The CORE Metadata, citation and similar papers at core.ac.uk

ded by Elsevier - Publisher Conne

Available online at www.sciencedirect.com

LINEAR ALGEBRA AND ITS APPLICATIONS

Linear Algebra and its Applications 430 (2009) 619–632

www.elsevier.com/locate/laa

On the optimal complex extrapolation of the complex Cayley transform

A. Hadjidimos ^a *,*∗*,*1, M. Tzoumas ^b

^a *Department of Computer and Communication Engineering, University of Thessaly, 10 Iasonos Street, GR-383 33 Volos, Greece* ^b *Department of Mathematics, University of Ioannina, GR-451 10 Ioannina, Greece*

Received 25 January 2008; accepted 12 August 2008

Available online 1 November 2008 Submitted by R.A. Brualdi

Abstract

The *Cayley transform,* $F := \mathcal{F}(A) = (I + A)^{-1}(I - A)$, with $A \in \mathbb{C}^{n,n}$ and $-1 \notin \sigma(A)$, where $\sigma(\cdot)$ denotes spectrum, and its extrapolated counterpart $\mathcal{F}(\omega A)$, $\omega \in \mathbb{C} \setminus \{0\}$ and $-1 \notin \sigma(\omega A)$, are of significant theoretical and practical importance (see, e.g. [A. Hadjidimos, M. Tzoumas, On the principle of extrapolation and the Cayley transform, Linear Algebra Appl., in press]). In this work, we extend the theory in [8] to cover the complex case. Specifically, we determine the optimal *extrapolation parameter* $\omega \in \mathbb{C} \setminus \{0\}$ for which the spectral radius of the *extrapolated Cayley transform* $\rho(\mathcal{F}(\omega A))$ is minimized assuming that $\sigma(A) \subset \mathcal{H}$, where $\mathcal H$ is the smallest closed convex polygon, and satisfies $O(0) \notin \mathcal H$. As an application, we show how a complex linear system, with coefficient a certain class of indefinite matrices, which the ADI-type method of Hermitian/Skew-Hermitian splitting fails to solve, can be solved in a "best" way by the aforementioned method.

© 2008 Elsevier Inc. All rights reserved.

AMS classification: [Primary](mailto:{hadjidim}@{inf}.{uth}.{gr}) [65F10](mailto:{hadjidim}@{inf}.{uth}.{gr})

Keywords: Cayley transform; Extrapolation; Convex hull; Möbius transformation; Capturing circle; Visibility angle; Hermitian/Skew-Hermitian splitting

[∗] Corresponding author.

E-mail addresses: hadjidim@inf.uth.gr (A. Hadjidimos), mtzoumas@cc.uoi.gr (M. Tzoumas).

¹ Part of the work of this author was funded by the Program Pythagoras of the Greek Ministry of Education.

1. Introduction and preliminaries

The *Cayley transform* and the *extrapolated Cayley tranform* are of significant theoretical interest and have many applications (see [4,8]). Their definitions are as follows:

Definition 1.1. Given

$$
A \in \mathbb{C}^{n,n} \quad \text{with } -1 \notin \sigma(A), \tag{1.1}
$$

the *Cayley transform* $\mathcal{F}(A)$ is defined to be

$$
F := \mathcal{F}(A) = (I + A)^{-1}(I - A).
$$
\n(1.2)

Definition 1.2. Under the assumptions of Definition 1.1, we call *extrapolated* Cayley transform, with *extrapolation* parameter ω , the matrix function (1.2) where *A* is repla[ce](#page-13-0)d by ωA

$$
F_{\omega} := \mathcal{F}(\omega A) = (I + \omega A)^{-1} (I - \omega A), \quad \omega \in \mathbb{C} \setminus \{0\}, \ -1 \notin \sigma(\omega A). \tag{1.3}
$$

In what follows the definition and assumptions below are needed.

Definition 1.3. Let $A \in \mathbb{C}^{n,n}$ and $\sigma(A)$ be its spectrum. The *closed convex hull* of $\sigma(A)$, denoted by $\mathcal{H}(A)$ or simply by \mathcal{H} , is the smallest closed convex polygon such that $\sigma(A) \subset \mathcal{H}$.

Main Assumption 1: In the following it will be assumed that $O(0) \notin \mathcal{H}$.

In many cases, F_{ω} is the iteration matrix of an iterative method [8]. Therefore, $\rho(F_{\omega})$ constitutes a measure of its convergence. Hence, it must be $\max_{a \in \sigma(A) \subset \mathcal{H}} \left| \frac{1 - \omega a}{1 + \omega a} \right| < 1$ and this holds if and only if (*iff*) Re (ωa) > 0. So, we also make the following assumption:

Main Assumption 2: In what follows it will be assumed that

$$
Re(\omega a) > 0 \quad \forall a \in \sigma(A) \subset \mathcal{H} \text{ and } \omega \in \mathbb{C}.\tag{1.4}
$$

Our main objective i[n th](#page-13-0)is paper is to solve the following problem.

Problem I: Based [on](#page-13-0) the hypotheses of Definitions 1.1–1.3 and *Main Assumptions* 1 and 2, determine the *extrapolation paramet[er](#page-13-0) ω* that minimizes the spectral radius of the extrapolated Cayley transform, i.e.

$$
\min_{\omega \in \mathbb{C} \setminus \{0\}, -1 \notin \sigma(\omega A)} \rho(F_{\omega}) = \min_{\omega \in \mathbb{C} \setminus \{0\}, -1 \notin \sigma(\omega A)} \max_{a \in \sigma(A) \subset \mathcal{H}} \left| \frac{1 - \omega a}{1 + \omega a} \right|.
$$
(1.5)

This work is organized as follows. In Section 2, an analysis similar to but more complicated than that in [8] leads to an algorithm for the determination of the optimal ω which is identical to the one in [6,7]. However, the expressions for the optimal values involved are different from those in [6]. Next, in Section 3, the algorithm is briefly presented, where one of its main steps is improved over that in [6]. In Section 4, the proof of uniqueness of the solution which was not quite mathematically complete in [6] is given. Then, in Section 5, it is shown how a class of complex linear systems with indefinite matrix coefficient can be solved by the *ADI*-type method of Hermitian/Skew-Hermitian splitting [2], which linear systems the aforementioned method fails to solve. In Section 6, we give a number of concluding remarks, and finally, in an appendix, we present a Theorem in connection with the present improved form of our algorithm.

