Problem I
are identical.
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Proof. In view of the preceding analysis the following series of relations hold:

max
a∈H

∣∣∣∣1 − ωa

1 + ωa

∣∣∣∣= max
a∈H |w(a)| = ρ = ρ(Cω)

= ρ(w(C)) = max
a∈σ(A)

|w(a)| = max
a∈σ(A)

∣∣∣∣1 − ωa

1 + ωa

∣∣∣∣ = ρ(Fω). (2.8)

Equalities (2.8) are analogous to those of Theorem 2.2 in [8] and their proof is omitted. �

To solve Problem II it suffices to find which of the cc’s of H is the one that minimizes ρ. The
following two theorems constitute a decisive step in this direction.

Theorem 2.3. Let C be a cc of H, K(c) and R be its center and radius and Cω be its image via
(2.2). Then, the extrapolation parameter ω and the radius ρ of Cω are given by

ω = |c|
c
√|c|2 − R2

, ρ = R

|c| +√|c|2 − R2
. (2.9)

Proof. From (2.7) we obtain R
|c| = 2ρ

1+ρ2 . Solving for ρ ∈ (0, 1), we take the second equation in
(2.9). ω is obtained from the first equation in (2.7) using the expression for ρ found. �

Theorem 2.4. Under the assumptions of Theorem 2.3, the solution to Problem II in (2.1) is
equivalent to the determination of the optimal cc C∗ of H so that R

|c| is a minimum.

Proof. ρ in (2.9) is written as ρ =
R
|c|

1+
√

1−
(

R
|c|
)2

. Differentiating with respect to (wrt) R
|c| ∈ [0, 1)

we obtain

dρ

d
(

R
|c|
) = 1√

1 −
(

R
|c|
)2
(

1 +
√

1 −
(

R
|c|
)2
) > 0.

Therefore, ρ strictly increases with R
|c| ∈ [0, 1) and is minimized in any subinterval of it, whenever

R
|c| is; that is at the left endpoint of the subinterval. �

Definition 2.2. We call visibility angle (v.a.) of a cc of H from the origin O the angle formed by
the tangents from O to the cc in question.

If φ is the v.a. of a certain cc of H it can be observed that

sin

(
φ

2

)
= R

|c| . (2.10)

Based on Definition 2.2 and Theorems 2.3 and 2.4 we come to the following conclusion.

Theorem 2.5. Under the assumptions of Theorem 2.3 the ratio R
|c| is minimized iff the corre-

sponding v.a. φ is.
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In the trivial case l = 1, H shrinks to the point P1(z1) (H ≡ P1). The v.a. of H is zero and
from (2.10) R = 0. Then, from (2.9), the optimal values for ω (ω∗) and ρ (ρ∗) are

ω∗ = 1

z1
, ρ∗ = 0. (2.11)

In case l ≥ 2, the class of cc’s among which the optimal one is to be sought is a subclass of that
of Definition 2.1. For this we appeal to the following statement which makes use of Definition
2.2.

Theorem 2.6 (Lemma 3 of [6]). The optimal cc passes through at least two vertices of H.

From our hypotheses and analysis it is ascertained that for a given H the optimal cc C∗
will be given by the same algorithm that gives its analogue in the classical extrapolation
(minω∈C maxa∈H |1 − ωa|) [6,7]. The algorithm in [6] is based on Apollonius circles [3], and in
the next section, is presented in an improved form. One should mention that many researchers have
contributed to the solution of the classical extrapolation for A ∈ Rn,n, ω ∈ R. The more general
solution was given by Hughes Hallett [10,11] and Hadjidimos [5]. In the classical extrapolation
for A ∈ Cn,n, ω ∈ C, a solution was also given by Opfer and Schober [12] by using Lagrange
multipliers [1] when H is a straight-line segment or an ellipse.

Note that although C∗ for the classical extrapolation and the present one are identically the
same, the expressions for the optimal parameters ω∗ and ρ(Cω∗) are completely different.

3. The algorithm and the elements of C∗

Let A ∈ Cn,n and H be the closed convex hull of σ(A) satisfying all the assumptions so far.
Then, the determination of the optimal cc C∗ of H is achieved by the following algorithm.

