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The AllDifferent constraint is a crucial component of any constraint toolkit, language or
solver, since it is very widely used in a variety of constraint models. The literature contains
many different versions of this constraint, which trade strength of inference against
computational cost. In this paper, we focus on the highest strength of inference, enforcing a
property known as generalised arc consistency (GAC). This work is an analytical survey of
optimizations of the main algorithm for GAC for the AllDifferent constraint. We evaluate
empirically a number of key techniques from the literature. We also report important
implementation details of those techniques, which have often not been described in
published papers. We pay particular attention to improving incrementality by exploiting
the strongly-connected components discovered during the standard propagation process,
since this has not been detailed before. Our empirical work represents by far the most
extensive set of experiments on variants of GAC algorithms for AllDifferent. Overall, the
best combination of optimizations gives a mean speedup of 168 times over the same
implementation without the optimizations.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Constraints are a powerful and natural means of knowledge representation and inference in many areas of industry and
academia. Consider, for example, the production of a university timetable. This problem’s constraints include: the maths
lecture theatre has a capacity of 100 students; art history lectures require a venue with a slide projector; no student can
attend two lectures simultaneously. Constraint solving of a combinatorial problem proceeds in two phases. First, the problem
is modelled as a set of decision variables, and a set of constraints on those variables that a solution must satisfy. A decision
variable represents a choice that must be made in order to solve the problem. The domain of potential values associated with
each decision variable corresponds to the options for that choice. In our example one might have two decision variables per
lecture, representing the time and the venue. For each class of students, the time variables of the lectures they attend may
have an AllDifferent constraint on them to ensure that the class is not timetabled to be in two places at once. The second
phase consists of using a constraint solver to search for solutions: assignments of values to decision variables satisfying all
constraints. The simplicity and generality of this approach is fundamental to the successful application of constraint solving
to a wide variety of disciplines such as scheduling, industrial design and combinatorial mathematics [29].

The AllDifferent constraint expresses that a vector of variables take distinct values. It is a crucial component of any
constraint system, since it is very widely used in a variety of constraint models, for diverse problems such as quasigroup
construction and completion, sports scheduling, timetabling and golomb ruler construction. The literature contains many
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different versions of this constraint, which trade strength of inference against computational cost. Indeed, choosing an
appropriate level of consistency is sometimes vital to solving a CSP efficiently [26]. Van Hoeve surveys various strengths of
inference [28], including the weak and fast pairwise decomposition described in Section 6.1.2, bound and range consistency,
and generalised arc consistency (GAC). The classic GAC algorithm for the AllDifferent constraint is given by Régin [21]. In
this paper, we focus on the highest strength of inference (enforcing GAC). Limiting ourselves to GAC allows us to study
various optimizations in great depth, but does mean that the scope of the paper does not include optimizations of bounds
and range consistency algorithms.

This work is an analytical survey of optimizations of the main algorithm for generalised arc consistency (GAC) for the
AllDifferent constraint. While based on a survey of published optimizations, we extend the literature in three ways. First, we
provide extensive implementation details of the optimizations we cover. Such details are often omitted from initial publica-
tions, for example for reasons of space. Providing such details should save future workers from having to reinvent the wheel.
Second, we provide extensive empirical analyses to show the value or otherwise of the techniques we survey. Importantly,
we are able to evaluate optimizations in combination with each other. Third, we go into particular detail on techniques
which have not been described in the literature before, and some new techniques we introduce here. In the former cate-
gory, we show how to explore incrementality in strongly connected components during search. In the latter category, we
introduce methods for reducing the number of necessary propagations using dynamic triggers, and an optimization for the
case where variables are assigned.

In Section 2 of this paper, we review key background material, present Régin’s algorithm at a high level, and survey
optimizations for it that have been proposed in the literature. We discuss incremental matching, domain counting, the
use of a priority queue, staged propagation, processing strongly connected components independently, important edges,
advisors, and fixpoint reasoning. In Section 3 we give implementation details for the algorithm. The detailed survey of key
implementation issues is one of the contributions of this paper.

In Section 4, we give extensive details of how to exploit strongly connected components (SCCs) to improve efficiency in
AllDifferent propagation. In Régin’s algorithm, we find a set of SCCs in a graph formed from allowed values and a matching
between variables and values. Edges between distinct SCCs represent impossible values. As we move down a branch in the
search tree, an SCC can only remain the same or split into new SCCs. Thus, when we remove a variable–value pair, we
need only study the individual SCC which contained the deleted variable–value pair. Since this may contain only a small
fraction of all the variables in the original constraint, we can greatly reduce the amount of work that this incremental
propagation requires. This paper presents this technique in detail for the first time, since it has previously been in the
folklore rather than the literature. We show empirically that this is a very valuable optimization in Section 6. We also give
a further, minor, optimization to the computation of SCCs, for the common case that we have assigned a variable to a
value.

In Section 5, we show how to exploit “dynamic triggers” for GAC AllDifferent. In a standard algorithm we have to do some
work when any value is deleted. Katriel proved that there is a small set of variable–value pairs such that no propagation is
possible if any other value is deleted [16] and gave a probabilistic algorithm to exploit the idea. We extend this idea to a
technique which maintains GAC deterministically, while reducing the number of times the propagator is called. This can be
implemented in Minion using dynamic triggers [10]. We show in fact marginally better performance on a version where we
implement dynamic triggers internally within the AllDifferent propagator. This has the added advantage that it is portable
to solvers which do not have a dynamic trigger infrastructure. We give full details in Section 5 with experimental results in
Section 6.4. We conclude that the technique is of benefit mainly where GAC AllDifferent performs badly, so it may not be
generally useful.

Our empirical work in Section 6 represents by far the most extensive set of experiments on variants of GAC algorithms
for AllDifferent. We implement most (although not all) of the optimizations we have surveyed. Implementations are based
on the state-of-the-art Minion constraint solver [9]. Our comparisons are never with a straw-man implementation, as all
techniques use the same implementation except for the addition of optimizations or the replacement of one technique
with another. Our results make a number of points. In some cases, we confirm standard advice from the literature on
how to implement GAC AllDifferent. We show in Section 6.3 that incremental matching can reduce runtime, and that as
an expensive constraint the AllDifferent constraint should be propagated in a separate queue after cheaper constraints.
Also, we show that it is worthwhile to combine the GAC AllDifferent algorithm and a cheaper algorithm into a hybrid
staged propagator. Against existing advice from the literature, we show that a simpler matching algorithm can be more
effective than a more complex one. And, although not reported in the literature before, we show that exploiting strongly
connected components is particularly beneficial, with an average speedup of about 3 times. We summarise our advice to
future implementers in Section 7.

Compared with a vanilla implementation of Régin’s algorithm, our best combination of techniques is always better than
not using them, and can speedup search by thousands of times. We get a mean speedup of 168 times over the vanilla
implementation. We hope that our survey will help other implementers to obtain these speedups in their systems, and
stimulate researchers to invent even more effective optimizations.
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Fig. 2.1. Examples of graphs.

2. Background

2.1. Preliminaries

A CSP P = 〈X , D, C〉 is defined as a set of n variables X = 〈x1, . . . , xn〉, a set of domains D = 〈D1, . . . , Dn〉 where Di � Z,
|Di | < ∞ is the finite set of all potential values of xi , and a conjunction C = C1 ∧ C2 ∧ · · · ∧ Ce of constraints.

Within CSP P = 〈X , D, C〉, a constraint Ck ∈ C consists of a sequence of r > 0 variables Xk = 〈xk1 , . . . , xkr 〉 with respective
domains Dk = 〈Dk1 , . . . , Dkr 〉 s.t. Xk is a subsequence1 of X , Dk is a subsequence of D, and each variable xki and domain
Dki matches a variable x j and domain D j in P . Ck has an associated set C S

k ⊆ Dk1 × · · · × Dkr of tuples which specify
allowed combinations of values for the variables in Xk .

Although we define a constraint Ck to have scope 〈xk1 , . . . , xkr 〉, when discussing a particular constraint we frequently
omit the k subscript, and refer to the variables as 〈x1, . . . , xr〉, and to the domains as 〈D1, . . . , Dr〉.

An AllDifferent constraint is a constraint Ck of any arity, where C S
k contains all tuples where the values are all distinct.

Throughout, we use r as the arity of the AllDifferent constraint in question. We use d to represent the number of domain
values involved in the constraint: d = |D1 ∪ · · · ∪ Dr |.

A literal is defined as a variable–value pair, xi 
→ j such that xi ∈ X and j ∈ Z. To prune a literal is to remove the value
j from the domain Di . In the context of a constraint Ck , we refer to a tuple τ of values as being acceptable iff τ ∈ C S

k , and
valid iff |τ | = r and ∀ j : τ [ j] ∈ Dk j (i.e. each value in the tuple is in its respective domain).

Graph theory
Régin’s AllDifferent algorithm [21] makes use of results from graph theory, in particular maximum bipartite matching [3]

and strongly connected components [27].
We consider bipartite graphs and digraphs. A bipartite graph G = 〈V , E〉 is defined as a set of vertices V and a set of

edges E ⊆ V × V , where the edges are interpreted as having no direction, there are no duplicate edges, and the vertices
can be partitioned into two sets V 1 and V 2 such that no two elements in the same set are adjacent. Fig. 2.1(a) shows an
example of a bipartite graph, where V 1 = {1,2,3} and V 2 = {4,5,6}.

A matching of a bipartite graph is a set of edges M ⊆ E such that no two edges connect to the same vertex. Fig. 2.1(b)
shows an example of a matching of cardinality two, where the bold, dotted edges are in the matching. A maximum matching
(also called a maximum cardinality matching) is a matching with the maximum cardinality. Fig. 2.1(c) shows a maximum
matching for the example bipartite graph. In this case, the maximum matching is unique. There are many algorithms which
can compute a maximum matching in a bipartite graph, for example Hopcroft–Karp [14] and Ford–Fulkerson [6].

A digraph is also a pair G = 〈V , E〉 of a set of vertices V , and a set of edges E ⊆ V × V . Edges are interpreted as having
direction. Fig. 2.1(d) shows an example of a digraph. A strongly connected component (SCC) is a maximal set of vertices of a
digraph with the property that there is a path from any vertex to any other in the set. It follows that there are cycles within

1 We use subsequence in the sense that 〈1,3〉 is a subsequence of 〈1,2,3,4〉.
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the SCCs, and no cycles with edges between SCCs. The set of SCCs forms a partition of the vertices of the digraph. Tarjan’s
algorithm can be used to efficiently compute the SCCs of any digraph in linear time [27]. For Fig. 2.1(d), the three SCCs are
{1,2,4,5}, {3} and {6}, as shown in Fig. 2.1(e).

