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0. INTRODUCTION 

Let IF be a finite field of characteristic 1 and let p : Gal(&P/Q) + GL,(lF) be 
a continuous representation. Serre [S3] has defined for p a weight k(p), 
a character E(P), and a conductor N(p) = nPzrpnp@). When p is odd 
and absolutely irreducible he conjectured the existence of a newform 
~CZ S,(,,(N(p), E(P)) whose associated l-adic representation a/ (Eichler- 
Shimura, Deligne [Del]) gives p by reduction mod I (see [S3] for details). 
This conjecture is interesting even when p arises in this way from some 
newform g (see [S3, R] for applications to the Fermat conjecture). In this 
case our first observation is 

0.1. PROPOSITION. N(p) divides the level N(g) of g. 

This is an immediate consequence of known facts about I-adic and 
automorphic representations, and answers affirmatively a question of 
Serre’ (see [S3, 3.2, Remark 51). 

We next show that N(g) cannot be big and different from N(p) except 
for twisting. More precisely, let 5’ be the set of Dirichlet characters of 
order a power of 1 and of conductor dividing the product of primes p # 1, 
p 1 N(g). We will prove 

0.2. THEOREM. There exists &E E”’ such that N( g@ xb) divides 
N( g @ x’) for any x’ E 3. Zf ps II N(gO xb) for a prime p # I then p’ II N(p) 

unless s = 1, 2. 

In fact we can get more precise results: let rr = OPrcP be the automorphic 
representation of GL,(A) associated with g. 

’ September 87-Serre told me he is aware that this follows from Carayol’s work. 

133 
0022-314X/89 $3.00 

Copyright c 1989 by Academic Press, Inc. 
All rights of reproductmn in any form reserved 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82575799?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


134 RON LIVNk 

0.3. PROPOSITION. The local component xP is ordinary cuspidal in the 
case s = 2 of Theorem 0.2. The case s = 1 breaks into a principal series sub- 
case and a special series subcase. 

Remarks. 1. It is well known that rep is special if and only if the image 
of inertia under the corresponding local Galois representation is infinite. 
Equivalently this happens if and only if there is a unique Dirichlet charac- 
ter x ramified only at p such that pth Fourier coefficient of (the newform 
corresponding to) f@x is non-zero. In the principal series there are two 
such x’s and in the cupsidal case, none. 

2. Our theorem says that the problem of reducing the level in the Serre 
conjecture at a prime p # 1 is trivial, namely reduces to local con- 
siderations, except in the cases given in Theorem 0.2. In some of these 
remaining cases the problem is solved: Ribet [R] treats the special case, 
when the weight is two, the character is trivial, and under some additional 
technical assumptions (but he allows p = 1). Ribet’s methods are global and 
highly non-trivial. A key ingredient in his approach is certain com- 
binatorial relations between Hecke modules over Z coming from Shimura 
and modular curves. Such relations were in fact first observed in joint work 
with Jordan [Jo-Lil] and conversations with Jordan and Ribet. To obtain 
them one goes through the quaternion algebra B over Q of discriminant 
pro, and they can be viewed as a refinement of the Langlands’ correspon- 
dence between various twisted forms of G&(Q), which only relates Hecke 
modules over Q. In joint work with Jordan analogous combinatorial 
relations are developed for the special case, arbitrary weight, and more 
general quaternion algebras [Jo-Liz]. Moreover, as the image of the 
correspondence above consists of the holomorphic forms which are special 
or cuspidal at p, one may hope to deal with the cuspidal case s = 2 above 
using B as well. 

The organization of the paper is as follows. In Section 1 we sketch an 
elementary proof for the equality of the Swan conductor of an I-adic 
representation and its reduction. The local results we need are given in 
Section 2, and the (easy) globalization occupies Section 3. In Section 4 we 
briefly recall the dictionary between Galois and automorphic represen- 
tations and deduce 0.1, 0.2, and 0.3 from results on Galois representations. 

1. LOCAL THEORY : GENERALITIES 

Let p and 1 be distinct primes and K a finite extension of Q,. Put 
D = Gal(K/K) and let ZC D be the inertia subgroup. Let E be a finite exten- 
sion of Q, with ring of integers 0, maximal ideal A, and residue field IF. Let 
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W be a d-dimensional vector space over E and o: D + GL( W) a con- 
tinuous representation. Fix an O-lattice L c W preserved by w(D). Such an 
L always exists since D is compact. Let W, = L/AL and let p : D-+GL( W,) 
the corresponding reduction of cu. The conductor exponents of o and p are 
defined in [S2, S33 : 

n(o) = n,(w) = dim W/W”(‘) + sw(oJs) 

n(p) =n,(p)=dim W,/W$‘)+sw(p). 