2. The solution to the minimax Problem I

To solve *Problem* I we seek the solution to the more general *Problem* II below. As will be seen *Problem* II is easier to solve [and](#page-13-0) its solution is identical to that of *Problem* I.

Problem II: Under the Main Assumptions 1 and 2, determine the extrapolation parameter *ω* that solves the minimax problem

$$
\min_{\omega \in \mathbb{C}} \max_{a \in \mathcal{H}} \left| \frac{1 - \omega a}{1 + \omega a} \right| \tag{2.1}
$$

The function in (2.1)

$$
w := w(a) = \frac{1 - \omega a}{1 + \omega a}, \quad a \in \mathcal{H}, \quad \omega \in \mathbb{C}, \quad \text{Re}(\omega a) > 0 \tag{2.2}
$$

is a Möbius transformation [9]. It has no *poles*, because Re($1 + \omega a$) > 1 ($\neq 0$), and is not a constant as is readily checked. Hence, it possesses an inverse Möbius transformation

$$
w^{-1}(w(a)) = a = \frac{1-w}{\omega(1+w)}, \quad w = w(a), \ a \in \mathcal{H}, \ \omega \in \mathbb{C}, \ \text{Re}(\omega a) > 0,
$$
 (2.3)

which has no poles and is not the constant function.

It is reminded that a Möbius transformation is a conformal mapping, i.e. it is a one-to-one correspondence that preserves angles [9]. In general, it maps a disk onto a disk and a circle onto the circle of its image. To see how their elements are mapped via (2.2) or (2.3), let an $\omega \in \mathbb{C}$ (with $Re(\omega a) > 0, a \in \mathcal{H}$ and \mathcal{C}_{ω} be the circle with center $O(0)$ and radius

$$
\rho := \rho(\mathscr{C}_{\omega}) = \max_{a \in \mathscr{H}} |w(a)| \quad (\text{1}). \tag{2.4}
$$

In view of (2.4), \mathcal{C}_{ω} will capture² $w(\mathcal{H})$ and will pass through a boundary point of it. Therefore, since (2.2) and (2.3) have **no** poles, \mathcal{C}_{ω} must be the image of a circle \mathcal{C} . To find out how \mathcal{C} is derived from \mathcal{C}_{ω} and vice versa, we begin with

$$
\mathscr{C}_\omega := |w| = \rho,\tag{2.5}
$$

use (2.2), go through the equivalences

$$
|w| = \rho \Leftrightarrow |w|^2 = \rho^2 \Leftrightarrow w\overline{w} = \rho^2 \Leftrightarrow \frac{1 - \omega a}{1 + \omega a} \cdot \frac{1 - \overline{\omega a}}{1 + \overline{\omega a}} = \rho^2
$$

$$
\Leftrightarrow \omega a \overline{\omega a} - \frac{(1 + \rho^2)}{(1 - \rho^2)} (\omega a + \overline{\omega a}) + \left(\frac{(1 + \rho^2)}{(1 - \rho^2)}\right)^2 = \left(\frac{(1 + \rho^2)}{(1 - \rho^2)}\right)^2 - 1
$$

$$
\Leftrightarrow \left| a - \frac{(1 + \rho^2)}{\omega(1 - \rho^2)} \right|^2 = \left(\frac{2\rho}{|\omega|(1 - \rho^2)}\right)^2 \Leftrightarrow |a - c| = R
$$

and, finally, we obtain

$$
\mathscr{C} := |a - c| = R,\tag{2.6}
$$

which is the equation of a circle $\mathcal C$, with center c and radius R given by

$$
c := \frac{1 + \rho^2}{\omega(1 - \rho^2)}, \quad R := \frac{2\rho}{|\omega|(1 - \rho^2)}.
$$
\n(2.7)

² The word "*captures*" will mean "*contains in the closure of its interior*".

Fig. 1. One of the infinitely many *capturing circles*.

From the equivalences $\mathcal{C}_{\omega} = w(\mathcal{C}) \Leftrightarrow \mathcal{C} = w^{-1}(\mathcal{C}_{\omega})$ $\mathcal{C}_{\omega} = w(\mathcal{C}) \Leftrightarrow \mathcal{C} = w^{-1}(\mathcal{C}_{\omega})$ $\mathcal{C}_{\omega} = w(\mathcal{C}) \Leftrightarrow \mathcal{C} = w^{-1}(\mathcal{C}_{\omega})$. Therefore, the circle $\mathcal C$ possesses the properties: (1) It leaves $O(0)$ strictly outside since $R \lt |c|$ $R \lt |c|$. (2) It captures $\mathcal{H}(\mathcal{H} \subset \mathcal{C})$ since \mathcal{C}_{ω} captures $w(\mathcal{H}) (w(\mathcal{H}) \subset \mathcal{C}_{\omega} \equiv w(\mathcal{C})$). (3) It passes through at least one vertex of \mathcal{H} , because by (2.4) \mathcal{C}_{ω} captures $w(\mathcal{H})$ and passes through a boundary point of it. Hence, by the equivalences, $\mathscr C$ captures $\mathscr H$ and passes through a boundary point of it, that is a vertex.

Definition 2.1. A circle *C* satisfying the above three properties will be called a *capturing circle (cc)* of \mathcal{H} .

Theorem 2.1 (see also Lemma 1 of [6]). *Let* $A \in \mathbb{C}^{n,n}$, $\sigma(A)$ *be its spectrum and* $\mathcal H$ *be the closed convex hull* $\mathcal{H} \equiv \mathcal{H}(A)$, *satisfying Definitions* 1.1–1.3 *and Main Assumptions* 1 *and* 2*. Then, there are infinitely many capturing circles (cc's) of* H .

Proof. Let P_i , $i = 1, \ldots, l$, be the vertices of H and let $I := \{1, 2, \ldots, l\}$. Let OP_i , $i = 1, \ldots, l$, be the semilines through the vertices of \mathcal{H} and OP_{i_1} , OP_{i_2} , $i_1, i_2 \in I$, be the two extreme ones (Fig. 1). Then $\angle P_{i_1} O P_{i_2} < \pi$. Draw O_{z_1} , O_{z_2} perpendicular to OP_{i_1} , OP_{i_2} at O so that $\angle P_{i_1} O P_{i_2} + \angle z_1 O z_2 = \pi$, and any semiline Oz within $\angle z_1 O z_2$. Draw also the perpendicular bisectors to OP_i , $i = 1, \ldots, l$, and let K_i be their intersections with Oz . The circle with center any $K \in Oz$ such that $(OK) > \max_{i \in I} (OK_i)$ and radius $R = \max_{i \in I} (KP_i)$ is a *cc* of H . Consequently, given \mathcal{H} , there are infinitely many *cc*'s. \Box

Note: The notion of a *cc* of \mathcal{H} is a particular case of the one defined in [6] (see also [7]). One more consequence of our analysis is the validity of the following statement.