2.2. Régin and Costa’s algorithm

As pointed out by Knuth and Raghunathan [18], it is well known that the problem of finding a system of “distinct
representatives” is equivalent to bipartite matching. In the context of constraint solving, Régin [21] exploited this equivalence
to construct the classic GAC algorithm for the AllDifferent constraint. A very similar algorithm was published by Costa [7]
simultaneously. Régin’s algorithm has a better time bound. From here on, we will only consider Régin’s algorithm.

The algorithm uses results from graph theory, in particular a theorem by Berge [3] (Ch. 7, page 125), in an algorithm
with two major stages: finding a maximal matching from variables to distinct values, and finding the strongly connected
components of a digraph. The algorithm is usually incremental, but for simplicity we summarise it in a non-incremental
form:

(1) Find a maximum valid matching M from variables to distinct values. The Hopcroft–Karp [14] or Ford–Fulkerson [6]
algorithms may be used for this.

(2) If |M| < r, the constraint is unsatisfiable.
(3) Construct the residual graph R from M and the variable domains. This digraph has the property that edges between

strongly-connected components of R correspond to literals which can be pruned. R is defined below (Definition 2.2).
(4) Compute the strongly connected components (SCCs) of R . Tarjan’s algorithm [27] may be used for this.
(5) Prune variable–value pairs where the corresponding edge traverses two SCCs in G , and the pair is not contained in M .2

2.2.1. Informal description of the algorithm
Consider the following example.

x1, x2 ∈ {1 . . . 2}, x3, x4 ∈ {2 . . . 6}: AllDifferent
([x1 . . . x4]

)

Computing the matching
The bipartite variable–value graph is shown in Fig. 2.2(a). Each variable is represented by a vertex, each value is repre-

sented by a vertex, and a variable xi and value j are connected by an edge iff j is in the domain of xi . This graph is denoted
B . The first stage of the algorithm above is to construct a maximum matching in this graph.

We can consider the bipartite maximum matching problem as a maximum flow problem in a digraph. Maximum flow
is the problem of finding the maximum rate at which a material can be shipped from a source vertex to a sink, along the
edges in the digraph, without violating capacity constraints on the edges. The digraph is constructed from B by adding a
source vertex s and a sink t . The set of edges is as follows: s to all variables x1 . . . x4, each value 1 . . . 6 to the sink t , and
each edge in B is translated to a directed edge from the variable vertex to the value. This yields the graph in Fig. 2.2(b),
which we refer to as the flow graph. For the purpose of finding a maximum flow, each edge has capacity 1.

The Ford–Fulkerson method [6] (Chapter 27) can be used to find a maximum flow in the flow graph from s to t . The
algorithm finds an augmenting path, which is a path which can be used to increase the flow. For example, s → x1 → 1 → t is
an augmenting path in Fig. 2.2(b). The algorithm applies the augmenting path to increase the flow, and computes a second
flow graph. A second augmenting path is sought in the second flow graph, and in this way Ford–Fulkerson iteratively finds
and applies augmenting paths until no such path exists. Hence there is a sequence of flow graphs, culminating in a final
flow graph which represents a maximum flow from s to t .

Each edge of any flow graph is either used in the flow from s to t , or unused. An unused edge can carry a new flow of
size one, in the direction of the edge in the first flow graph. Conversely, a used edge can carry a new flow in the opposite
direction, and become unused. Therefore, in all flow graphs, the direction of used edges is reversed relative to their direction
in the first flow graph.

When an augmenting path is applied, each used edge in the path becomes unused and vice versa. This has the effect of
reversing the direction of all edges in the path, to create the next flow graph in the sequence.

One possible final flow graph is shown in Fig. 2.3(a), representing the matching xi = i for all i ∈ 1 . . . r. The final flow
graph represents a maximum matching, which is used in the next stage of the AllDifferent algorithm.

At this point, the algorithm must test whether the maximum matching covers all variables. If it does not, then the
constraint cannot be satisfied, since every variable must be assigned some value (line 2 in the algorithm above).

Computing the SCCs
Consider Fig. 2.3(a) again. If we take any cycle in this graph, and reverse the direction of all its edges, then we have

another flow graph which represents a different maximal matching. For example, if the cycle t → 4 → x4 → 5 → t is

2 In some cases an edge will be contained in the matching but will also traverse two SCCs. This occurs when an edge is vital [21]. For example when a
variable is assigned, the variable and the value are each contained in a singleton SCC, but the assignment must be contained in M .
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Fig. 2.2. Graph for maximum flow algorithm.

Fig. 2.3. Two possible final flow graphs,

reversed, we change the assignment of x4 to 5 in the matching. Reversing the cycle 3 → x3 → 4 → x4 → 3 corresponds
to swapping values 3 and 4 in the matching. This is very similar to one iteration of the Ford–Fulkerson algorithm, the
difference being that the flow from s to t remains constant, because the path starts and ends at the same vertex. For the
cycle 3 → x3 → 4 → x4 → 3, the result of reversing the cycle is shown in Fig. 2.3(b).

It is possible to generate all maximum matchings by finding cycles in the final flow graph, and reversing all edges in the
cycle [3] (Ch. 7, pages 124–125). In the language of Berge, the cycles which include t correspond to alternating elementary
even chains starting at an unsaturated vertex. Cycles which do not include t correspond to alternating elementary cycles.

In Fig. 2.3(a), the two sets s1 = {x1, x2,1,2} and s2 = {x3, x4,3,4,5,6, t} are distinct because there is no cycle containing
vertices from both sets. In other words, the variables in s1 cannot be made to take values in s2 and vice versa. In fact s1
and s2 are SCCs (as defined in Section 2.1). Two edges (x3 → 2, x4 → 2) cross from one SCC to the other.

The final flow graph is partitioned into SCCs. For Fig. 2.3, the SCCs are s1 = {x1, x2,1,2}, s2 = {x3, x4,3,4,5,6, t}, and
s3 = {s}. For any edge which crosses from one SCC to another, and is not contained in the matching, its corresponding
domain value is removed. This is sufficient to enforce GAC [21]. In this example, 2 is removed from the domain of x3 and
x4 because of the edges x3 → 2 and x4 → 2.

2.2.2. The AllDifferent algorithm in detail
To construct a sound and complete GAC algorithm [21], Régin exploited a result by Berge, applied to B: an edge is

free (belonging to some, but not all, of the maximum matchings) iff the edge belongs to a path which is even (containing
an even number of edges) and alternating (the path alternates between edges in the matching and not) beginning at an
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unmatched vertex, or an alternating cycle [3] (Ch. 7, page 125). Edges which are neither free nor in the matching are in
no maximum matching, and correspond to a variable–value pair that can therefore be pruned. We now describe Régin’s
algorithm in detail.

In the informal description above, we used the Ford–Fulkerson algorithm to compute the matching, and its final residual
graph is used in the second stage of the algorithm. Ford–Fulkerson may not be the most efficient matching algorithm, so in
this section we separate the matching from the SCC computation.

The size of the union of all domains is |D1 ∪ · · · ∪ Dr | = d. For simplicity, domain elements are assumed to be 1 . . .d.

Definition 2.1. The bipartite variable–value graph is defined as B = 〈V , E〉 where V = {x1, . . . , xr,1, . . . ,d} and E = {xi ↔ j |
j ∈ Di}.

A bipartite matching algorithm is applied to B , returning a maximum-cardinality matching M : {x1, . . . , xr} → {1, . . . ,d}.
If |M| < r then the AllDifferent constraint is not satisfiable, and the algorithm returns false.

Next we construct the residual digraph as a function of M and D1 . . . Dr . This is similar to the final flow graph, except
that we omit the source vertex s since it is always a singleton SCC, and the direction of each edge is opposite (for efficiency
reasons; this does not affect the SCCs).

Definition 2.2. The residual digraph is defined as R = 〈V ′, E ′〉 where V ′ = {x1, . . . , xr,1, . . . ,d, t} and there are four types of
edges: E ′ = M ∪ E2 ∪ E3 ∪ E4. The matching edges M connect variables to values. Residual edges connect values to variables,
where the value is not used in the matching: E2 = { j 
→ xi | j ∈ Di ∧ (xi 
→ j) /∈ M}. A third set of edges connect to t:
E3 = { j 
→ t | ∃i: (xi 
→ j) ∈ M} and a fourth set connect from t to unmatched values: E4 = {t 
→ j | (�i: (xi 
→ j) ∈ M)∧ (∃i :
j ∈ Di)}.

An SCC algorithm is applied to R , returning a partition S = {s1, . . . , sk} of V ′ . If k = 1 then the algorithm is finished.
Otherwise, for each edge in B which is not contained in M , and which connects vertices in two SCCs in S , the edge
corresponds to a variable–value pair which is pruned.

2.3. Optimizations to the basic algorithm

A number of optimizations to the basic algorithm have been proposed by various authors. We survey them here.

2.3.1. Incremental matching
The matching M may be maintained incrementally during search [21]. Régin suggested that a representation of the

variable–value graph and the set of edges involved in the matching would be stored between calls. Deleted edges would be
restored upon backtracking beyond the decision that caused their removal. Edges corresponding to pruned values would be
removed incrementally. In order to remove the appropriate edges, Régin’s algorithm requires that a set of removed values
is passed into the propagator.

If Hopcroft–Karp is used to repair the matching, Régin reports that the time complexity of Hopcroft–Karp, and of the
AllDifferent algorithm as a whole, is improved from O (r1.5d) to O (

√
krd), where k is the number of matching edges which

have been lost [21].3

2.3.2. Domain counting
Quimper and Walsh [20] proposed variants of the AllDifferent and Global Cardinality constraints for set, multiset and

tuple variables. These variable types can have extremely large domains. They observe that if the domain of a variable xi is
larger than some threshold, then the constraint need not be triggered by any pruning from xi . The threshold value is always
less than or equal to r. Quimper and Walsh give an algorithm that calculates the size of all domains before constructing a
set of variables whose domains are smaller than their threshold value. While this idea was conceived in the context of set,
multiset and tuple variables, it may apply to small finite domains as well.

We suspect that counting all domains would be expensive. In our experiments, we follow the simpler approach of
Lagerkvist and Schulte [19], which uses r as the threshold value. When a variable event triggers the constraint, the domain
Di of the variable is counted. If |Di | � r, then the propagator is called (or queued to be called).