The Algorithm
Step 1. Let Pi(zi), i = 1, . . . , l, be the l vertices of H and let I :={1, 2, . . . , l}.
Step 2. If l = 1, the elements of C∗

1 are given by c∗
1 = z1, R

∗
1 = 0 (2.11).

Step 3. If l = 2, the center K∗
1,2(c

∗
1,2) of C∗

1,2 is found as the intersection of any two of the
three lines: (i) the perpendicular bisector to P1P2, (ii) the bisector of ∠P1OP2, and (iii) the circle
circumscribed to the triangle OP1P2. (K∗

1,2 is also the point on the perpendicular bisector to P1P2
whose ratio of distances from P1 and O and also from P2 and O is minimal.) The elements of
C∗

1,2 are given by

c∗
1,2 = (|z1| + |z2|)z1z2

|z1|z2 + z1|z2| , R∗
1,2 = |z1| |z2| |z2 − z1|

|z1|z2| + |z1|z2| (3.1)

(see [6,12] or [7]). The optimal cc C∗
1,2 in this case will be called a two-point optimal cc.

Step 4. If l � 3, find the elements of the
(

l

2

)
two-point optimal cc’s Ci,j , i = 1, . . . , l − 1, j =

i + 1, . . . , l, and from these the maximum ratio
Ri,j

|ci,j | . If the optimal cc that corresponds to the

maximum ratio, let it correspond to the indices ī and j̄ , captures H, that is

|cī,j̄ − zk| � Rī,j̄ ∀k ∈ I\{ī, j̄},
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then this two-point optimal cc C∗̄
i,j̄

will be the optimal cc of H.3 If such a circle does not

exist, then find the elements of the
(

l

3

)
circles that are circumscribed to the triangles PiPjPk ,

i = 1, . . . , k − 2, j = i + 1, . . . , k − 1, k = j + 1, . . . , l, let them be Ki,j,k(ci,j,k) and Ri,j,k ,
using the formulas

ci,j,k = |zi |2(zj − zk) + |zj |2(zk − zi) + |zk|2(zi − zj )

zi(zk − zl) + zj (zk − zi) + zk(zi − zj )
,

Ri,j,k =
∣∣∣∣ (zi − zj )(zj − zk)(zk − zi)

zi(zj − zk) + zj (zk − zi) + zk(zi − zj )

∣∣∣∣ . (3.2)

(see [6] or [7]). Discard all circles that may capture the origin, i.e. |ci,j,k| � Ri,j,k, and, from the
remaining ones all those that do not capture all the other vertices, i.e.

(Ri,j,k < |ci,j,k| and) ∃m ∈ I\{i, j, k} such that Ri,j,k < |ci,j,k − zm|.
From the rest the one that corresponds to the smallest ratio

Ri,j,k

(OKi,j,k)
, let the associated vertices be

Pī, Pj̄ , Pk , is the three-point optimal cc C∗
ī,j̄ ,k

of H.

4. Uniqueness of the optimal capturing circle

In this section, we give a complete theoretical proof of the uniqueness of the optimal cc of H
which is not quite mathematically satisfactory as is presented in [6]. For this we will need the
classical Theorem of the Apollonius circle and one of its corollaries.

Theorem 4.1 (Apollonius Theorem [3]). The locus of the points M of a plane whose distances
from two fixed points A and B of the same plane are at a constant ratio (MA)

(MB)
= λ /= 1 is a circle

whose diameter has endpoints C and D that lie on the straight-line AB and separate internally
and externally the straight-line segment AB into the same ratio λ, namely

(CA)

(CB)
= (DA)

(DB)
= λ. (4.1)

Corollary 4.1. Under the assumptions of the Apollonius Theorem 4.1, any point M ′ strictly inside
the Apollonius circle has distances from A and B whose ratio is strictly less than λ while any M

′′

strictly outside has distances with ratio strictly greater than λ. Specifically,

(M ′A)

(M ′B)
< λ,

(M
′′
A)

(M
′′
B)

> λ. (4.2)

Theorem 4.2. Under the assumptions of Theorem 2.4 the optimal cc of H is unique.