Theorem 2.2. *Under the Main Assumptions* 1 *and* 2*, the solutions to Problem* II *and Problem* I *are identical.*

Proof. In view of the preceding analysis the following series of relations hold:

$$
\max_{a \in \mathcal{H}} \left| \frac{1 - \omega a}{1 + \omega a} \right| = \max_{a \in \mathcal{H}} |w(a)| = \rho = \rho(C_{\omega})
$$

= $\rho(w(\mathcal{C})) = \max_{a \in \sigma(A)} |w(a)| = \max_{a \in \sigma(A)} \left| \frac{1 - \omega a}{1 + \omega a} \right| = \rho(F_{\omega}).$ (2.8)

Equalities (2.8) are analogous to those of Theorem 2.2 in [8] and their proof is omitted. \Box

To solve *P[roble](#page-2-0)m* II it suffices to find which of the *cc*'s of \mathcal{H} is the one that minimizes ρ . The following two theorems constitute a decisive [step](#page-2-0) in this direction.

Theorem 2.3. Let $\mathscr C$ be a cc of $\mathscr H$, $K(c)$ and R be its center and radius and $\mathscr C_\omega$ be its im[age](#page-2-0) via *(2.2). Then, the extrapolation parameter* $ω$ *and the radius* $ρ$ *of* $\mathcal{C}_ω$ *are given by*

$$
\omega = \frac{|c|}{c\sqrt{|c|^2 - R^2}}, \quad \rho = \frac{R}{|c| + \sqrt{|c|^2 - R^2}}.
$$
\n(2.9)

Proof. From (2.7) we obtain $\frac{R}{|c|} = \frac{2\rho}{1+\rho^2}$. Solving for $\rho \in (0, 1)$, we take the second equation in (2.9). ω is obtained from the first equation in (2.7) using the expression for ρ found. \square

Theorem 2.4. *Under the assumptions of Theorem* 2.3*, the solution to Problem* II *in (*2.1*) is equivalent to the determination of the optimal cc* \mathscr{C}^* *of* \mathscr{H} *so that* $\frac{R}{|c|}$ *is a minimum*.

Proof.
$$
\rho
$$
 in (2.9) is written as $\rho = \frac{\frac{R}{|c|}}{1 + \sqrt{1 - (\frac{R}{|c|})^2}}$. Differentiating with respect to (*wrt*) $\frac{R}{|c|} \in [0, 1)$

we obtain

$$
\frac{\mathrm{d}\rho}{\mathrm{d}\left(\frac{R}{|c|}\right)} = \frac{1}{\sqrt{1-\left(\frac{R}{|c|}\right)^2} \left(1+\sqrt{1-\left(\frac{R}{|c|}\right)^2}\right)} > 0.
$$

Therefore, ρ strictly increases with $\frac{R}{|c|} \in [0, 1)$ and is minimized in any subinterval of it, whenever $\frac{R}{|c|}$ is; that is at the left endpoint of the subinterval. \Box

Definition 2.2. We call visibility angle (*v.a.*) of a *cc* of \mathcal{H} from the origin *O* the angle formed by the tangents from *O* to the *cc* in question.

If ϕ is the *v.a.* of a certain *cc* of \mathcal{H} it can be observed that

$$
\sin\left(\frac{\phi}{2}\right) = \frac{R}{|c|}.\tag{2.10}
$$

Based on Definition 2.2 and Theorems 2.3 and 2.4 we come to the following conclusion.

Theorem 2.5. *Under the assumptions of Theorem 2.3 the ratio* $\frac{R}{|c|}$ *is minimized iff the corresponding v.a. φ is.*

In the trivial case $l = 1$, [H](#page-13-0) shrinks to the point $P_1(z_1)$ ($\mathcal{H} \equiv P_1$). The *v.a.* of H is zero and from (2.10) $R = 0$. Then, from (2.9), the optimal values for $\omega(\omega^*)$ and $\rho(\rho^*)$ are

$$
\omega^* = \frac{1}{z_1}, \quad \rho^* = 0. \tag{2.11}
$$

In case *l* ≥ 2, the class of *cc*'s among which the optimal one is to be sought is a subclass of that of Definition 2.1. For this we appeal t[o the f](#page-13-0)ollowing stateme[nt w](#page-13-0)hich makes use of Definition 2.2.

Theorem 2[.6](#page-13-0) (Lemma 3 of [6]). *The optimal cc passes through at least two vertices of* H .

From our hypotheses and analysis it is ascertained that for a given H the optimal *cc* C^* will be given by the same algorithm that gives its analogue in the *classical extrapolation* $(\min_{\omega \in \mathbb{C}} \max_{a \in \mathcal{H}} |1 - \omega a|)$ [6,7]. The algorithm in [6] is based on *Apollonius circles* [3], and in the next section, is presented in an improved form. One should mention that many researchers have contributed to the solution of the *classical extrapolation* for $A \in \mathbb{R}^{n,n}$, $\omega \in \mathbb{R}$. The more general solution was given by Hughes Hallett [10,11] and Hadjidimos [5]. In the *classical extrapolation* for $A \in \mathbb{C}^{n,n}$, $\omega \in \mathbb{C}$, a solution was also given by Opfer and Schober [12] by using *Lagrange multipliers* [1] when H is a straight-line segment or an ellipse.

Note that although C[∗] for the *classical extrapolation* and the present one are identically the same, the expressions for the optimal parameters ω^* and $\rho(\mathscr{C}_{\omega^*})$ are **completely different**.

3. The algorithm and the elements of \mathcal{C}^*

Let $A \in \mathbb{C}^{n,n}$ and $\mathcal H$ be the closed convex hull of $\sigma(A)$ satisfying all the assumptions so far. Then, the determination of the *optimal cc* \mathscr{C}^* of $\mathscr H$ is achieved by the following algorithm.

The Algorithm

Step 1. Let $P_i(z_i)$, $i = 1, \ldots, l$, be the *l* vertices of \mathcal{H} and let $I := \{1, 2, \ldots, l\}$.

Step 2. If $l = 1$, the elements of \mathcal{C}_1^* are given by $c_1^* = z_1$, $R_1^* = 0$ (2.11).