We observe that the threshold can be reduced to r − 1. The original lemma [20] is based on Hall sets, where a Hall
set is a set H of variables such that each variable domain is a subset of a set of values D H , and |D H | = |H|. If a Hall set
exists, then all values in D H are pruned from all variables not in H . If all Hall sets are found and corresponding pruning is
performed, then GAC is established. A Hall set of size r is of no use, because there are no variables outside the Hall set to
be pruned. The largest Hall set which is useful is of size r − 1, where all domains are of size r − 1 or less. Therefore in our
experiments with domain counting, the propagator is called (or queued to be called) only if Di is changed and |Di | < r.

3 In a more recent presentation (see http://www-sop.inria.fr/coprin/cpaior04/files/graphandcp.ppt slide 70), Régin revises this bound to O (krd).

http://www-sop.inria.fr/coprin/cpaior04/files/graphandcp.ppt
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As an example of a Hall set, consider the following AllDifferent constraint: x1 . . . x3 ∈ {1 . . . 3}, x4 . . . x6 ∈ {3 . . . 6} :
AllDifferent(x1 . . . x6). The variables x1 . . . x3 form a Hall set, with values 1 . . . 3. Therefore, value 3 is removed from the
domains of variables x4 . . . x6. This type of reasoning is used informally to solve Sudoku puzzles.

2.3.3. Priority queue
Many constraint solvers have a priority queue for constraints [1,15,23], such that the priorities determine the order in

which constraint propagators are executed. It is standard practice for the AllDifferent constraint to have a low priority.
Schulte and Stuckey demonstrate the importance of priority queueing [22], and we evaluate it in our experiments.

2.3.4. Staged propagation
Schulte and Stuckey also propose multiple or staged propagation [22], where a cheap propagator with a high priority is

combined with a more expensive, low priority propagator. For instances containing AllDifferent this approach shows some
promise, so we evaluate a staged propagator in our experiments.

2.3.5. Decomposition of AllDifferent
Suppose for example we have AllDifferent(x1 . . . x6) and have x1 . . . x3 ∈ {1 . . . 3}, x4 . . . x6 ∈ {4 . . . 6}. This can decompose

into independent constraints AllDifferent(x1 . . . x3) and AllDifferent(x4 . . . x6). This decomposition saves time if we can ef-
ficiently find and manage the decompositions. Unfortunately, this optimization is in the folklore of the community rather
than the literature.4 One cheap method of decomposing the constraint is to use the strongly connected components found
by the GAC AllDifferent algorithm. As we report in Section 4, this method is not complete (it does not find all possible
decompositions), but it works well in practice. How to manage the decompositions efficiently is less obvious. One of the
contributions of this paper is to describe, in Section 4, how to implement this optimization efficiently, including algorithms
and data structures.

2.3.6. Important edges
Katriel observed that many value removals affecting an AllDifferent result in no other value removals, and so work

processing them is wasted [16]. In the more general context of constraints based on network flows, she introduces the
concept of an “important edge”. An important edge is one whose removal causes the removal of some variable–value pair.
She gives an upper bound for the number of important edge for AllDifferent and generalised cardinality constraints. If the
graph is dense enough (i.e. if there are many allowed values per variable), she shows that expected cost of propagation
can be reduced by only propagating intermittently. She suggests firing propagation when a simple count of value removals
affecting constraints hits a number indicating that, probabilistically, a value is likely to be deleted. Note that this algorithm
does not actually enforce GAC, because it may miss propagations when the count is low, catching them at a deeper node in
the search tree. Katriel does not report an implementation, and observes that the risks of failing to propagate may outweigh
the reduced cost of propagation.

While an implementation of Katriel’s algorithm would be interesting, the fact that it does not maintain GAC puts it
outside the scope of this paper. In this paper we adapt the notion of important edges to reduce the number of times
the AllDifferent propagator is called while still guaranteeing that GAC is enforced correctly. We do this by using “dynamic
triggers” [10], and report on this in detail in Section 5. We describe a cheap technique for finding at most 2r + d edges such
that any edge not in the set is guaranteed not to be an important edge.

2.3.7. Other proposals in the literature
Lagerkvist and Schulte develop advisors in the context of the Gecode solver [19]. An advisor is a procedure which is

executed immediately when a variable event occurs. They use advisors with AllDifferent to implement domain counting,
and to eagerly maintain the matching whenever it is violated. Unfortunately, for all the AllDifferent variants and problem
instances they experimented with, the cost of advisors outweighed their benefits [19]. We did not experiment with advisors.

Schulte and Stuckey propose fixpoint reasoning [22] and observe a very slight (0.1%) improvement in runtime for their
instance golomb-10-d which has a GAC AllDifferent constraint. Fixpoint reasoning can reduce the number of calls to the
propagator, by eliminating useless calls. However, they observe that useless execution of the AllDifferent algorithm is cheap
due to its incrementality. We did not experiment with fixpoint reasoning.

3. Implementation of the AllDifferent algorithm

In this section we report on a number of implementation details of the GAC AllDifferent propagator, which we then use
for empirical evaluation of optimizations. This gives a survey of the major and some minor issues facing any implementer.
With the exception of two matching algorithms, we make design decisions either based on the literature or based on what
seems reasonable for the purpose, rather than subjecting our choices to rigorous empirical evaluation. In this section we

4 To see that the idea is known, see slide 61 of [4], from which our example is taken.
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propagate(): returns Boolean

(1) for i in {1 . . . r}: matching[i]← i // initialize the matching
(2) hasMatching←FindMaximumMatching(matching, {x1 . . . xr})

// repair the matching
(3) if not hasMatching:
(4) return False
(5) FindSCCsRemoveValues(matching, {x1 . . . xr})
(6) return True

Algorithm 1. AllDifferent most basic variant.

do select two bipartite maximum matching algorithms for later empirical comparison, selecting one which has a good time
bound and another which is known to work well in practice.

Algorithm 1 shows the most basic variant of the AllDifferent propagator. This variant is not incremental in any way. It
simply calls FindMaximumMatching and FindSCCsRemoveValues.

To support incremental matching, line 1 would be removed. The two matching algorithms we consider both perform
iterative repair, so no changes need to be made there to support incremental matching. This variant of AllDifferent has
one item of state which is stored from one call to the next (the matching function). This is not backtracked, because a valid
matching is backtrack stable. As values are restored on backtracking, a valid matching remains valid since none of the values
in it are removed.

Both variants of AllDifferent call FindMaximumMatching and FindSCCsRemoveValues. These two functions are described
in Sections 3.1 and 3.2 below.

Régin claims that the space complexity of AllDifferent is O (rd) because the variable–value graph is stored explicitly
[21]. In Régin’s approach, the variable–value graph is maintained as values are removed from domains, and it must be
backtracked as search backtracks. This could be justified in a context where querying domains is expensive. However, in our
experimental context, querying domains is cheap. Therefore, in our implementation, we do not store either the variable–
value graph or the residual graph explicitly, reducing the space complexity to O (d). The graphs are discovered as they are
traversed. Since most edges correspond to a variable–value pair, checking if an edge is present is implemented as testing
if a domain contains a particular value. When discovering all edges from a variable vertex, it is necessary to iterate over
a domain. Ideally the solver would provide a domain iterator, which would find the first and next domain elements in
constant time. In our experiments, the solver provides the minimum and maximum values of the domain, which we use to
bound the iteration. To find all edges from a value vertex to a variable, it is necessary either to iterate through all variables
(as we do herein), or to store and backtrack the graph explicitly.

3.1. Maximum bipartite matching

The first algorithm we considered was the Hopcroft–Karp algorithm [14]. The Hopcroft–Karp algorithm runs in time
O (

√
rm) where m is the number of edges in the variable–value graph (m � rd). However (when using incremental matching)

the algorithm only computes a matching from scratch at the root node of search; subsequently it repairs a matching where
k edges have been lost. With Hopcroft–Karp the cost is reported to be O (

√
km) [21]. Our implementation in C++ follows

that of Eppstein [8].
The second algorithm we implemented was Ford–Fulkerson [6] with a simple breadth-first search (FF-BFS) for augment-

ing paths. It begins with an unmatched variable vertex, and searches for an augmenting path. The augmenting path is then
applied to increase the cardinality of the matching by one. This is iterated until there are no more unmatched variable
vertices, or the BFS does not find an augmenting path.

FF-BFS has the advantage of good average behaviour on a wide range of bipartite graphs [25], although the algorithm
runs in time O (rm). To repair a matching where k edges have been lost, the cost is O (km).

Régin [21] used the Alt, Blum, Mehlhorn and Paul [2] (ABMP) algorithm, which is a variant of Hopcroft–Karp with a time
bound of O (r1.5

√
m/ log r). In terms of the upper bound, Hopcroft–Karp is better for sparse graphs, whereas ABMP is better

for dense graphs. We do not know the density of the variable–value graph in advance.
Compared to other applications of matching algorithms, our graphs are relatively small. In our experiments, the problem

class with the largest AllDifferent constraint is the contrived problem (r = 500). The second largest is for social golfers
(r = 480), and the third is sports scheduling (r = 120). This is not because our instances are easy; many take over two hours
to solve.

Setubal empirically compared ABMP, FF-BFS, FF-DFS (Ford–Fulkerson with depth-first search) and Goldberg’s algorithm
[25]. He generated bipartite graphs with 2p vertices in each partition, where p ∈ {8 . . . 17}. If we estimate that our graphs
have 29 vertices in each partition, an examination of Setubal’s results (taking the size closest to 29 for each class of graphs,
and only considering sequential computers) shows that FF-BFS is competitive for all classes and is most efficient (or equal)
in 8/11 classes.

Taking these results together with earlier work by Setubal [24], we expect FF-BFS to perform better than Hopcroft–Karp
in our experiments. This is the case, as shown in Section 6.3.
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FindSCCsRemoveValues(matching, varSet): returns nothing

(1) visited← ∅; TStack← []; maxDFS← 1; hasSCCSplit←False
(2) for xi ∈varSet:
(3) if xi /∈visited:
(4) TarjanRemoveValues(xi ) // start search at xi

TarjanRemoveValues(curnode): returns nothing

(1) TStack.push(curnode)
(2) DFSNum[curnode]←maxDFS
(3) lowLink[curnode]←maxDFS
(4) maxDFS ← maxDFS + 1
(5) visited.insert(curnode)
(6) for newnode∈neighbourhood(curnode):
(7) if newnode∈visited:
(8) if newnode∈TStack:
(9) lowLink[curnode]←min(lowLink[curnode], DFSNum[newnode])

(10) else:
(11) TarjanRemoveValues(newnode)
(12) lowLink[curnode]←min(lowLink[newnode], lowLink[curnode])
(13) if lowLink[curnode]=DFSNum[curnode]: // if curnode is the root of an SCC
(14) if lowLink[curnode]>1 or DFS did not traverse all variables:
(15) hasSCCSplit←True
(16) if hasSCCSplit:
(17) SCC← ∅; stacknode←null
(18) while stacknode �=curnode:
(19) stacknode←TStack.pop()
(20) SCC.insert(stacknode)
(21) for e ∈SCC where e ∈ {1 . . .d}: // e is a domain value
(22) for xi ∈varSet where xi /∈SCC:
(23) removeFromDomain(xi , e)

Algorithm 2. FindSCCsRemoveValues.