Proof. Let that there exist two optimal cc’sCi , with centers Ki(ci) and radii Ri, i = 1, 2 (see Fig.
2). Since both circles are optimal cc’s ofH,H lies in both of them. HenceC1 andC2 intersect each

other, say at A and B. LetS be their closed common region defined by the arc
�

AB ofC1 lying inC2

and by
�

AB ofC2 lying inC1.Hmust have at least two vertices on each arc not excluding the case

3 If there exists a two-point optimal cc of H it will correspond to the maximal ratio above. So, the previous known part
of the Algorithm [6,7] is improved. The proof of our claim is given in the Appendix.
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that two vertices, one from each arc, coincide at A and/or B. Let M1 and M2 be the intersections of

the straight-line K1K2 with the arcs
�

AB so that (KiMi) = Ri, i = 1, 2. The optimality condition
of the two circles gives R1|c1| = R2|c2| = λ (<1) or, equivalently, (K1A)

(K1O)
= (K2A)

(K2O)
= λ. Hence, the

points K1 and K2 must lie on the Apollonius circle CA whose diameter has endpoints C and D

that separate the straight-line segment OA, internally and externally, at the same ratio λ, namely
(CA)
(CO)

= (DA)
(DO)

= λ. For any point K strictly in the interior of the straight-line segment K1K2 it
will be

(K1K) + (KA) > R1 = (K1K) + (KM1) ⇔ (KA) > (KM1),

(K2K) + (KA) > R2 = (K2K) + (KM2) ⇔ (KA) > (KM2).

These inequalities show that the circle with center K and radius (KA) captures S, and there-
fore, H. Also, the point K as lying strictly between K1 and K2 lies strictly in the interior
of the Apollonius circle CA which, by Corollary 4.1, implies that (KA)

(KO)
< λ. However, this

constitutes a contradiction because we have just found a circle that captures H and has a v.a.

φ
(
sin
(

φ
2

)
= (KA)

(KO)
< λ

)
strictly less than that of the two optimal cc’s C1 and C2. �

5. Linear systems with indefinite coefficient matrix

5.1. Introduction

In a recent paper Bai et al. [2] introduced an alternating direction implicit (ADI)-type method
[13] (see also [14] or [15]) using Hermitian/Skew-Hermitian splittings for the solution of complex
linear algebraic systems with matrix coefficient (positive) definite.

Specifically, let the linear system

Ax = b, A ∈ Cn,n, det(A) /= 0, b ∈ Cn (5.1)

with A positive definite, namely Re(zH Az) > 0 ∀z ∈ Cn\{0}. Consider the splitting

A = B + C where B = 1

2
(A + AH ), C = 1

2
(A − AH ). (5.2)

In (5.2), B is Hermitian positive definite and C is Skew-Hermitian. For the solution of (5.1) the
following ADI-type method is adopted:

(rI + B)x(m+ 1
2 ) = (rI − C)x(m) + b,

(rI + C)x(m+1) = (rI − B)x

(
m+ 1

2

)
+ b, m = 0, 1, 2, . . . , (5.3)

where r is a positive acceleration parameter, I the unit matrix of order n and x(0) ∈ Cn any
initial approximation to the solution. Since B is Hermitian with positive eigenvalues and C Skew-
Hermitian with purely imaginary eigenvalues, the operators rI + B and rI + C are invertible

and so eliminating x

(
m+ 1

2

)
from Eq. (5.3) we obtain the iterative scheme

x(m+1) = Trx
(m) + cr , m = 0, 1, 2, . . . , (5.4)

where

Tr = (rI + C)−1(rI − B)(rI + B)−1(rI − C), cr = 2r(rI + C)−1(rI + B)−1.

(5.5)
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Fig. 2. The case of existence of two optimal cc’s.

Note that the matrices Tr and T̃r = (rI − B)(rI + B)−1(rI − C)(rI + C)−1 are similar. So,

ρ(Tr) = ρ(T̃r ) � ‖T̃r‖2 � ‖(rI − B)(rI + B)−1‖2‖(rI − C)(rI + C)−1‖2. (5.6)

Since C is Skew-Symmetric (CH = −C) we have

‖(rI − C)(rI + C)−1‖2 = ρ
1
2 ((rI + C)−H (rI − C)H (rI − C)(rI + C)−1)

= ρ
1
2 ((rI − C)−1(rI + C)(rI − C)(rI + C)−1)

= ρ
1
2 ((rI − C)−1(rI − C)(rI + C)(rI + C)−1)

= ρ
1
2 (I ) = 1. (5.7)