Here ass: D + GL(Gr W) is the semi-simplification of o with respect to the 
filtration defined by Grothendieck’s nilpotent endomorphism [S2, S-T]. 
Put 52 = o”“(Z). As Q is finite the Swan conductor is defined as 

OcI dim(Gr W/(Gr W)ak) 
sw(dS)= 1 

k=l [Q:Q,] ’ 

where Gr W is the graded space associated to the filtration, and Q, is the 
kth inertia subgroup of Q. Likewise, 

with R = p(Z) and R, its higher inertia subgroups. 

1.1. PROPOSITION. SW(~)= sw(wss). 

For convenience, we sketch the proof of this well-known fact (see, e.g., 
[S2, 2.11). We will need the equally well-known 

1.2. LEMMA. The Swan conductor is invariant under tame extensions. 
More precisely, let E/K be a finite Galois extension of local fields with 

residue characteristic p and E’ an intermediate extension, Galois over K with 
E/E’ tame. Let V be a finite dimensional vector space and p’ : Gal(E’/K) + 
GL( V) a representation. Then p’ defines a representation p: Gal(E/K) + 
GL( V) trivial on Gal(E/E’), and we claim that SW(~) = sw(p’). 

Proof For i> -1 let Gi= Gal(E/K)i, G/ = Gal(E’/Kh, and G/‘= 
Gal(E/E’), be the higher inertia groups. As E/E’ is tamely ramified, the 
ramification index 

e’=e(KIE)= 166’1 = (Ker(G,+Gd)[ 
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is prime to p, so that G, ‘v G,‘. For s E G ~, and CJ E G L, its restriction to 
E’ put 

i(s)= 1 +sup{kIs~G~}, 

i’(a)= 1 +sup{kla~G;}. 

By [Sl, IV 1, Proposition 31, 

since in the sum above SCI E G, iff a E G[ and sa E G, iff a = 1. Equivalently 
GP,i+j~G,!+l for i30, 1 dj6e’. Thus, 

cc, P’ dim( v,/j/d”e’<+,)) 

sw(p)=;;o j;l [G,: G,,;+j] 

~0 e’ dim( J//J/~(G;+I)) 

=i;oi-’ [G;: G;, , , = swb’)’ 

Proof of 1.1. Grothendieck’s filtration induces on L an w-invariant 
filtration with o-free quotients (Gr L)i and by reduction we get a represen- 
tation pss: D + GL(Gr We). Since p”” is the semi-simplification of p with 
respect to the reduction of Grothendieck’s nilpotent homomorphism, p”“(Z) 
is a quotient of R. As the kernel R + p”(Z) is upper triangular with respect 
to the filtration it has an I-power order, so that the extension RR/jr?=(‘) is 
tame. By the lemma sw(p,)=sw(p”“), where p, is p” composed with the 
projection p(D) -i p”“(D). 

Likewise, p”“(Z) is a quotient (by reduction) of Q, and the kernel of this 
quotient map is a finite subgroup of the pro-l group Ker(GL(Gr L) -+ 
GL(Gr We)). It is therefore tame, and we can use the lemma to get 
sw(p”“)=sw(p), where p2 is p” composed with the projection 
o”“(D) + p”“(D). 

Now let P be the wild inertia subgroup of D, namely the pro-p Sylow 
subgroup of I. As p # I it follows that w(P), . . . . p,(P) are all isomorphic, 
and that the spaces of invariants of corresponding subgroups of these 
groups have equal dimensions. We get that corresponding terms in the 
sums defining SW@,) and sw(cY) are equal. Hence sw(pz)=sw(wu). 
Likewise sw(pi) = SW(~). The proposition follows. 

1.3. Remark. One can give a slightly different proof of 1.1 and 1.2 using 
the upper numbering of the inertia groups. One then has to show that 
SW(O) is invariant under semi-simplification. 
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2. THE LOCAL THEORY IN A SPECIAL CASE 

Keeping the notation of Section 1 we now suppose that K= Qp, and 
d = dim V = 2. We may suppose W = E2, L = 02. Let P c Z be the wild 
inertia subgroup. We can and will identify Z/P E & + p &( 1) and denote by 
Q the subgroup of Z containing P such that Q/P2 I&,,,, Z,( 1). Let 
Z.I~ c Q’p be the group of pth roots of 1. 