3.2. Finding SCCs and removing domain values

To compute the SCCs, we use Tarjan’s algorithm [27], since it is simple and efficient (with a time bound of O (|V | + |E|)
or O (rd)). It is also suitable for the optimization we describe in Section 5, where some information is collected from the
algorithm as it runs.

Algorithm 1 calls FindSCCsRemoveValues (Algorithm 2), which finds SCCs and removes the appropriate values to achieve
GAC. To avoid storing all the SCCs explicitly, these two tasks are implemented together. FindSCCsRemoveValues is a simple
wrapper which initializes data structures and calls TarjanRemoveValues, possibly more than once as needed. All variables
are shared between FindSCCsRemoveValues and TarjanRemoveValues.

TarjanRemoveValues performs Tarjan’s algorithm [27] recursively (lines 1–12), and removes values from domains using
the SCCs (lines 13–23). Tarjan’s algorithm performs a depth-first search (DFS). If it is implemented recursively (as it is here),
the SCCs can be constructed as the recursion unwinds. The crux of Tarjan’s algorithm is the root property, by which a vertex
is identified as the root of an SCC. The root property is tested on line 13. When a root is identified, the SCC is constructed
from the TStack data structure.

The residual graph (Definition 2.2) is given by the neighbourhood function (line 6), where neighbourhood(v) returns the
set of vertices {v1, v2, . . .} that are connected to v by a directed edge v 
→ v j .

The data structures of Tarjan’s algorithm are described below.

• maxDFS is a simple counter, starting at 1, which is incremented each time a new vertex is discovered (on line 4).
• DFSNum is used to record the order in which vertices are discovered, by numbering the vertices from 1. DFSNum is set

from maxDFS on line 2.
• visited is the set of vertices that have been visited. It is updated on line 5.
• TStack is a stack of vertices, which starts empty. Whenever a new vertex is discovered, it is pushed onto TStack (line

1). When the algorithm detects that curnode (the current node in the DFS) is the root of an SCC, it constructs the SCC
by popping all values from TStack, up to and including curnode (lines 17–20).

• lowLink is the key data structure, with the property that lowLink[c] is the minimum of the DFSNum of all vertices
reachable by following edges used by the DFS, followed by at most one other edge in R . For each vertex c, lowLink[c]
equals DFSNum[c] iff c is the root of a strongly connected component. lowLink[c] is initialized to DFSNum[c]. The value
of lowLink[c] is updated from neighbouring vertices on lines 9 and 12. When lowLink[c] is used on line 13, it has
reached its final value.

The neighbourhood function does not appear in the program code, to avoid the overhead of a function call. Instead, lines
6–12 are repeated three times for the following three cases: where curnode = t , curnode∈ {x1 . . . xr}, or curnode∈ {1 . . .d}.
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For the case where curnode = t , the neighbour set is computed ahead of time. If this set is empty, t is omitted from the
residual graph, since it will be a singleton SCC. When curnode∈ {x1 . . . xr,1 . . .d}, the neighbour set is iterated without being
explicitly constructed beforehand.

When the algorithm finds the root of an SCC (line 13), it does a simple test to determine if the residual graph is
partitioned (lines 14–15). If the DFS has not traversed all variable vertices (because some are unreachable), or the recursion
did not unwind fully, then the residual graph must partition into more than one SCC.

If the residual graph does partition, the algorithm computes the current SCC (lines 17–20). This SCC contains both
variables and values, such that in all maximum matchings, the values are assigned to variables within the SCC. Therefore
these values cannot be assigned to any variable from varSet which is not in the SCC. Accordingly, these values are removed
from all such variables using removeFromDomain.

3.3. Minor implementation details

The graph algorithms manipulate small sets of integers, performing operations such as inserting and removing integers,
clearing the set, testing the presence of a particular integer, and iterating through the set. One example is the set of visited
vertices in Tarjan’s algorithm. (In the implementation, each vertex is mapped to a distinct integer.) In all cases we know the
range of the integers (it is never more than 0 . . . r + d).

We designed the following data structure to represent a subset of 0 . . .n. We have an integer array v[0 . . .n], indexed by
set element, and an integer c (called the certificate). v is initialized to 0, and the certificate to 1. An element e is present in
the set iff v[e] = c. To insert an element e, v[e] ← c, and to delete e, v[e] ← 0. To clear the set, c ← c + 1. In this way, we
can clear the set in small constant time.

When we require a set to be iterable, we also maintain an array of the values, stored contiguously, with an integer
representing the size of the set. The clear operation can still be implemented in constant time by setting the size to 0 and
incrementing the certificate. For this type of set the remove operation is linear time, but it is very rarely used, being called
in only one place. It is called once for each application of the assignment optimization (described in Section 4.2).

The matching M is primarily represented as an array of domain values, indexed by variable number. When using
Hopcroft–Karp, it is also represented as an array of variable numbers, indexed by value. Both Hopcroft–Karp and FF-BFS
maintain the set of values in the matching. Hopcroft–Karp also maintains the set of variables.

4. Exploiting strongly connected components

In this section we focus on optimizations that exploit strongly connected components (SCCs) during the search process.
The main focus is the first detailed description in the literature of how to exploit the independence of strongly connected
components, which we described briefly in Section 2.3.5. Here, we describe data structures and algorithms for the indepen-
dent processing of SCCs. We also introduce what we believe to be a new, but minor, optimization to process SCCs faster
when a variable has been assigned.

x1 . . . x3 ∈ {1 . . . 3}, x4 . . . x6 ∈ {3 . . . 6}: AllDifferent(x1 . . . x6) (4.1)

To see how we can identify disjoint SCCs, consider (4.1). Assume that the matching found is xi 
→ i for all i. The residual
graph is shown in Fig. 4.1. Running Tarjan’s algorithm on this graph computes two SCCs containing variables {x1 . . . x3} and
{x4 . . . x6} respectively. After partitioning the graph, the GAC algorithm would prune value 3 from variables x4 . . . x6. At this
point, the two SCCs are completely disconnected in the residual graph and in the variable–value graph, and will remain so
until values are restored by backtracking. In future calls to the propagator, the two SCCs can be considered independently.
This allows us to speed up both the maximum matching algorithm and Tarjan’s algorithm. The two algorithms are run on a
subgraph of the variable–value graph (the maximum matching algorithm), or on a subgraph of the residual graph (Tarjan’s).
Furthermore, when a variable xi is changed and the changes trigger the AllDifferent constraint, only the SCC containing xi
needs to be considered. These changes result in considerable efficiency gains, as shown in Section 6.5 below.

Fig. 4.1. Residual graph example.
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This method does not perform all possible decompositions of the AllDifferent constraint. Suppose for example we
have AllDifferent(x1 . . . x6) and have x1 . . . x3 ∈ {1 . . . 4}, x4 . . . x6 ∈ {5 . . . 8}. This can decompose into independent constraints
AllDifferent(x1 . . . x3) and AllDifferent(x4 . . . x6). Our method would not perform this decomposition. Both parts of the con-
straint have three variables and four values, and the spare values cause x1 . . . x3 and x4 . . . x6 to be connected through the
sink t , hence all six variables are contained within one SCC. Despite its incompleteness, decomposing according to SCCs
works well in practice, as we will show below.

4.1. Representing set partition

In order to store the SCCs between calls to the AllDifferent algorithm, a backtrackable representation of set partition is
needed. It is sufficient to store the partition of the set of variables (represented as integers 1 . . . r), since the values can
be quickly discovered from the variables. It is important that each set in the partition is efficiently iterable, since both the
matching algorithm and Tarjan’s algorithm need to iterate over the set of variables. The order of iteration is not important.
It is not necessary to have an O (1) set membership test.

When the AllDifferent algorithm executes, it may subdivide the SCCs further but it never merges SCCs together or
changes them in any other way. Therefore only subdivision is required, with the sets being restored on backtracking.

For a set of integers S = {1 . . . r}, the partition representation we used consists of two arrays of integers, and an array of
backtracking Booleans.

setElements[1 . . . r]: Contains a permutation of the elements in S .
setElementIndex[1 . . . r]: For each element a ∈ S , setElements[setElementIndex[a]] = a.
splitPoint[1 . . . r − 1]: If splitPoint[b] = False, elements setElements[b] and setElements[b + 1] are in the same subset. Oth-

erwise, elements setElements[b] and setElements[b + 1] belong to different subsets in the partition.

The operation of subdividing the partition involves permuting the elements in setElements (and updating setElementIndex
accordingly), and changing Booleans in splitPoint from false to true. When this change is backtracked, it is only necessary to
restore the splitPoint array. This is illustrated in Fig. 4.2 for a simple example.

To subdivide a subset of size n takes O (n) time, since n elements may need to be written in the setElements array, and
n indices updated in the setElementIndex array. Up to n − 1 elements of splitPoint may be changed in this operation. To
undo this operation on backtracking, up to n − 1 values of splitPoint are restored.

The setElements and setElementIndex arrays are simple arrays of integers. The splitPoint array is maintained by trailing.
Changing a value in the splitPoint array has O (1) cost overall. It involves three operations which each take O (1) time:
changing the value in memory, adding a record to the trail stack, and also reading the record and restoring the value on
backtracking. Therefore the cost of maintaining splitPoint does not affect the overall O (n) time to subdivide the partition.

Fig. 4.2. Illustration of set partition data structure.
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Fig. 4.3. Illustration of partitioning element 4 from the set {1,2,3,4,5,6}.

4.2. Assignment optimization

Assignment of a variable, whether by the search procedure or by propagation, is likely to be a common enough case
that optimizing it will pay off. When a variable xi is assigned, the computation of SCCs can be simplified somewhat. In the
residual graph, xi has one outward edge and no inward edges, therefore xi must be in a singleton SCC. Where xi 
→ a, value
a must be removed from the domain of all other variables.