Consequently, in view of (5.6) and (5.7), to obtain the “best” iterative scheme (5.3) we have to
minimize the bound ‖(rI − B)(rI + B)−1‖2 of the spectral radius ρ(Tr) (or ρ(T̃r )). Recall that
(rI − B)(rI + B)−1 is Hermitian, and therefore,

‖(rI − B)(rI + B)−1‖2 = ρ((rI − B)(rI + B)−1)

= max
b∈σ(B)

∣∣∣∣ r − b

r + b

∣∣∣∣ = max
b∈σ(B)

∣∣∣∣∣1 − 1
r
b

1 + 1
r
b

∣∣∣∣∣ . (5.8)

Let b ∈ [b1, b2], where b1 is a positive lower bound of σ(B) and b2 an upper bound. The minimum
value of the right-hand side of (5.8) is attained at r = r∗ = √

b1b2, as was found in [2] (see also
[8,14,15]), and can also be found by the Algorithm of Section 3.
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Fig. 3. The rectangles R and e−ıθR (R′, R′′
, R

′′′
).

5.2. Cases of indefinite matrix coefficient

The preceding analysis shows how to solve a complex linear system by the ADI-type method
using the Hermitian/Skew-Hermitian splitting when the matrix coefficient A is definite. In what
follows we show that there are cases where even if A is indefinite we can apply the previous
method after a scalar preconditioning of the original system (5.1) (and of A).

Suppose thatσ(A)⊂R,whereR is a rectangle,with verticesA1(β1, γ1),A2(β2, γ2),A3(β3, γ3),
A4(β4, γ4) and with their coordinates satisfying

β1 � 0 � β2, |β1| + |β2| > 0, β3 = β2, β4 = β1 and

0 < γ1 < γ4, γ1 = γ2, γ3 = γ4. (5.9)

(Note: The case, of having σ(A) ⊂ R′ symmetric toRwrt the origin, is examined in an analogous
way.) In (5.9), β1, β2 are the lower and upper bounds of σ(B) and ıγ1, ıγ4, the purely imaginary
ones of σ(C) in (5.2). The rectangle R is illustrated in Fig. 3. To apply the ADI-type method
(5.3) to the original system (5.1) we multiply both members of the system by e−ıθ , θ > 0, so that
the new coefficient matrix e−ıθA becomes positive definite. The angle θ takes values so that the
projection of e−ıθR onto the real axis is on the positive real semiaxis. Let ri, φi, i = 1, . . . , 4,

be the polar radii and the polar angles of the corresponding vertices of R. It will be

ri =
√

β2
i + γ 2

i , φi = arccos

(
βi

ri

)
, i = 1, . . . , 4. (5.10)
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The projection of e−ıθR onto the real axis is defined by those of the “new positions” of the diagonal
A1A3, for θ ∈ (φ1 − π

2 , π
2 ], and by the corresponding ones of A2A4 for θ ∈ [π

2 , φ2 + π
2 ). The

endpoints of these projections are

b1(θ) = r1 cos(φ1 − θ), b2(θ) = r3 cos(φ3 − θ) for θ ∈
(
φ1 − π

2
,
π

2

]
,

b1(θ) = r2 cos(φ2 − θ), b2(θ) = r4 cos(φ4 − θ) for θ ∈
[π

2
, φ2 + π

2

)
. (5.11)

Note that at θ = π
2 we have

r1 cos
(
φ1 − π

2

)
= r2 cos

(
φ2 − π

2

)
and r3 cos

(
φ3 − π

2

)
= r4 cos

(
φ4 − π

2

)
. (5.12)

We follow the Algorithm of Section 3, with H being the positive real line segment [b1(θ), b2(θ)].
Therefore, the center K(c) and the radius R of the optimal cc are given by c = 1

2 (b1(θ) + b2(θ))

and R = 1
2 (b2(θ) − b1(θ)), which are functions of θ ∈ (φ1 − π

2 , φ2 + π
2 ). Consequently, to find

the best optimal cc we have to minimize R
c

given by

R

c
= b2(θ) − b1(θ)

b2(θ) + b1(θ)
=
{ r3 cos(φ3−θ)−r1 cos(φ1−θ)

r3 cos(φ3−θ)+r1 cos(φ1−θ)
for θ ∈ (φ1 − π

2 , π
2

]
,

r4 cos(φ4−θ)−r2 cos(φ2−θ)
r4 cos(φ4−θ)+r2 cos(φ2−θ)

for θ ∈ [π
2 , φ2 + π

2

)
.