2.1. PROPOSITION. n(w) 2 n(p). 

Proof: Clearly dim W”“‘< dim W $‘). Now use the definitions of n(p), 
n(o), and Proposition 1.1. 

2.2. PROPOSITION. Zf p(Q) # (13 there exists a character x: D -+ 
GaUQ,(~,YQ,) + 0 x with trivial reduction such that 

n(o) Z n(w 0 x) = n(p 0 x) = n(p). 

Proof As before p(Q) g o(Q), since Ker(GL,(O) + CL,(F)) is a pro-l 
group, and the spaces of invariants of corresponding subgroups have 
equal dimensions. Moreover sw(wss)= SW(~) by 1.1. If W;(Q)=0 then 
n(p) = 2 + SW(~) = n(w) and we take x = 1. If not, necessarily WpCQ) is one 
dimensional ( W p(Q’= W*p(Q)=l). As Q is normal in D and p(Q) has 
order prime to 1 we may write in terms of a basis for L 

where x,,x2: D-+Ox are suitable characters with xi(Q) = ( 1 } and 
x2(Q) # { 1 }. If n(o) # n(p) then xi(Z) # { 1 >, but its reduction 2, : D + F x 
is unramilied. Hence x, = x,x, where x,, is unramified whereas x, factors 
through Gal(Q,&)/Q,) and has trivial reduction. Take x = x;‘. Then 
dim u/(w@Xx)(‘) = 1 = dim W$O so n(o) > n(o 0 x) = n(p). 

From now until the end of’the section we suppose that p(Q) = {l}. Let 
K be the quadratic unramilied extension of Q,, and put Gal(K/Q,)= 
{ 1, r~}. Let Ep be the set of characters x: D + 0 x which factor through 
Gal( a,(p,)/Q,) and have trivial reduction. 

2.3. PROPOSITION. With the above notation assume 

a. P(Q)= {l), 
b. n(o)<n(o@x)for any xezp, 

C. o is ram$ed, 

Then exactly one of the following cases occurs: 

64113112.4 
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1. p - 1 (mod I) and in a suitable basis for W, o = (2 :J, where 
x~,x~:D-*@~ are characters, x, is unramtfied and x2 1 I has a finite, l-power 
order, In this case n(o) = 1 and n(p) = 0. 

2. In a suitable basis of W, co = (3 ,:), where cx I I # 0 and x1, x2 are 
unramtfied characters such that x1 ~2 1 maps a Frobenius element to p. Then 
n(u) = 1, n(p) = 0. 

3. p = - 1 (mod I). There exists a tamely ramified character 1 of 
Gal(QJK) whose restriction to inertia has a finite, l-power order. Here 
w E ind(Gal(oJK), D, 1) and n(w) = 2 > n(p). 

Under the Langiands correspondence (see Section 4) Cases 1, 2 and 3 
correspond to the principal, special, and cuspidal cases, respective@. 

2.4. EXAMPLE (for Case 3). Let w  be the 3-adic representation of 
G = Gal(Q/Q) associated with the elliptic curve 75A in the Antwerp tables 
[A IV]. Let w5 be the restriction of w  to a decomposition group 
D 2: Gal(&P,/Q,) for 5 in G. Let p: G + GL,(E,) and ps: D + GL,([F,) be 
the reductions of o and us, respectively. Then ps is at most tamely 
ramified, since IGL,([F,)I =48 is prime to 5; if ps were unramified, E[3] 
and hence E would have good reduction at 5, since E has potential good 
reduction (see [S-T, Corollary 23). Hence ps is actually ramified. The 
Kodaira type of the special fiber E x 8, is IV, so that the N&on model at 5 
is G, x z/32. Hence E x F, [ 31’ E z/32, where I is the inertia subgroup of D. 
It follows that p(l) = {(A 7 )} in a suitable basis, and we see that n(p,) = 
1 + sw(p,) = 1 < 2 = n(w,). 

2.5. Remark. Note that (E([F,)I = 1, so that the characteristic 
polynomial of Frob, is t2 - 2t + 2. Hence p(Frob,) had order 8 and deter- 
minant - 1. The image p(G) must therefore be all of GL,(lF,); in particular 
it is geometrically irreducible; Serre’s conjecture indicates that p comes 
from a modular form in S,(T,(15)), and this is indeed the case-the 
representation 0’: G --t GL2(Q3) given by the Tate module of X,,( 15) has 
the same reduction p. Note however that w(l) is finite, whereas w’(l) is 
not ! 