St[ep](#page-13-0) [3.](#page-13-0) If $l = 2$ $l = 2$ $l = 2$, the center $K_{1,2}^*(c_{1,2}^*)$ of $\mathcal{C}_{1,2}^*$ is found as the intersection of any two of the three lines: (i) the perpendicular bisector to P_1P_2 , (ii) the bisector of $\angle P_1OP_2$, and (iii) the circle circumscribed to the triangle OP_1P_2 . ($K_{1,2}^*$ is also the point on the perpendicular bisector to P_1P_2 whose ratio of distances from P_1 and \overrightarrow{O} and also from P_2 and \overrightarrow{O} is minimal.) The elements of C∗ ¹*,*² are given by

$$
c_{1,2}^* = \frac{(|z_1| + |z_2|)z_1z_2}{|z_1|z_2 + z_1|z_2|}, \quad R_{1,2}^* = \frac{|z_1| \, |z_2| \, |z_2 - z_1|}{|z_1|z_2| + |z_1|z_2|} \tag{3.1}
$$

(see [6,12] or [7]). The optimal $cc \mathcal{C}_{1,2}^*$ in this case will be called a *two-point optimal cc*.

Step 4. If $l \ge 3$, find the elements of the $\binom{l}{2}$ *two-point optimal cc*'s $\mathcal{C}_{i,j}$, $i = 1, ..., l - 1$, $j =$ $i + 1, \ldots, l$, and from these the maximum ratio $\frac{R_{i,j}}{|c_{i,j}|}$. If the *optimal cc* that corresponds to the maximum ratio, let it correspond to the indices \overline{i} and \overline{j} , captures \mathcal{H} , that is

$$
|c_{\overline{i},\overline{j}} - z_k| \leqslant R_{\overline{i},\overline{j}} \quad \forall k \in I \setminus \{ \overline{i}, \overline{j} \},
$$

then [th](#page-13-0)is *t[wo](#page-13-0)-point optimal cc* $\mathscr{C}_{\bar{i},\bar{j}}^*$ will be the *optimal cc* of \mathscr{H} .³ If such a circle does **not** exist, then find the elements of the $\binom{l}{3}$ circles that are circumscribed to the triangles $P_i P_j P_k$, $i = 1, \ldots, k - 2, j = i + 1, \ldots, k - 1, k = j + 1, \ldots, l$, let them be $K_{i,j,k}(c_{i,j,k})$ and $R_{i,j,k}$, using the formulas

$$
c_{i,j,k} = \frac{|z_i|^2(z_j - z_k) + |z_j|^2(z_k - z_i) + |z_k|^2(z_i - z_j)}{\overline{z_i}(z_k - z_l) + \overline{z_j}(z_k - z_i) + \overline{z_k}(z_i - z_j)},
$$

\n
$$
R_{i,j,k} = \left| \frac{(z_i - z_j)(z_j - z_k)(z_k - z_i)}{\overline{z_i}(z_j - z_k) + \overline{z_j}(z_k - z_i) + \overline{z_k}(z_i - z_j)} \right|.
$$
\n(3.2)

(see [6] or [7]). Discard all circles that may capture the origin, i.e. $|c_{i,j,k}| \le R_{i,j,k}$, and, from the remaining ones all those that do not capture all the other vertices, i[.e.](#page-13-0)

$$
(R_{i,j,k} < |c_{i,j,k}| \text{ and}) \quad \exists m \in I \setminus \{i,j,k\} \text{ such that } R_{i,j,k} < |c_{i,j,k} - z_m|.
$$

From the re[s](#page-13-0)[t](#page-13-0) the one that corresponds to the smallest ratio $\frac{R_{i,j,k}}{(OK_{i,j,k})}$, let the associated vertices be $P_{\bar{i}}$ *,* $P_{\bar{j}}$ *,* $P_{\bar{k}}$ *,* is the *three-point optimal cc* $\mathscr{C}^*_{\bar{i},\bar{j},\bar{k}}$ of \mathscr{H} *.*

4. Uniqueness of the optimal capturing circle

In this section, we give a complete theoretical proof of the uniqueness of the optimal *cc* of $\mathcal H$ which is not quite mathematically satisfactory as is presented in [6]. For this we will need the classical Theorem of the *Apollonius circle* and one of its corollaries.

Theorem 4.1 (Apollonius Theorem [3]). *The locus of the points M of a plane whose distances from two fixed points A and B of the same plane are at a constant ratio* $\frac{(MA)}{(MB)} = \lambda \neq 1$ *is a circle whose diameter has endpoints C and D that lie on the straight-line AB and separate internally and externally the straight-line segment AB into the same ratio λ, namely*

$$
\frac{(CA)}{(CB)} = \frac{(DA)}{(DB)} = \lambda.
$$
\n(4.1)

[C](#page-8-0)orollary 4.1. *Under the assumptions of the Apollonius Theorem* 4.1*, any point M strictly inside the Apollonius circle has distances from A and B whose ratio is strictly less than λ while any M strictly outside has distances with ratio strictly greater than λ. Specifically,*

$$
\frac{(M'A)}{(M'B)} < \lambda, \quad \frac{(M''A)}{(M''B)} > \lambda. \tag{4.2}
$$

Theorem 4.2. *Under the assumptions of Theorem 2.4 the optimal cc of* \mathcal{H} *is unique.*

Proof. Let that there exist two *optimal cc*'s \mathscr{C}_i , with centers $K_i(c_i)$ and radii R_i , $i = 1, 2$ (see Fig. 2). Since both circles are *optimal* cc's of \mathcal{H}, \mathcal{H} lies in both of them. Hence \mathcal{C}_1 and \mathcal{C}_2 intersect each other, say at *A* and *B*. Let $\mathscr S$ be their closed common region defined by the arc \overrightarrow{AB} of $\mathscr C_1$ lying in $\mathscr C_2$ and by \overrightarrow{AB} of \mathcal{C}_2 lying in \mathcal{C}_1 . \mathcal{H} must have at least two vertices on each arc not excluding the case

 3 If there exists a *two-point optimal cc* of H it will correspond to the maximal ratio above. So, the previous known part of the Algorithm [6,7] is improved. The proof of our claim is given in the Appendix.