To optimize this case, the SCC s containing xi is partitioned. First xi is swapped with the first element of the SCC in
setElements. Then splitPoint[setElementIndex[i]] is set to True to subdivide s into s1 = {xi} and s2 = s \ {xi}. This process
is illustrated in Fig. 4.3. The value a is removed from the domain of all variables in s2, and s2 is queued to be processed
by Tarjan’s algorithm (since it may subdivide further). This takes O (r) time, and does not decrease the number of calls
to Tarjan’s algorithm. However it does reduce the size of the graph which Tarjan’s operates on. The effectiveness of this
optimization is tested in Section 6.5.

4.3. Implementing independent SCCs

To implement both the above proposals, we replace the simple propagate function (Algorithm 1) with propagate-SCC
(Algorithm 3). This function requires a set of variables named triggeringVars as a parameter. These are the variables which
have triggered the constraint: in the simplest case this would be all variables whose domain has changed since the last call
to propagate-SCC. When dynamic triggers (described in Section 5) are used, triggeringVars is the set of all variables which
have lost one or more of their trigger values.

When domain counting is used, triggeringVars is the set of all changed variables whose domain size is less than r. For a
variable xi with a large domain, it is possible for its matching value (M[i]) to be removed from Di while xi /∈ triggeringVars,
thus invalidating the matching without triggering the constraint. To cover this case, lines 15–17 check the matching for
an SCC s. If some value in the matching has been removed, FindMaximumMatching is called. This is only required when
domain counting is used, so we introduce the flag DomainCounting, which is True iff domain counting is being used.

Propagate-SCC iterates through the set of triggering variables, finding which SCC each variable belongs to (named s,
line 3) and checking if the matching has been invalidated (line 4). If it has, FindMaximumMatching is called to repair the
matching (lines 5–6).

Lines 7–11 of Algorithm 3 implement the assignment optimization. If xi has been assigned, lines 8–11 are executed. It
is possible that s has already been added to changedSCCs, and since it is about to be partitioned it must be removed from
changedSCCs. This is done on line 8. s is partitioned into the singleton SCC {xi}, and the remainder of s: s \ {xi} (line 9).
Line 10 performs the removal of the assigned value from all variables in s2, and s2 is queued on changedSCCs if necessary
(line 11). If xi is not assigned, and it is possible for s to subdivide (|s| > 1) then s is added to changedSCCs (line 13).
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propagate-SCC(triggeringVars): returns Boolean

(1) changedSCCs← ∅
(2) for xi ∈triggeringVars:
(3) s ←findSCC(xi ,SCCs) {find SCC including xi }
(4) if not inDomain(xi , matching[i]):
(5) hasMatching←FindMaximumMatching(matching, s) {repair the matching}
(6) if not hasMatching: return False
(7) if isAssigned(xi ):
(8) changedSCCs←changedSCCs\{s}
(9) Partition s into s1 = {xi} and s2 = s \ {xi} in SCCs

(10) for x j ∈ s2: removeFromDomain(x j ,getMin(xi ))
(11) if |s2| > 1: changedSCCs←changedSCCs∪{s2}
(12) else:
(13) if |s| > 1: changedSCCs←changedSCCs∪{s}
(14) for s ∈changedSCCs:
(15) if DomainCounting and (∃xi ∈ s : not inDomain(xi , matching[i])):
(16) hasMatching←FindMaximumMatching(matching, s)
(17) if not hasMatching: return False
(18) FindSCCsRemoveValues(matching, s)
(19) return True

Algorithm 3. AllDifferent with SCCs processed independently.

If the assignment optimization is not required, lines 7–13 are replaced with a single line which inserts s into changed-
SCCs.

5. Dynamic triggers for the AllDifferent constraint

By default the AllDifferent constraint would be triggered by any change to any variable domain. However it is possible to
identify cases where the SCCs will remain strongly connected, and therefore no pruning can be done. For example, domain
counting, as described in Section 2.3.2, yields one such approach. As described in Section 2.3.6, Katriel took a different
approach, defining important edges in the flow graph as those whose deletion causes further deletions, and showing that
the number of important edges is small [16]. Katriel did not, however, extend this observation to a method which can
enforce GAC correctly while (possibly) reducing work. We describe in this section a cheap method for finding a set of edges
which includes all important edges, and how this can be implemented in a constraint solver using dynamic (movable)
triggers.

5.1. Background

Gent et al. proposed watched literals [10], inspired by SAT. Used as triggers to fire constraint propagations, watched
literals have three features different from triggers as normally used. Watched literals only cause propagation when a given
variable–value pair is deleted; their triggering conditions can be changed dynamically during search; and they remain stable
on backtracking so do not use memory for restoration. Watched literals have been shown to be effective for the element,
table and Boolean sum constraints by Gent et al. [10,11].

Watched literal propagation algorithms typically revolve around the concept of support. A support for a literal is an object
which is evidence that the literal is consistent, and therefore cannot be removed by the propagation algorithm. An example
of support would be a valid, acceptable tuple of a table constraint.5 In this case, the tuple can act as support for all the
literals it contains. While this support is intact, no work needs to be done, but the constraint must be triggered when any
part of the support is invalidated. A second example of support is a pair of unassigned variables for a CNF clause in SAT:
this shows that no unit propagation can be done. Therefore it is a support for all literals in the clause.

The variables have certain events which occur when their domain is changed. These could include lowering the upper
bound, raising the lower bound, assigning the variable to a single value, or removing a specific value from the domain. We
refer to placing a watched literal, meaning to attach it to a variable event, and clearing it, which removes it from its event.
When a variable event occurs, the solver iterates through the watched literals attached to the event, calling the relevant
constraint propagator for each. A fixed number of watched literals is allocated by the constraint before search begins.

The concept of watched literals is not completely suitable to the AllDifferent constraint, because watched literals must
be correct even though they are not moved on backtracking, a property called “backtrack-stability”. The object we use as
support is not always backtrack-stable (as we will demonstrate in the next section), therefore the triggers must be restored
on backtracking. Gent et al. refer to backtracked watched literals as dynamic triggers [10].

5 Each element of a valid tuple is in the relevant domain, and an acceptable tuple is one which satisfies the constraint, as defined in Section 2.1.
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5.2. Adapting AllDifferent for dynamic triggers

When adapting the AllDifferent algorithm to use dynamic triggers, the important structure is the set of SCCs: if each SCC
remains strongly connected, then no propagation can be done, and it is not necessary to trigger the constraint. Therefore we
focus on Tarjan’s algorithm, and identify edges in the residual graph which must be present for Tarjan’s algorithm to follow
the same trajectory, and therefore return the same result, if it were to be executed again. All important edges, in Katriel’s
sense [16], must be in this set. Katriel does not give an explicit algorithm for finding a set containing all important edges,
although one could be extracted from her proof. The construction of her proof is based on depth first search in each SCC.
We follow a very similar approach but present it in the context of Tarjan’s algorithm. This method is simple and efficient,
only requiring that some information is gathered as Tarjan’s algorithm runs.

We collect a set T of edges as follows. As described in Section 3.2, Tarjan’s algorithm performs a depth-first search (DFS)
in the residual graph R = 〈V ′, E ′〉. The edges in E ′ which are traversed by the DFS are included in T . The lowlink value
of each vertex is also updated using edges in the graph, and the criterion for identifying an SCC is based on the lowlink
value. For each vertex, the lowlink value may be changed several times, but only its final value is used in identifying SCCs,
therefore the edge used to obtain its final value is included in T . All other edges in E ′ are not included in T .

We claim that the removal of any edge in E ′ and not in T does not affect the set of SCCs. We consider all such edges
together, since the effect of removing edges on the set of SCCs is monotonic. (Removing an edge may cause no change, or
cause an SCC to subdivide into two SCCs. Therefore the number of SCCs monotonically increases.) To demonstrate the claim,
we prove that digraph R̂ = 〈V ′, T 〉 has the same SCCs as R . The execution of Tarjan’s algorithm on digraph D is denoted
T (D).

Theorem 5.1. The digraphs R = 〈V ′, E ′〉 and R̂ = 〈V ′, T 〉 have the same SCCs.

Proof. The proof is by showing that Tarjan’s algorithm returns the same SCCs for both R and R̂ . Tarjan’s algorithm is correct
[27] (Thm. 14).

The order of vertex exploration in the DFS of Tarjan’s algorithm is irrelevant to the result. It is possible for T (R̂) to
perform the exact same DFS as T (R), because the set of vertices is the same and all edges required by the DFS are in T by
definition. Hence, without loss of generality, we assume that T (R̂) does perform the same DFS as T (R). Therefore DFSNum
for each vertex is identical.

At each vertex v in the DFS tree, lowLink[v] is computed by taking the minimum of a set S v of values. S v corresponds
to the lowLink or DFSNum of neighbours of v . For each neighbour, the inclusion of its corresponding value in S v depends
only on DFS order, which is invariant. Therefore, all that is required is that an edge corresponding to a smallest value in S v
is present in T . This is the case by definition.

The final part of T (R) constructs the SCCs as recursion unwinds. The computed SCCs depend on final values of lowLink
and the order of DFS. Therefore T (R̂) constructs the same set of SCCs. �

Some edges in T directly represent a literal: the edge is of the form xi 
→ j or j 
→ xi . We place dynamic triggers on all
corresponding literals. It is safe to ignore all other edges in T since they do not correspond to a domain value.

Fig. 5.1(a) illustrates the process on a residual graph representing three variables, x1, x2, x3 and five values 1,2,3,4,5.
The DFS is performed in the following order: x1,1, x2,2, x3,3, t,4,5. The eight edges traversed by the DFS are represented
in wide dotted lines in the figure. Three edges are used to finally change a lowlink value: 2 
→ x1, 4 
→ x2, and 5 
→ x3,
which are represented in solid black in the figure.

Edges to and from t are ignored for the purpose of placing triggers. For Fig. 5.1(a), the set of triggers would be x1 
→ 1,
x1 
→ 2, x2 
→ 1, x2 
→ 2, x2 
→ 4, x3 
→ 2, x3 
→ 3 and x3 
→ 5.

Fig. 5.1(b) shows a different execution of the algorithm over the same graph. In this case, DFS is performed in the order
x1,1, t,4, x2,2, x3,3,5. This gives a smaller set of triggers, since x2 
→ 1 is not included in this case. All other triggers are
the same as for Fig. 5.1(a).

This method yields at most 3 triggers per variable, plus one trigger per spare value (at most 3r + (d−r) = 2r +d triggers),
but not all triggers we find may be necessary. For example, in Fig. 5.1(a), where the triggers on 4 
→ x2 and 5 
→ x3 are not
necessary. The other triggers are sufficient to prove that the three vertices x1, x2, x3 are indeed in the same SCC.