(5.13)

Differentiating the first ratio in the right-hand side above we obtain

d
(

r3 cos(φ3−θ)−r1 cos(φ1−θ)
r3 cos(φ3−θ)+r1 cos(φ1−θ)

)
dθ

= 2r1r3 sin(φ3 − φ1)

(r3 cos(φ3 − θ) + r1 cos(φ1 − θ))2
< 0,

so, the minimum is attained at θ = π
2 . Similarly, working with the other expression for R

c
we find

out that its derivative is positive and so its minimum is assumed again at θ = π
2 .

Note that e−ı π
2 = −ı, so the scalar preconditioner of A is −ı and the matrices −ıB and −ıC

in (5.2) are now Skew-Hermitian and Hermitian, respectively.
In either case the “best” value of the acceleration parameter r = r∗ is given by

r∗ =
√

β1

(π

2

)
β2

(π

2

)
= √

r1r3 sin φ1 sin φ3 = √
γ1γ3

= √
r2r4 sin φ2 sin φ4 = √

γ2γ4. (5.14)

5.3. Special cases of indefinite matrix coefficient

As a first special case let us consider the one where in (5.9) we have for the γi’s that

γ1 = γ2 = γ3 = γ4 > 0. (5.15)

So, the rectangle R reduces to a straight-line segment parallel to the real axis and intersecting the
“positive” imaginary axis. Applying the theory of the previous paragraph we find that

b2

(π

2

)
= b1

(π

2

)
, r∗ = γ1

implying, from (5.13), (5.8) and (5.6), that ρ(Tr∗) = 0!
As a second special case we consider the one where again the rectangle R is restricted to a

straight-line segment lying on the “positive” imaginary axis. Then, relations (5.9) become
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β1 = β2 = β3 = β4 = 0, 0 < γ1 = γ2 < γ3 = γ4. (5.16)

In view of (5.16), from (5.10) we have that

r1 = r2 = γ1, r3 = r4 = γ3, φ1 = φ2 = φ3 = φ4 = π

2
.

So, relations (5.13) give that

R

c
= b2(θ) − b1(θ)

b2(θ) + b1(θ)
= r3 cos

(
π
2 − θ

)− r1 cos
(

π
2 − θ

)
r3 cos

(
π
2 − θ

)+ r1 cos
(

π
2 − θ

) = γ3 − γ1

γ3 + γ1
∀θ ∈ (0, π), (5.17)

that is the ratio R
c

is independent of θ ∈ (0, π)! Therefore

r∗ = √
γ1γ3 = √

γ2γ4 ∀θ ∈ (0, π).

6. Concluding remarks

We close our work with a number of points:

(i) In caseH is not a convex polygon but an ellipseE, provided O /∈ E, a case studied explicitly
in [12] for classical extrapolation, the optimal cc determined there is the same as the one
in our case. It is understood, however, that the values of the optimal parameters ω∗ and ρ∗
are found by the formulas in (2.9).

(ii) Optimal cc’s and then corresponding optimal ω’s and ρ’s can be found for a convex region
(O /∈)S capturing σ(A), when S is a section, a sector or a zone of a circle or of an ellipse,
by combining the idea in (i) with ours in [8] and in the present work.

(iii) In case H (or E or S) is symmetric wrt the positive (negative) real semiaxis (as, e.g., when
A ∈ Rn,n is positive (negative) stable) then, it is obvious that the one-, two- or three-point
optimal cc, C∗, will have center c on the positive (negative) real semiaxis. By (2.7), it is
implied that ω∗ will be positive (negative) real and a simplified Algorithm, in fact that in
[10,11,6,7] and especially the one in [8], to determine the optimal cc ofH, etc. can be used.

(iv) In case an optimal real extrapolation parameter ω is desired, this is possible iff H (or E
or S) lies strictly to the right (left) of the imaginary axis. Then, we consider as the convex
hull to work with, the convex hull of the union of H ∪ H′ (or E ∪ E′ or S ∪ S′), where
H′, etc. is the symmetric of H, etc. wrt the real axis, and we go on as in (iii) above.

Appendix A. Two-Point Optimal cc of H and Maximal v.a.