that two vertices, one from each arc, coincide at *A* and/or *B*. Let M_1 and M_2 be the intersections of the straight-line K_1K_2 with the arcs $\stackrel{\frown}{AB}$ so that $(K_iM_i)=R_i$, $i=1,2$. The optimality condition of the two circles gives $\frac{R_1}{|c_1|} = \frac{R_2}{|c_2|} = \lambda$ (<1) or, equivalently, $\frac{(K_1A)}{(K_1O)} = \frac{(K_2A)}{(K_2O)} = \lambda$. Hence, the points K_1 and K_2 must lie on the *Apollonius circle* $\mathcal{C}_{\mathcal{A}}$ whose diameter has endpoints *C* and *D* that separate the straight-line segment *OA*, internally and externally, at the same ratio *λ*, namely $\frac{(CA)}{(CO)} = \frac{(DA)}{(DO)} = \lambda$. For any point *K* strictly in the interior of the straight-line segment K_1K_2 it will be

$$
(K_1K) + (KA) > R_1 = (K_1K) + (KM_1) \Leftrightarrow (KA) > (KM_1),
$$

$$
(K_2K) + (KA) > R_2 = (K_2K) + (KM_2) \Leftrightarrow (KA) > (KM_2).
$$

These inequalities show that the circle with center *K* and radius (KA) captures \mathscr{S} , and therefore, \mathcal{H} . Also, the point *K* [as](#page-13-0) lying strictly between K_1 and K_2 lies strictly in the interior [of t](#page-13-0)he *Apollo[nius](#page-13-0)* ci[rcle](#page-13-0) $\mathcal{C}_{\mathcal{A}}$ which, by Corollary 4.1, implies that $\frac{(KA)}{(KO)} < \lambda$. However, this constitutes a contradiction because we have just found a circle that captures \mathcal{H} and has a *v.a.* ϕ (sin ($\frac{\phi}{2}$ $=$ $\frac{(KA)}{(KO)} < \lambda$ strictly less than that of the two *optimal cc*'s \mathcal{C}_1 and \mathcal{C}_2 . \square

5. Linear systems with indefinite coefficient matrix

5.1. Introduction

In a recent paper Bai et al. [2] introduced an *alternating direction implicit (ADI)*-type method [13] (see also [14] or [15]) using *Hermitian*/*Skew-Hermitian splittings*for the solution of complex linear algebraic systems with matrix coefficient (positive) definite.

Specifically, let the linear system

$$
Ax = b, \quad A \in \mathbb{C}^{n,n}, \ \det(A) \neq 0, \ b \in \mathbb{C}^n
$$
\n
$$
(5.1)
$$

with *A positive definite*, namely $\text{Re}(z^H Az) > 0 \,\forall z \in \mathbb{C}^n \setminus \{0\}$. Consider the splitting

$$
A = B + C \quad \text{where } B = \frac{1}{2}(A + A^H), \quad C = \frac{1}{2}(A - A^H). \tag{5.2}
$$

In (5.2), *B* is *Hermitian positive definite* and *C* is *Skew-Hermitian*. For the solution of (5.1) the following *ADI*-type method is adopted:

$$
(rI + B)x^{(m+\frac{1}{2})} = (rI - C)x^{(m)} + b,
$$

\n
$$
(rI + C)x^{(m+1)} = (rI - B)x^{(m+\frac{1}{2})} + b, \quad m = 0, 1, 2, ...,
$$
\n(5.3)

where *r* is a positive *acceleration* parameter, *I* the unit matrix of order *n* and $x^{(0)} \in \mathbb{C}^n$ any initial approximation to the solution. Since *B* is Hermitian with positive eigenvalues and *C* Skew-Hermitian with purely imaginary eigenvalues, the operators $rI + B$ and $rI + C$ are invertible and so eliminating *x* $\left(m+\frac{1}{2}\right)$ from Eq. (5.3) we obtain the iterative scheme

$$
x^{(m+1)} = T_r x^{(m)} + c_r, \quad m = 0, 1, 2, \dots,
$$
\n(5.4)

where

$$
T_r = (rI + C)^{-1}(rI - B)(rI + B)^{-1}(rI - C), \quad c_r = 2r(rI + C)^{-1}(rI + B)^{-1}.
$$
\n(5.5)

Fig. 2. The case of existence of two *optimal cc*'s.

Note that the matrices T_r and $\tilde{T}_r = (rI - B)(rI + B)^{-1}(rI - C)(rI + C)^{-1}$ are similar. So, $\rho(T_r) = \rho(\widetilde{T}_r) \leq \|\widetilde{T}_r\|_2 \leq \|(rI - B)(rI + B)^{-1}\|_2 \|(rI - C)(rI + C)^{-1}\|_2.$ (5.6)

Since *C* is Skew-Symmetric ($C^H = -C$) we have

$$
\begin{aligned} ||(rI - C)(rI + C)^{-1}||_2 &= \rho^{\frac{1}{2}}((rI + C)^{-H}(rI - C)^{H}(rI - C)(rI + C)^{-1}) \\ &= \rho^{\frac{1}{2}}((rI - C)^{-1}(rI + C)(rI - C)(rI + C)^{-1}) \\ &= \rho^{\frac{1}{2}}((rI - C)^{-1}(rI - C)(rI + C)(rI + C)^{-1}) \\ &= \rho^{\frac{1}{2}}(I) = 1. \end{aligned} \tag{5.7}
$$

Consequently, in view of (5.6) and (5.7), to obtain the "best" iterative scheme (5.3) [w](#page-13-0)e have to [minimize](#page-13-0) the bound $\|(rI - B)(rI + B)^{-1}\|_2$ of the spectral r[ad](#page-5-0)ius $\rho(T_r)$ (or $\rho(\tilde{T}_r)$). Recall that $(rI - B)(rI + B)^{-1}$ is Hermitian, and therefore,

$$
\|(rI - B)(rI + B)^{-1}\|_{2} = \rho((rI - B)(rI + B)^{-1})
$$

=
$$
\max_{b \in \sigma(B)} \left| \frac{r - b}{r + b} \right| = \max_{b \in \sigma(B)} \left| \frac{1 - \frac{1}{r}b}{1 + \frac{1}{r}b} \right|.
$$
 (5.8)

Let $b \in [b_1, b_2]$, where b_1 is a positive lower bound of $\sigma(B)$ and b_2 an upper bound. The minimum value of the right-hand side of (5.8) is attained at $r = r^* = \sqrt{b_1 b_2}$, as was found in [2] (see also [8,14,15]), and can also be found by the Algorithm of Section 3.

Fig. 3. The rectangles \Re and $e^{-i\theta} \Re (\Re', \Re'', \Re'')$.