The triggers are not always backtrack-stable. Consider the case where an SCC s1 divides into s2, s3 when some edges are
lost: the triggers computed for both s2 and s3 clearly do not cover all the edges necessary to prove the connectedness of
s1, since there are no edges connecting the two components. Therefore, when s1 is restored upon backtracking, the triggers
must be backtracked as well.

We conjecture that this approach will work well when domains are large, or when few values are removed from the
domains at each search node.

5.3. Implementing the collection of dynamic triggers

This approach is very cheap to implement since it only requires some information to be collected from the execution of
Tarjan’s algorithm. No additional computation is required.
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Fig. 5.1. Example of identifying triggers with two different DFS orderings.

Two sets of changes are needed to Algorithm 2. Firstly, at the top of algorithm FindSCCsRemoveValues, all dynamic
triggers for variables in s are cleared. Then a dynamic trigger is placed on each value used in the matching for the current
SCC s. This is because these values will be used during the DFS. In addition, a watched literal is placed on each value of
the matching. This is required because the matching is not backtracked, and the dynamic triggers are, therefore they can
diverge when search backtracks. Placing the watched literals as well guarantees that AllDifferent will be triggered when the
matching is violated. In some cases this would cause the constraint to be triggered twice for the same variable–value pair.
However, when combining dynamic triggers with a priority queue (Section 2.3.3), when the constraint is triggered it merely
adds the triggering variable to a set to be processed later, and returns. Therefore the cost of the additional watched literals
is minimal.

The second set of changes are in algorithm TarjanRemoveValues. When curnode∈ {1 . . .d}, dynamic triggers are added
corresponding to edges used for the DFS (line 11) and for the final change of lowLink[curnode] (lines 9 and 12). If the
final change of lowLink[curnode] occurred on line 12, one edge was used for both the DFS and updating lowLink. It is not
necessary to place two dynamic triggers corresponding to one edge. Only one dynamic trigger is placed in this case.

5.4. Internal dynamic triggers

It is possible to simulate dynamic triggers entirely within the AllDifferent constraint. To do this, the propagator stores
the dynamic trigger values in a backtracking array. The constraint sets static triggers to trigger on any domain change.
When it is triggered by a variable xi , the propagator checks the domain of the triggering variable to see if any important
values have been lost. If not, it immediately returns. For each variable, the values are stored contiguously in an array with a
length counter. In our experiments, the arrays are backtracked by block copying. We refer to this method as internal dynamic
triggers.

There are two reasons it might be useful to simulate dynamic triggers in this way. Firstly, it may be more efficient. The
cost of writing the trigger value into an array is very low, and clearing an array (by setting the size to 0) is very cheap. By
contrast, placing a “real” dynamic trigger (implemented with doubly-linked lists, as described by Gent et al. [10]) requires
four assignments to pointers. Clearing a set of dynamic triggers requires two assignments for each literal. In addition to this,
any changes must be recorded on the trail stack, and reversed on backtracking. Secondly, a solver may not provide dynamic
triggers. Indeed, most solvers do not provide this facility. Therefore internal dynamic triggers are important for the general
applicability of dynamic triggers for AllDifferent.

6. Experimental evaluation

In this section we describe the context of our experimental evaluation. Then we present four groups of experiments. First
we evaluate the standard approaches of incremental matching and priority queueing in Section 6.3. Secondly, in Section 6.4
we evaluate the dynamic triggers and domain counting approaches, which are both intended to reduce the number of calls
to the propagator. Thirdly, in Section 6.5 we evaluate processing SCCs independently. Finally we compare our best GAC
AllDifferent constraint against a propagator that establishes a weaker consistency.

6.1. Experimental context

For all experiments we use the solver Minion [9,10]. We adapted Minion 0.4.1 in the following ways:

Monotonic set: We made a monotonic set available to constraints through a new interface. By monotonic we mean that
once an element of a set is removed at a given node, the element remains out of the set at all descendant nodes.
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Monotonicity allows an efficient implementation through trailing. We represent each element by the value true
or false: since all values move only from true to false, we only need to store the element being changed and
not a value to restore it to. This is used to implement the set partition data structure described in Section 4.1.
In particular it is used for the splitPoint array. The cost of removing an element from the set combined with its
subsequent restoration on backtracking is O (1).

Dynamic triggers: We took watched literals [10] and added a trailing mechanism to restore them as search backtracks. This
facility co-exists with standard watched literals. In Minion, a watched literal may be placed on a variable–value
pair, an upper or lower bound, or a variable (triggering on any domain change, or triggering only on assignment).
A watched literal can also be unused. AllDifferent makes use of watched literals and dynamic triggers on variable–
value pairs.

Minion already provides the other facilities that we need. When a constraint is triggered, it is easy to identify the triggering
variable. The inDomain, getMin and getMax methods allow us to query the variable domains. The method removeFromDo-
main is used to remove values from variable domains.

Domain lookups are designed to be fast in Minion, since it is a very common operation. This is important when running
the graph algorithms, since they query domains in order to discover the graph as they traverse it. Domain iteration is also
important for the AllDifferent algorithm. Unfortunately Minion does not support domain iteration, but it does maintain
upper and lower bounds that are used to bound the iteration.

All experiments were run on Apple iMac computers with 2 GHz Core Duo processors and 2 GB RAM, under OS X Tiger
(10.4.11). The branch of Minion which we used is available at http://minion.sourceforge.net/files/, including build instruc-
tions.

We have conducted extensive testing, which our code has passed. As well as continual and detailed testing during
development, we checked that the number of search nodes explored is the same for each variant of the algorithm for each
instance, excepting only instances exceeding time or node limits.

In all experiments comparing variants of GAC AllDifferent, we limited search nodes to 500,000, and time to 1200 s.
Because of the possibility of timeout, our main metric of speed is nodes searched per second, instead of raw runtime. For
some Social Golfers and Golomb instances Minion did not stop until well after the time limit, because of a minor flaw in
the time limit implementation.

Finally, all runtimes we report are total time and nodes used to solve or timeout on each given instance, including all
initialisation and search time including time outside the AllDifferent propagator. This automatically means that all incidental
features of each optimization are accounted for, such as for example additional or reduced memory usage and its effect on
practical runtime. It does however mean that results we report are typically less dramatic than would be obtained if we had
only measured runtime inside the AllDifferent propagator. Despite this we will often see orders of magnitude improvement
in runtime.

6.1.1. Minion queue mechanisms and triggers
Minion is a variable-centric solver with an additional constraint-centric queue. Conceptually there are two queues, which

are described below. The solver has two queues for efficiency reasons: the variable queue is very fast, because adding a
variable event to the queue is an O (1) operation. However, the variable queue does not allow constraints to be given a low
priority. Having the additional constraint queue overcomes this limitation.

The variable queue
The variable queue contains variable events, which are of three different types:

• Value a removed from Di

• Upper/lower bound of xi changed
• xi set to a

The variable queue can contain duplicates of the bound events. The other events cannot be duplicated in the queue simply
because they cannot happen twice at a single search node. Each variable event has two lists associated with it: a list of
static triggers that is fixed before search begins, and a doubly-linked list of dynamic triggers. To propagate a variable event,
the solver iterates through both lists, calling the propagators associated with the triggers. Each trigger contains an integer
which is passed to the propagator. In this way, the propagator can identify which trigger (and therefore which variable
event) has triggered it.

The constraint queue
The constraint queue contains pointers to constraints. Constraints are responsible for setting triggers, and for adding

themselves to the constraint queue as necessary. In this way, when a constraint is triggered by the variable queue, it may
perform a test to determine whether a record should be added to the constraint queue. This allows us to implement domain
counting, described in Section 2.3.2, and internal dynamic triggers as described in Section 5.4.

http://minion.sourceforge.net/files/
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Indeed the constraint can fail, update internal data structures and perform propagation when triggered from the variable
queue, so this mechanism is more general than Lagerkvist and Schulte’s advisors (Section 2.3.7) which are not permitted to
perform propagation.

The constraint queue allows duplication, however the AllDifferent constraint keeps a record of whether it is present on
the constraint queue, and thus avoids duplication.

The constraint queue is not a priority queue. However, the constraint queue has a lower priority than the variable queue:
the variable queue is emptied before each item is processed from the constraint queue. In all the experiments presented
below, the only constraint to use the constraint queue is the AllDifferent constraint, hence it has a lower priority than any
other constraint.

The overall algorithm to process the queues is shown below.

while any queue not empty:
if variable queue not empty:

process entire variable queue
if constraint queue not empty:

process one item from constraint queue

6.1.2. Pairwise AllDifferent
Minion provides a simple AllDifferent propagator which is triggered whenever a variable becomes assigned, and removes

the assigned value from the domains of all other variables. This is clearly a very simple and fast algorithm. It performs the
same propagation as AC on a clique of binary not-equal constraints and so does not achieve GAC. We call this the Pairwise
propagator.

6.1.3. Staged AllDifferent
As described in Section 2.3.4, Schulte and Stuckey propose to combine a cheap propagator (which is similar to the

pairwise propagator described above) with GAC AllDifferent [22]. They suggest two ways to do this: simply posting both
constraints, or building a staged propagator from the two propagators. They showed staged propagation to be more efficient
in Gecode on their instances [22].

The proposed staged propagator makes use of the multiple constraint queues of Gecode, and is impossible to implement
exactly in Minion. We implement a close analogue. Whenever the staged propagator is called from the variable queue, it
checks if the triggering variable is assigned. If so, the assigned value is removed from the domain of all other variables.
Apart from this additional check, the staged propagator is identical to the conventional one. This very simple change yields
very good experimental results, shown in Section 6.3.

6.2. Benchmark set

We generated a large number of benchmark instances, which are available at http://minion.sourceforge.net/. They are
described briefly here.

Langford’s number problem (prob024 in CSPLib [13]) with k = 2 (i.e. two occurrences of each number) and n ∈
{10,11,12, . . . ,25}. This is modelled with a vector v of length 2n which is all different, where elements v[i] and v[i + n]
represent the two positions of colour i in the problem. The model is by Gent, Miguel and Rendl [12]. The variable order
follows the indices of vector v , and the value order is ascending.

The Golomb ruler problem (prob006 in CSPLib) is to construct a set of n integers which are all different, and the intervals
between pairs are all different. The lowest integer is assumed to be 0, and the highest integer is minimized using branch
and bound. This is modelled as a vector of n(n − 1)/2 differences between pairs of integers, with a single AllDifferent
constraint on the vector. The variable order follows the indices of the vector, and the value order is ascending.