The first part of Step 4 of the Algorithm of Section 3 constitutes a major improvement over the
corresponding part of the Algorithm presented in [6] (or [7]). To prove our claim in the associated
footnote, a statement given as a theorem in [6] is needed. Specifically:

Lemma A.1. Under the notation and assumptions in the beginning and in Step 1 of the Algorithm
of Section 3, suppose that H is the straight-line segment P1P2. Let the optimal cc of H have
center K∗

1,2. K∗
1,2 is defined as the unique point of contact of two Apollonius circles. The points

of these circles have distances from P1 and O and from P2 and O with ratio equal to the minimal
ratio of the distances of the points of the perpendicular bisector to P1P2 from the aforementioned
pairs of points.

Proof. For the proof see the Theorem in [6]. �
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Fig. 4. Three characteristic pairs of Apollonius circles CAi
, i = 1, . . . , 6, are illustrated that share a common two-point

optimal cc C∗ of H.

Theorem A.1. Under the main assumptions of Lemma A.1, letH have vertices Pi, i = 1, . . . , l,

l � 3. Then, if the optimal cc of H is determined by an optimal two-point cc it will be the

unique one that corresponds to the maximum ratio
Ri,j

|ci,j | , i = 1, . . . , l − 1, j = i + 1, . . . , l, or,

equivalently, to the Ci,j corresponding to the maximum v.a.

Proof. Consider all l Apollonius circles whose diameters have endpoints that divide internally and
externally the straight-line segments OPi, i = 1, . . . , l, into two parts whose ratio of distances
from Pi and O is λ < 1. As is known, from the Apollonius Theorem 4.1, every point on each
of these l circles has distances from Pi and O that share the common ratio λ. Assume that λ

varies increasing continuously in [0, 1). For λ = 0, all l Apollonius circles are nothing but the

points Pi . Increasing λ from the value 0, the two Apollonius circles of each pair, out of the
(

l

2

)
ones, first will come into contact with each other for some value of λ, in general different for
each pair, and then will intersect each other. Let ī and j̄ be the indices, ī ∈ I, j̄ ∈ I\{ī}, of the
vertices of H that define the pair of the Apollonius circles whose point of contact K ∗̄

i,j̄
(c∗̄

i,j̄
)

corresponds to the maximum value of λ = λ∗. We claim that the circle with center K ∗̄
i,j̄

and

radius R∗̄
i,j̄

= (K ∗̄
i,j̄

Pī) = (K ∗̄
i,j̄

Pj̄ ), satisfying

λ∗ =
R∗̄

i,j̄

|c∗̄
i,j̄

| � Ri,j

|ci,j | ∀i, j ∈ I\{ī, j̄}, (A.1)

is the optimal cc of H. Suppose there exists at least one of the Apollonius circles with λ = λ∗
corresponding to an index i ∈ I\{ī, j̄} that leaves K ∗̄

i,j̄
strictly outside it. The fact that all the

two-point optimal cc’s have been exhausted and no two-point optimal cc of H has been found
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contradicts our main assumption that the optimal cc of H is a two-point optimal one. That the
two-point optimal cc C∗̄

i,j̄
corresponds to the largest v.a. comes from (2.10). �

Remark A.1. It is possible to have more than one pair of Apollonius circles that share the point
of contact K ∗̄

i,j̄
of Theorem A.1. In fact there can be as many as

[
l
2

]
pairs, where the symbol [·]

denotes integral part. However, all of these possible pairs will share the unique two-point optimal
cc of H.

Referring to Remark A.1, in Fig. 4 three such pairs of Apollonius circles are shown correspond-
ing to the pairs of points (P1, P2), (P3, P4) and (P5, P6). If the vertices of H are l > 6, the points
Pi, i = 7, . . . , l, are supposed to be captured by the common two-point optimal cc C∗ ≡ C∗

1,2 ≡
C∗

3,4 ≡ C∗
5,6, whose center is K∗ ≡ K∗

1,2 ≡ K∗
3,4 ≡ K∗

5,6 and radius R∗ = (K∗P1) = (K∗P2) =
(K∗P3) = (K∗P4) = (K∗P5) = (K∗P6), and not any two of them Pi, Pj , i /= j = 7, . . . , l,
define a two-point optimal cc of H.
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