5.2. Cases of indefinite matrix coefficient

The preceding analysis shows how to solve a complex linear system by the *ADI*-type method using the Hermitian/Skew-Hermitian splitting when the matrix coefficient *A* is *definite*. In what follows we show [that](#page-7-0) there are cases where even if *A* is *indefinite* we can apply the previous [meth](#page-7-0)od after a scalar preco[nditi](#page-7-0)oning of the original system (5.1) (and of *A*).

Suppose that $\sigma(A) \subset \mathcal{R}$, where \mathcal{R} is a rectangle, with vertices $A_1(\beta_1, \gamma_1), A_2(\beta_2, \gamma_2), A_3(\beta_3, \gamma_3)$, *A*4*(β*4*, γ*4*)* and with their coordinates satisfying

$$
\beta_1 \le 0 \le \beta_2, |\beta_1| + |\beta_2| > 0, \ \beta_3 = \beta_2, \ \beta_4 = \beta_1
$$
 and
\n $0 < \gamma_1 < \gamma_4, \ \gamma_1 = \gamma_2, \ \gamma_3 = \gamma_4.$ (5.9)

(*Note*: The case, of having $\sigma(A) \subset \mathcal{R}$ symmetric to \mathcal{R} *wrt* the origin, is examined in an analogous way.) In (5.9), β_1 , β_2 are the lower and upper bounds of $\sigma(B)$ and $\iota\gamma_1$, $\iota\gamma_4$, the purely imaginary ones of $\sigma(C)$ in (5.2). The rectangle \Re is illustrated in Fig. 3. To apply the *ADI*-type method (5.3) to the original system (5.1) we multiply both members of the system by $e^{-i\theta}$, $\theta > 0$, so that the new coefficient matrix $e^{-i\theta}A$ becomes *positive definite*. The angle θ takes values so that the projection of $e^{-i\theta}$ *R* onto the real axis is on the *positive* real semiaxis. Let r_i , ϕ_i , $i = 1, ..., 4$, be the *polar radii* and the *polar angles* of the corresponding vertices of \Re . It will be

$$
r_i = \sqrt{\beta_i^2 + \gamma_i^2}, \quad \phi_i = \arccos\left(\frac{\beta_i}{r_i}\right), \quad i = 1, \dots, 4.
$$

The projection of e^{−*i*θ} \Re onto the real axis is defined by those of the "new positions" of the diagonal *A*₁*A*₃, for $\theta \in (\phi_1 - \frac{\pi}{2}, \frac{\pi}{2}]$ $\theta \in (\phi_1 - \frac{\pi}{2}, \frac{\pi}{2}]$ $\theta \in (\phi_1 - \frac{\pi}{2}, \frac{\pi}{2}]$, and b[y](#page-5-0) the corresponding ones of *A*₂*A*₄ for $\theta \in [\frac{\pi}{2}, \phi_2 + \frac{\pi}{2})$. The endpoints of these projections are

$$
b_1(\theta) = r_1 \cos(\phi_1 - \theta), \ b_2(\theta) = r_3 \cos(\phi_3 - \theta) \quad \text{for } \theta \in \left(\phi_1 - \frac{\pi}{2}, \frac{\pi}{2}\right],
$$

$$
b_1(\theta) = r_2 \cos(\phi_2 - \theta), \ b_2(\theta) = r_4 \cos(\phi_4 - \theta) \quad \text{for } \theta \in \left[\frac{\pi}{2}, \phi_2 + \frac{\pi}{2}\right).
$$
 (5.11)

Note that at $\theta = \frac{\pi}{2}$ we have

$$
r_1 \cos \left(\phi_1 - \frac{\pi}{2}\right) = r_2 \cos \left(\phi_2 - \frac{\pi}{2}\right)
$$
 and $r_3 \cos \left(\phi_3 - \frac{\pi}{2}\right) = r_4 \cos \left(\phi_4 - \frac{\pi}{2}\right)$. (5.12)

We follow the Algorithm of Section 3, with \mathcal{H} being the positive real line segment $[b_1(\theta), b_2(\theta)]$. Therefore, the center *K*(*c*) and the radius *R* of the *optimal cc* are given by $c = \frac{1}{2}(b_1(\theta) + b_2(\theta))$ and $R = \frac{1}{2}(b_2(\theta) - b_1(\theta))$, which are functions of $\theta \in (\phi_1 - \frac{\pi}{2}, \phi_2 + \frac{\pi}{2})$. Consequently, to find the *best optimal cc* we have to minimize $\frac{R}{c}$ given by

$$
\frac{R}{c} = \frac{b_2(\theta) - b_1(\theta)}{b_2(\theta) + b_1(\theta)} = \begin{cases} \frac{r_3 \cos(\phi_3 - \theta) - r_1 \cos(\phi_1 - \theta)}{r_3 \cos(\phi_3 - \theta) + r_1 \cos(\phi_1 - \theta)} & \text{for } \theta \in (\phi_1 - \frac{\pi}{2}, \frac{\pi}{2}],\\ \frac{r_4 \cos(\phi_4 - \theta) - r_2 \cos(\phi_2 - \theta)}{r_4 \cos(\phi_4 - \theta) + r_2 \cos(\phi_2 - \theta)} & \text{for } \theta \in (\frac{\pi}{2}, \phi_2 + \frac{\pi}{2}). \end{cases}
$$
(5.13)

Differentiating the first ratio in the right-hand side above we obtain

$$
\frac{\mathrm{d}\left(\frac{r_3\cos(\phi_3-\theta)-r_1\cos(\phi_1-\theta)}{r_3\cos(\phi_3-\theta)+r_1\cos(\phi_1-\theta)}\right)}{\mathrm{d}\theta}=\frac{2r_1r_3\sin(\phi_3-\phi_1)}{(r_3\cos(\phi_3-\theta)+r_1\cos(\phi_1-\theta))^2}<0,
$$

so, the minimum is attained at $\theta = \frac{\pi}{2}$. Similarly, working with the other expression for $\frac{R}{c}$ we find out that its derivative is positive and so its minimum is assumed again at $\theta = \frac{\pi}{2}$.

Note that $e^{-i\frac{\pi}{2}} = -i$, so the scalar preconditioner of *A* is $-i$ and the matrices $-iB$ and $-iC$ in (5.2) are now Skew-Hermitian and Hermitian, respectively.