Balanced quasigroup with holes (QWH) [17] is the problem of completing a partial latin square with a particular struc-
ture. The instances were generated from random, complete latin squares of order n ∈ {20,25,30,35}. Ten latin squares were
generated at each size, and �1.7 × n1.55� holes were punched to create balanced partial latin squares. The number of holes
yields instances at or near the difficulty peak. The problem is modelled as an n ×n matrix of variables with domain {1 . . .n},
with an AllDifferent constraint on each row and column. The variable order is left to right along the rows. The rows are
searched in sequence down the matrix. The value order is ascending.

Quasigroup existence (prob003 in CSPLib) is the problem of determining whether a quasigroup exists with certain
properties, for example idempotence (a × a = a for all elements a). We used types QG3 and QG4, both idempotent and
non-idempotent, with orders n ∈ {7,8,9,10} making 16 instances in total. The problem is modelled with an n × n matrix
of variables with domain {1 . . .n}, with an AllDifferent constraint on each row and column, an AllDifferent on the primary
diagonal, and various other constraints representing the properties of the quasigroup type. Various implied constraints are
also included. The model is by Colton and Miguel [5]. The variable and value ordering is the same as for QWH.

Social golfers (prob010 in CSPLib) is the problem of assigning gs golfers to s sets of size g , for each of w weeks, such
that two golfers never play together more than once. It is modelled as w vectors of variables with domain 1 . . . g × s,

http://minion.sourceforge.net/
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representing the weeks. For each week, the vector is partitioned into s sets. To break some symmetries, the sets are lex-
ordered within the week, golfers are ordered within the sets and the weeks are lex-ordered. Each week vector has an
AllDifferent constraint. A second vector of variables with domain {1 . . . gs(gs − 1)/2} represents the pairs that play together.
For each week, for each pair of variables in the same set, the two variables are mapped to a single variable in the pairs
vector using a table constraint. The pairs vector has an AllDifferent constraint on it. We generated social golfers instances
with g = 4 and the following other parameters 〈w, s〉: 〈5,4 . . . 8〉〈6,4 . . . 8〉, 〈7,5 . . . 8〉, 〈8,6 . . . 8〉, 〈9,7 . . . 8〉, 〈10,8〉, making
20 instances in all. The variable order is to search each week in turn, and for each week we follow the indices of the w
vector. The value order is ascending.

Sports scheduling is similar to social golfers where g = 2 (i.e. fixtures involve two teams). n teams play on n/2 pitches
over n − 1 weeks. Each team plays on each pitch at most twice. It is modelled as n − 1 vectors of variables with domain
1 . . .n representing the weeks. The vector is partitioned into pairs. To break some symmetries, each pair is ordered and the
weeks are lex-ordered. Also, the pitches are interchangeable so the vectors of games on each pitch are lex-ordered. Sports
scheduling also has the pairs vector with AllDifferent, and the table constraints between the two representations. In this
way it is guaranteed that every team plays every other team exactly once. The variable and value order is the same as for
social golfers.

The contrived problem has been contrived to show the benefit of dynamic triggers and domain counting. It is patho-
logical because the GAC AllDifferent constraint performs no pruning, despite doing a significant amount of computation. It
consists of two vectors v and w . v is of length 5 and the variables have domain {1 . . . 50}. An AllDifferent constraint (using
the pairwise propagator) is placed on v , and also v[4] = v[5]. Therefore there are no solutions. The pairwise AllDifferent
is only present to make the problem unsatisfiable, while causing Minion to search extensively: the binary search tree has
50 × 49 × 48 × 47 = 5527200 left branches. w is a vector of length l � 4, containing variables with domain {1 . . .d}. A GAC
AllDifferent constraint is placed on w , and the two vectors v, w are linked by v[1] �= w[1], v[2] �= w[2], v[3] �= w[3], and
v[4] �= w[4]. Hence, whenever a variable in v is assigned, one value is removed from a variable in w by propagation. The
variable order follows the indices of v , and the value order is ascending.

We generated instances with l = {100,200,300,400,500}, of two types where d = l or d = l + 1. Both types should work
well with dynamic triggers, because only one value is removed for each left branch, and this is unlikely to trigger the GAC
AllDifferent. When using domain counting, when d = l the constraint is always triggered by the removal of a single value.
However when d = l + 1 then the constraint is never triggered, so the propagator is only executed at the root node. In this
case, domain counting should outperform dynamic triggers.

6.3. Experiment one: variants proposed in the literature

Prioritized queueing and incremental matching are standard techniques. In this experiment we test their merit. We also
consider an alternative matching algorithm, and staged propagation.

Simple: The simplest variant of AllDifferent is shown in Algorithm 1. It does not use the constraint queue, therefore it
is called once for each variable event. Simple does not process SCCs independently or use dynamic triggers or
domain counting. The Hopcroft–Karp algorithm is used to compute the matching.

PriorityQ: The Simple algorithm, but called from the constraint queue. It is added to the constraint queue on any variable
event, unless it is already present. Therefore duplicates are removed and the constraint is propagated after all
others.

PriorityQ-IncMatch: PriorityQ with incremental matching. (Algorithm 1 with line 1 removed, so that the matching is re-
tained from one call to the next.)

PriorityQ-IncMatch-BFS: This is PriorityQ-IncMatch using the FF-BFS matching algorithm rather than Hopcroft–Karp.
PriorityQ-IncMatch-BFS-Staged: This is PriorityQ-IncMatch-BFS with staged propagation as described in Section 6.1.3.

Firstly, Simple and PriorityQ were compared on our benchmark set. We expected PriorityQ to perform better for all instances.
Fig. 6.1 shows that this is not the case, although most instances benefit from the constraint queue, with some performing
over 100 times better. This mainly agrees with the results of Schulte and Stuckey [22] regarding priority queueing, although
their results are less dramatic.

The instances that Simple solves faster than PriorityQ are all QWH instances. These contain only AllDifferent constraints,
so reducing the priority of the constraint would have no effect.

Given the theoretical advantage of incremental matching, we expect PriorityQ-IncMatch to perform better than PriorityQ.
This is the case for all instances, as shown in Fig. 6.2, although the gain is less than 40%.

We compared PriorityQ-IncMatch-BFS with PriorityQ-IncMatch to compare the two matching algorithms. As shown in
Fig. 6.3, the AllDifferent with FF-BFS can be 30% faster, and is never slower than with Hopcroft–Karp.

Finally, we compare the staged propagator PriorityQ-IncMatch-BFS-Staged to PriorityQ-IncMatch-BFS. As shown in
Fig. 6.4, staged propagation is very useful for our set of benchmarks, with up to three times improvement.
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Fig. 6.1. Speedup of PriorityQ over Simple. The graph is a scatterplot, with each point comparing results on a single instance. The x-axis represents the
run time of Simple to solve the instance. The y-axis gives the speedup obtained by using PriorityQ instead of Simple. A ratio of 1 indicates that the two
methods run at the same speed, with ratios higher than 1 indicating that PriorityQ is faster, and ratios less than 1 indicating that Simple is faster. The ratio
is calculated by dividing the number of search nodes explored per second by PriorityQ by that for Simple. In this graph we can see that performance ranges
from a slight slowdown from using PriorityQ, on some QWH instances, to speedups of hundreds of times on some social golfers instances. All subsequent
graphs labelled ‘Speedup of X over Y’ follow the same conventions, where in this case X = PriorityQ and Y = Simple.

Fig. 6.2. Speedup of PriorityQ-IncMatch over PriorityQ.

For all further experiments, we use both the constraint queue and incremental matching, since they are standard tech-
niques, and verified to be useful in this context. We use the FF-BFS algorithm in all further experiments, since it is often
faster and never slower than Hopcroft–Karp. We also use staged propagation since it is considerably faster on average. Com-
paring PriorityQ-IncMatch-BFS-Staged to Simple, we observe a speedup between 2.14 and 863 times, with a mean average
speedup of 80.8, excluding the contrived instance family.
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Fig. 6.3. Speedup of PriorityQ-IncMatch-BFS over PriorityQ-IncMatch.

Fig. 6.4. Speedup of PriorityQ-IncMatch-BFS-Staged over PriorityQ-IncMatch-BFS.

6.4. Experiment two: Dynamic triggers and domain counting

For the purpose of this experiment, all variants will use the constraint queue and incremental matching. The aim is to
compare waking up on all domain events against using dynamic triggers and domain counting.

Baseline: The same as PriorityQ-IncMatch-BFS-Staged in the previous section.
DynamicTrigger: Baseline with the addition of dynamic triggers as described in Section 5.
DynamicTriggerInternal: Baseline with the addition of internal dynamic triggers (Section 5.4).
DomainCount: When the constraint is triggered from the variable queue, and it is not present on the constraint queue, the

domain Di of the triggering variable is counted. (The number of values is not maintained by default in Minion.) If
|Di | < r then the constraint is added to the constraint queue.

Fig. 6.5 shows the ratio of search nodes per second between DynamicTrigger and Baseline. Instances are scattered above
and below 1, suggesting that the advantage of DynamicTrigger is negated by its overheads in many cases. All the contrived
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Fig. 6.5. Speedup of DynamicTrigger over Baseline.

Fig. 6.6. Speedup of DynamicTriggerInternal over Baseline.

instances are considerably faster with DynamicTrigger, as expected. Fig. 6.6 shows the same plot between DynamicTrig-
gerInternal and Baseline. DynamicTriggerInternal performs slightly better than Baseline on most instances, exploring up to
1.3 times as many nodes per second, with an average 6% improvement (excluding contrived). Surprisingly, the contrived
instances are an exception, since they are slower with DynamicTriggerInternal than Baseline. In DynamicTriggerInternal,
the cost of placing dynamic triggers is much lower (since they are just written into an array). However, the arrays are
backtracked by block copying, and for the contrived instances the arrays are large.

Finally we compare DomainCount with Baseline. The ratio of search nodes per second is shown in Fig. 6.7. Domain
counting is cheap, so no instances are substantially slower, but it never substantially wins either. This is perhaps not sur-
prising, since domain counting was originally intended for set or tuple variables with very large domains [20]. The contrived
instances behave as expected, with instances where d = r + 1 showing a huge advantage for domain counting, and instances
where d = r showing no advantage.

Our conclusions for this experiment are that internal dynamic triggers are worthwhile on average, whereas dynamic
triggers had too great an overhead and domain counting does not work well on this benchmark set.
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Fig. 6.7. Speedup of DomainCount over Baseline.