Proof of 2.3. Let fi E I be a topological generator for Z/Q 2 Z,( 1) and 
FED a Frobenius element. Put u = w(6), F= o(F). Then FuF-’ = up. The 
set { ;I-,, A,} of the eigenvalues of u is therefore preserved under AH Ap. If 
2, = A2 then 2, = 1. Otherwise we could twist by an appropriate x E 3, to 
decrease n(u), so that by b and c, A, = A2 = 1, u is unipotent # 1, and we 
find Case 2. If 1, #I, but np = A, (so that @ = J.,) we can twist again by a 
suitable 1 E .?p to decrease n(w) unless I, or A2 are 1. We may assume 
I, = 1. Then 2; = 1, # 1 and A2 has an I power order, so I1 (p- 1). This is 
Case 1. If A:, = II, # Ai we get Case 3 similarly. 
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3. ~-DIMENSIONAL REPRESENTATIONS OF Gal(&P/Q) 

Let 1, E, and 0 be as before and let W be a 2-dimensional space over E. 
Consider a continuous representation 

w  : G = Gal( a/Q) + GL( W). 

Let L c W be an O-lattice preserved by w(G) and let p : G + GL( W,,) be 
the corresponding reduction. Let A4 be the product of the primes dividing 
N(o), pM the group of Mth roots of 1 in &a, and put 

Z= {x: G + 0 x 1 x factors through Gal(Q(p,+,)/Q) 

and has trivial reduction). 

3.1. PROPOSITION. There exists a character x0 E .Z such that N(oQ x0) 
divides N(w @ x) for any x E Z. We have N(p) I No 0 x0). V n,(o 6 x0) Z 
n,(p) for such a x0 then the restriction op = o 1 Dp of o to a decomposition 
group D, z Gal( 0,/Q,) IS one of Cases 1, 2, or 3 of Proposition 2.3. 

Proof: This is an evident globalization of 2.3. The only point con- 
cerning the twist by x0 is to observe that Z”r eplM .Zp canonically, with Ep 
as in Section 2. 

4. PRWF OF 0.1, 0.2, AND 0.3 

Let g E S,(N, E) be a newform. Jacquet and Langlands associated to g an 
automorphic representation rcg = 0, rrg,p, where rr,, is an admissible, 
irreducible representation of GL,(QP,). They defined, via equality of L and E 
factors, a correspondence between such local representations x~,~ and 
F-semisimple representations of the Weil-Deligne group WD(Q,) of Q,, 
and started a proof, finished by Tunnell, that this correspondence is bijec- 
tive [De2, Ja-La, Tu]. Moreover, representations of WD(0,) are in bijec- 
tion with I-adic representations of Gal(Q$Q,) for any I # p. On the other 
hand we also have the I-adic representation erg of Gal(Q/Q) associated to g 
by Deligne. Carayol proved [Car], by completing the previous work of 
Deligne, that the F-semisimplitication bg,p of the restriction of bg to a 
decomposition group D, 2 Gal(&e,/Q,) corresponds as above (I # p) 

to %,P, 
The resulting correspondence between irreducible admissible represen- 

tations of GL,(Q,) and F-semisimple I-adic 2-dimensional representations 
of Gal(o/Q,) indeed relates to Cases 1, 2, and 3 of Proposition 2.3 prin- 
cipal, special, and cusidal representations, respectively (lot. cit.). Moreover 
the sets B of Section 4 and E”’ of Section 0 correspond under class field 
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theory. As this correspondence is compatible with twists corresponding 
under class field theory, Theorem 0.2 and Propositions 0.1 and 0.3 follow 
immediately from Proposition 3.1 and the following 

4.1. LEMMA. Let N= nP pnpcn’ be the factorization of the level of g. 
Thenfor PZL n,k)=n,(o,,). 

Proof This is well known. It follows from the theory of the new vector 
that n,(g) is the conductor exponent of rcgTp (see, e.g., [Cas] or [De2]). 
On the other hand the formalism of the Weil-Deligne group [De3, Ta] 
shows that the s-factor of 0g.p has the form ~(a,,~, s)= 
(const # 0) p Psnp(Ofip’. By the defining property of the Langlands correspon- 
dence, we are reduced to a problem in the representation theory of 
GL,(Q,): to show that the exponent of the conductor in the sense of the 
new vector of 7rR.p is the exponent occurring in the E factor ~(rr~,~, s). This 
equality is frequently described as well known, but the author was initially 
unable to find a proof in the literature. However, a very elegant proof of a 
more general result is given in [J-PS-S]. 
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