In either case the "best" value of the acceleration para[mete](#page-9-0)r $r = r^*$ is given by

$$
r^* = \sqrt{\beta_1 \left(\frac{\pi}{2}\right) \beta_2 \left(\frac{\pi}{2}\right)} = \sqrt{r_1 r_3 \sin \phi_1 \sin \phi_3} = \sqrt{\gamma_1 \gamma_3}
$$

= $\sqrt{r_2 r_4 \sin \phi_2 \sin \phi_4} = \sqrt{\gamma_2 \gamma_4}$. (5.14)

5.3. Special cases of in[defi](#page-8-0)nite [matri](#page-8-0)x coefficient

As a first special case let us consider the one where in (5.9) we have for the γ_i 's that

$$
\gamma_1 = \gamma_2 = \gamma_3 = \gamma_4 > 0. \tag{5.15}
$$

So, the rectangle \Re reduces to a straight-line segment parallel to the real axis and intersecting the "positive" imaginary axis. Applying the theory of the previous paragraph we find that

$$
b_2\left(\frac{\pi}{2}\right) = b_1\left(\frac{\pi}{2}\right), \quad r^* = \gamma_1
$$

implying, from (5.13), (5.8) and (5.6), that $\rho(T_{r^*}) = 0!$

As a second special case we consider the one where again the rectangle $\mathcal R$ is restricted to a straight-line segment lying on the "positive" imaginary axis. Then, relations (5.9) become

$$
\beta_1 = \beta_2 = \beta_3 = \beta_4 = 0, \quad 0 < \gamma_1 = \gamma_2 < \gamma_3 = \gamma_4. \tag{5.16}
$$

In view of (5.16) , from (5.10) we have that

$$
r_1 = r_2 = \gamma_1
$$
, $r_3 = r_4 = \gamma_3$, $\phi_1 = \phi_2 = \phi_3 = \phi_4 = \frac{\pi}{2}$.

So, relations (5.13) give that

$$
\frac{R}{c} = \frac{b_2(\theta) - b_1(\theta)}{b_2(\theta) + b_1(\theta)} = \frac{r_3 \cos(\frac{\pi}{2} - \theta) - r_1 \cos(\frac{\pi}{2} - \theta)}{r_3 \cos(\frac{\pi}{2} - \theta) + r_1 \cos(\frac{\pi}{2} - \theta)} = \frac{\gamma_3 - \gamma_1}{\gamma_3 + \gamma_1} \quad \forall \theta \in (0, \pi), \quad (5.17)
$$

that is th[e](#page-13-0) [ra](#page-13-0)tio $\frac{R}{c}$ is independent of $\theta \in (0, \pi)$! Therefore

$$
r^* = \sqrt{\gamma_1 \gamma_3} = \sqrt{\gamma_2 \gamma_4} \quad \forall \theta \in (0, \pi).
$$

6. Concluding remarks

We close our work with a number of points:

- (i) In case \mathcal{H} is not a convex polygon but an ellipse \mathcal{E} , provided $O \notin \mathcal{E}$, a case studied [expl](#page-2-0)icitly in [12] for classical extrapolation, the *optimal cc* determined there is the same as the one [in](#page-13-0) [our](#page-13-0) [case](#page-13-0). It is understood, howeve[r,](#page-13-0) [t](#page-13-0)hat the values of the *optimal parameters* ω^* and ρ^* are found by the formulas in (2.9).
- (ii) *Optimal cc*'s and then corresponding *optimal* ω 's and ρ 's can be found for a convex region $(O \notin \mathcal{G}$ capturing $\sigma(A)$, when \mathcal{G} is a section, a sector or a zone of a circle or of an ellipse, by combining the idea in (i) with ours in [8] and in the present work.
- (iii) In case $\mathcal H$ (or $\mathcal E$ or $\mathcal S$) is symmetric *wrt* the positive (negative) real semiaxis (as, e.g., when $A \in \mathbb{R}^{n,n}$ is *positive (negative) stable)* then, it is obvious that the *one-, two- or three-point optimal cc*, \mathscr{C}^* , will have center *c* on the positive (negative) real semiaxis. By (2.7), it is implied th[a](#page-5-0)t ω^* will be positive (negative) real and a simplified Algorithm, in fact that in [10,11,6,7] and especially the one in [8], to [det](#page-13-0)ermi[ne](#page-13-0) the *optimal* cc of \mathcal{H} , etc. can be used.
- (iv) In case an *optimal real extrapolation [pa](#page-13-0)rameter* ω is desired, this is possible *iff* \mathcal{H} (or \mathcal{E} or \mathcal{S}) lies strictly to the right (left) of the imaginary axis. Then, we consider as the *convex hull* to work with, the *convex hull* of the union of $\mathcal{H} \cup \mathcal{H}'$ (or $\mathcal{E} \cup \mathcal{E}'$ or $\mathcal{S} \cup \mathcal{S}'$), where \mathcal{H}' , [et](#page-5-0)c. is the symmetric of \mathcal{H} , etc. *wrt* the real axis, and we go on as in (iii) above.

Appendix A. Two-Point Optimal cc of \mathcal{H} and Maximal v.a.

The first part of Step 4 of the Algorithm of Section 3 constitutes a major improvement over the corresponding part of the Algorithm presented in [6] (or [7]). To prove our claim in the associated footnote, a statement given as a theorem i[n](#page-13-0) [6] is needed. Specifically:

Lemma A.1. *Under the notation and assumptions in the beginning and in Step* 1 *of the Algorithm of Section* 3, *suppose that* \mathcal{H} *is the straight-line segment* P_1P_2 *. Let the optimal cc of* \mathcal{H} *have center K*[∗] 1*,*2*. K*[∗] ¹*,*² *is defined as the unique point of contact of two Apollonius circles. The points of these circles have distances from P*¹ *and O and from P*² *and O with ratio equal to the minimal ratio of the distances of the points of the perpendicular bisector to P*1*P*² *from the aforementioned pairs of points.*

Proof. For the proof see the Theorem in [6]. \Box

Fig. 4. Three characteristic pairs of *Apollonius circles* $\mathcal{C}_{\mathcal{A}_i}$, $i = 1, \ldots, 6$, are illustrated [that s](#page-6-0)hare a common *two-point optimal cc* \mathscr{C}^* of \mathscr{H} .