6.5. Experiment three: Processing SCCs independently

The SCC optimization described in Section 4 aims to decrease the time spent running the graph algorithms. It is inde-
pendent of domain counting. However, there is a dependence between dynamic triggers and the SCC optimization, because
running Tarjan’s algorithm on a smaller graph will potentially cause fewer triggers to be moved, therefore potentially re-
ducing the overhead of using dynamic triggers. For these experiments we ignore domain counting but do consider dynamic
triggers.

Baseline: The same as PriorityQ-IncMatch-BFS-Staged in experiment one.
SCC: In addition to Baseline, SCCs are processed independently as described in Section 4.
SCC-AssignOpt: In addition to SCC, the assignment optimization described in Section 4.2 is used.
SCC-AssignOpt-DynamicTrigger: In addition to SCC-AssignOpt, dynamic triggers are used.
SCC-AssignOpt-DynamicTriggerInternal: In addition to SCC-AssignOpt, internal dynamic triggers are used.

Fig. 6.8 shows results comparing SCC to Baseline. The SCC variant is able to explore up to ten times more search nodes per
second on the benchmarks, and SCC is never slower than Baseline. This is as expected, since there is not much additional
cost with SCC, and the potential savings of running the graph algorithms on smaller graphs are large.

Comparing SCC-AssignOpt to SCC (Fig. 6.9) shows that AssignOpt is worthwhile more often than not, although the mean
improvement in nodes/second is only 3%, excluding contrived instances.

Social golfers and sports scheduling problems solve slower with AssignOpt. These two problems have a similar structure,
with a very large AllDifferent constraint on the pairs vector. This may indicate that AssignOpt does not scale well to large
constraints.

In a staged constraint, part of the work done in the assignment optimization (removing the assigned value from other
variables in the SCC) is redundant and could be removed. This could improve AssignOpt a little.

Fig. 6.10 shows results comparing SCC-AssignOpt-DynamicTrigger against SCC-AssignOpt. Apart from a few Social Golfers
instances, these results are not promising for dynamic triggers. Many instances solve considerably slower with dynamic
triggers. Internal dynamic triggers (Fig. 6.11) fare better, perhaps because the cost of moving triggers is lower. The sports
scheduling instances solve faster with internal dynamic triggers. However on average (excluding the contrived problem)
internal dynamic triggers lose by 5%. This is in contrast to the experiment without SCC and AssignOpt, where internal
dynamic triggers gained 6%. Exploiting SCCs and the assignment optimization have reduced the cost of applying the graph
algorithms, so now it is not worthwhile to apply internal dynamic triggers.

Since dynamic triggers do not do well in this context, we regard SCC-AssignOpt as our strongest variant overall.

6.6. Experiment four: Comparing with the pairwise propagator

We compare the pairwise propagator (described in Section 6.1.2) with the most efficient variant of GAC AllDifferent.
Since the two propagators do not provide the same level of consistency, comparing node rates would be of limited use:
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Fig. 6.8. Speedup of SCC over Baseline.

Fig. 6.9. Speedup of SCC-AssignOpt over SCC.

it would only show the overhead of maintaining GAC, without showing the benefit. Therefore we compare solution times,
using a much longer 7200 second time limit, and no node limit. The variant of GAC AllDifferent we use is SCC-AssignOpt
from experiment three. We refer to this as Best, and to the pairwise propagator as Pairwise.

Fig. 6.12 shows a plot of solution times, with Pairwise on the x-axis, and the ratio Pairwise over Best on the y-axis.
Points on the line x = 7200 represent instances which timed out for Pairwise. Two instances timed out for GAC and not for
Pairwise, this is in the area where x > 1000 and y < 1.

Clearly the GAC reasoning on the AllDifferent constraint is very important for some instances. In particular, QWH and
some difficult Social Golfers instances solve much faster with GAC. In some cases, they solve more than 1000 times faster
than with Pairwise. Many authors (for example Stergiou and Walsh [26]) have found that GAC AllDifferent is important.

There are a large number of instances which caused both GAC and Pairwise to time out. There are two instances where
GAC timed out and Pairwise completed (Golomb ruler n = 13, Langford’s n = 14), but there are 22 instances where Pairwise
timed out and GAC completed, although many of these are in the QWH class. For many other instances, GAC does not
perform as well as Pairwise. However, ignoring the contrived instances, Pairwise is never more than 2.34 times faster than
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Fig. 6.10. Speedup of SCC-AssignOpt-DynamicTrigger over SCC-AssignOpt.

Fig. 6.11. Speedup of SCC-AssignOpt-DynamicTriggerInternal over SCC-AssignOpt.

GAC. Interestingly, this holds for easy and difficult instances, without increasing divergence as the instances become more
difficult.

Overall this experiment shows that adding the GAC AllDifferent propagator substantially extends the reach of Minion to
solve challenging problem instances.

6.7. Experimental conclusions

We have individually evaluated many different efficiency measures for the GAC AllDifferent algorithm. In this section, we
consider the effect of them all together. Fig. 6.13 compares Best with Simple. Including the contrived instances, we get a
speedup from 2.69 times to 1813 times, with an average of 168 times. Clearly Best is a huge improvement over Simple, and
this shows the importance of taking care to implement AllDifferent well.

Simple does not include standard optimizations (prioritized queueing, incremental matching or staging), and it uses
Hopcroft–Karp rather than the more efficient FF-BFS to perform the matching. Therefore in Fig. 6.14 we compare Best with
Baseline. The only differences between these two algorithms are optimizations we have described in Section 4 on exploiting
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Fig. 6.12. Comparing Best to Pairwise runtime. In this plot the x-axis represents the runtime of Pairwise, and the y-axis is the ratio Pairwise over Best
runtime. The time limit was set to 7200 s, and there was no node limit.

Fig. 6.13. Speedup of Best over Simple.

SCCs. All except the pathological contrived instances lie between 0.96 and 7.06 times faster, and the mean improvement is
2.98 times.6 Since these figures are for solving the instance, the improvement in the AllDifferent constraint is greater than
that.

Finally, Fig. 6.15 is a plot of the nodes explored per second by Best. This is to give an idea of the speed of the algorithm
on different classes of instances. The Langford’s instances are very fast, exceeding 20,000 nodes per second in some cases,
which is perhaps remarkable when maintaining GAC. Social Golfers and QWH are the slowest classes, since Social Golfers
has large AllDifferent constraints (r = 480, d = 496 for the largest instance) and QWH has a large number of them per
instance (70 constraints where r = d = 35 for the largest instances).

6 Note that the mean ratios are not multiplicative, since we have Best:Simple = 168, Best:Baseline = 2.98 and Baseline:Simple = 81. Geometric means
retain multiplicative properties of the mean. The geometric means are: Best:Simple = 31.98, Best:Baseline = 2.44, Baseline:Simple = 13.11.
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Fig. 6.14. Speedup of Best over Baseline.

Fig. 6.15. Plot of Best nodes per second. The x-axis represents Best runtime, and the y-axis the number of nodes searched per second.

7. Implementation advice

In this section we abstract from the details of our experimental results to give brief advice to those following us in
implementing GAC for AllDifferent, or researching further optimizations for it.

Our results show that there is huge benefit from using the following optimizations, in order of importance: propagating
AllDifferent in a separate queue from other constraints; the incremental exploitation of strongly connected components;
and combining GAC and pairwise propagators using staging. There is a lesser but still important improvement of 20–30%
from incremental matching. Our results on these optimizations are significant enough that they are unlikely to be reversed
by different implementation choices or the study of different instances, and these optimizations remain effective when
combined. We find that our assignment optimization is worthwhile, although the effect is small enough at 3% it could be
omitted to save programmer time without undue penalty for the end-user.

Some of our results depend on the context in which GAC AllDifferent will be used. We did not find dynamic triggers
of either type to be worthwhile. In our experiments dynamic triggers were slightly better when implemented internally
within the AllDifferent constraint, an approach which is also more portable. We did not find Lagerkvist and Schulte’s variant
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of Quimper and Walsh’s domain counting to be beneficial, even with our slight improvement on it. All these conclusions
apply only if we ignore our family of contrived instances, on which maintaining GAC adds costs without any benefit. On
these instances, both dynamic triggers and domain counting come into their own and internal dynamic triggers were less
effective than those built into Minion. Therefore, dynamic triggers and domain counting could be considered if a GAC
AllDifferent propagator will be used when it is often ineffective, to ameliorate the overheads in this case.

One question we have not been able to come to a definite conclusion on is the best matching algorithm within the GAC
AllDifferent propagator. We experimented with the simpler BFS algorithm and the more complex Hopcroft–Karp algorithm.
We found BFS to be significantly better and can recommend it over Hopcroft–Karp. However, there are many other matching
algorithms and it is quite possible that another choice might outperform both of the algorithms we tested.

As noted in the introduction, we have not tested against propagators that maintain bounds and range consistency for
AllDifferent. Therefore, we cannot advise on the relative merits of those techniques compared to maintaining GAC. We
would be delighted to see a study evaluating optimizations of those algorithms along similar lines to this paper, to enable
the fairest comparison with our optimized GAC implementation.

8. Conclusions

We have presented an extensive survey of propagation methods to establish generalised arc consistency (GAC) for the
AllDifferent constraint using Régin’s algorithm. We have surveyed many optimizations proposed in the literature and some
methods that have not been previously reported. For most of these methods, we have reported on their implementation and
given an empirical analysis of their behaviour. We have paid particular attention to evaluating optimizations in combination
with each other, which is (very naturally) not usually a feature of papers which propose optimizations. Our experiments are
very easily the deepest experimental analysis of GAC algorithms for AllDifferent. Based on them we have provided advice
on which optimizations are key and which are less generally useful.

We would draw particular attention to our results on processing strongly connected components during the search
process. We showed significant improvements from the observation that individual strongly connected components can be
treated independently. This paper gives the first detailed report and empirical evaluation of this technique. We also showed
a lesser improvement to maintaining strongly connected components by treating the assignment of a variable as a special
case, which we believe to be a new optimization. These two techniques speed up search on instances containing AllDifferent
by an average of 3 times.

For the best combination of optimizations, we found a mean improvement of more than 160 times in runtime over
a careful but unoptimized implementation of Régin’s algorithm. Our results confirm that optimizations are not optional
extras, but a vital part of a serious implementation of GAC AllDifferent. Our results also show that GAC propagation can
be used very widely. Apart from some pathological examples, GAC propagation of AllDifferent never slows down search by
more than a factor of 2.34, compared with a highly optimized implementation of the pairwise AllDifferent propagator. The
combination of optimizations we have studied and their careful implementation brings GAC propagation of AllDifferent to
the point where it is practical for almost all instances, and beneficial for a very large number.
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