Theorem A.1. *Under the main assumptions of Lemma* A.1, *let* \mathcal{H} *have vertices* P_i , $i = 1, ..., l$, $l \geq 3$ *. Then, if the optimal cc of* $\mathcal H$ *is determined by an optimal two-point cc it will be the unique one that corresponds to the maximum ratio* $\frac{R_{i,j}}{c_{i,j}j}$, $i = 1, ..., l - 1$, $j = i + 1, ..., l$, or, *equivalently, to the* $\mathcal{C}_{i,j}$ *corresponding to the maximum v.a.*

Proof. Consider all *l Apollonius circles* whose diameters have endpoints that divide internally and externally the straight-line segments OP_i , $i = 1, \ldots, l$, into two parts whose ratio of distances from P_i and O is $\lambda < 1$. As is known, from the Apollonius Theorem 4.1, every point on each of these *l* circles has distances from P_i and *O* that share the common ratio λ . Assume that λ varies increasing continuously in [0, 1). For $\lambda = 0$, all *l Apollonius circles* are nothing but the points P_i . Increasing λ from the value 0, the two *Apollonius circles* of each pair, out of the $\binom{l}{2}$ ones, first will come into contact with each other for some value of λ , in general different for each pair, and then will intersect each other. Let \bar{i} and \bar{j} be the indices, $\bar{i} \in I$, $\bar{j} \in I \setminus {\bar{i}}$, of the vertices of *H* that define the pair of the *Apollonius circles* whose point of contact $K^*_{\bar{i},\bar{j}}(c^*_{\bar{i},\bar{j}})$ corresponds to the maximum value of $\lambda = \lambda^*$. We claim that the circle with center $K^*_{\overline{i},\overline{j}}$ and radius $R_{\bar{i},\bar{j}}^* = (K_{\bar{i},\bar{j}}^* P_{\bar{i}}) = (K_{\bar{i},\bar{j}}^* P_{\bar{j}})$, satisfying

$$
\lambda^* = \frac{R_{\overline{i},\overline{j}}^*}{|c_{\overline{i},\overline{j}}^*|} \geqslant \frac{R_{i,j}}{|c_{i,j}|} \quad \forall i, j \in I \setminus {\{\overline{i}, \overline{j}\}},
$$
\n(A.1)

is the *optimal cc* of \mathcal{H} . Suppose there exists at least one of the *Apollonius circles* with $\lambda = \lambda^*$ corresponding to an index $i \in I\setminus\{\overline{i}, \overline{j}\}$ that leaves $K^*_{\overline{i}, \overline{j}}$ strictly outside it. The fact that all the *two-point optimal cc*'s have been exhausted and **no** *two-point optimal cc* of \mathcal{H} has been found

contradicts our main assumption that the *optimal* cc of \mathcal{H} is a *two-point optimal* one. That the *two-point optimal cc* $\mathscr{C}_{\overline{i},\overline{j}}^*$ corresponds to the largest *v.a.* comes from (2.10). \Box

Remark A.1. It is possible to have more than one pair of *Apollonius circles* that share the point of contact $K^*_{\bar{i},\bar{j}}$ of Theorem A.1. In fact there can be as many as $\left[\frac{l}{2}\right]$ pairs, where the symbol [·] denotes integral part. However, all of these possible pairs will share the unique *two-point optimal* cc of \mathscr{H} .

Referring to Remark A.1, in Fig. 4 three such pairs of *Apollonius circles* are shown corresponding to the pairs of points (P_1, P_2) , (P_3, P_4) and (P_5, P_6) . If the vertices of \mathcal{H} are $l > 6$, the points P_i , $i = 7, \ldots, l$, are supposed to be captured by the common *two-point optimal* $cc \mathcal{C}^* \equiv \mathcal{C}^*_{1,2}$ $\mathscr{C}_{3,4}^* \equiv \mathscr{C}_{5,6}^*$, whose center is $K^* \equiv K_{1,2}^* \equiv K_{3,4}^* \equiv K_{5,6}^*$ and radius $R^* = (K^* P_1) = (K^* P_2) =$ $(K^*P_3) = (K^*P_4) = (K^*P_5) = (K^*P_6)$, and **not** any two of them $P_i, P_j, i \neq j = 7, ..., l$, define a *two-point optimal cc* of \mathcal{H} .

References

- [1] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, Applied Mathematics Series, vol. 55, National Bureau of Standards, United States Department of Commerce, 1964.
- [2] Z.-Z. Bai, G.H. Golub, M. Ng, Hermitian and Skew-Hermitian splitting methods for non-Hermitian positive definite linear systems, SIAM J. Matrix Anal. Appl. 24 (2003) 603–626.
- [3] H.S.M. Coxeter, Introduction to Geometry, Wiley Classics Library, John Wiley & Sons, New York, 1989.
- [4] S.M. Fallatt, M.J. Tsatsomeros, On the Cayley transform of positivity classes of matrices, Electron. J. Linear Algebra 9 (2002) 190–196.
- [5] A. Hadjidimos, The optimal solution of the extrapolation problem of a first order scheme, Int. J. Comput. Math. 13 (1983) 153–168.
- [6] A. Hadjidimos, The optimal solution to the problem of complex extrapolation of a first order scheme, Linear Algebra Appl. 62 (1984) 241–261.
- [7] A. Hadjidimos, On the equivalence of extrapolation and Richardson's iteration and its applications, Linear Algebra Appl. 402 (2005) 165–192.
- [8] A. Hadjidimos, M. Tzoumas, The principle of extrapolation and the Cayley transform, Linear Algebra Appl. 429 (10) (2008) 2465–2480.
- [9] E. Hille, Analytic Function Theory, 4th Printing, Blaisdel, New York, 1965.
- [10] A.J. Hughes Hallett, Some extensions and comparisons in the theory of Gauss–Seidel iterative technique for solving large equation systems, in: E.G. Charatsis (Ed.), Proceedings of the Econometric Society European Meeting 1979, North-Holland, Amsterdam, 1981, pp. 279–318.
- [11] A.J. Hughes Hallett, Alternative techniques for solving systems of nonlinear equations, J. Comput. Appl. Math. 8 (1982) 35–48.
- [12] G. Opfer, G. Schober, Richardson's iteration for nonsymmetric matrices, Linear Algebra Appl. 58 (1984) 343–361.
- [13] D.W. Peaceman, H.H. Rachford Jr., The numerical solution of parabolic and elliptic differential equations, SIAM J. Appl. Math. 3 (1955) 28–41.
- [14] R.S. Varga, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, NJ, 1962 (Also: second ed., Revised and Expanded, Springer, Berlin, 2000).
- [15] D.M. Young, Iterative Solution of Large Linear Systems, Academic Press, New York, 1971.