P173

Microwave use brings significant advantages to histoprocessing of orthopaedic tissues

E. Rossomacha¹, C.D. Hoemann³, A. Chevrier², A. Shive²; ¹Product Development, Bio Syntech Canada Inc., Laval, Canada, ²Chemical Engineering, Ecole Polytechnique de Montreal, Montreal, Canada, ³BioSyntech Canada Inc., Laval, Quebec, Canada

Purpose: Histology plays a critical role in cartilage repair research. However, routine manual histoprocessing for orthopaedic tissues remains laborious and time consuming and requires toxic chemicals. The current study investigated the ability of microwave technology (Milestone) to process osteochondral and synovial samples, and compared histological quality and reproducibility to standard manual histoprocessing.

Methods and Materials: 8 rabbit femoral articular cartilage and patellar synovial tissues samples and 3 human osteochondral samples were decalcified, trimmed, and each half subjected to either standard manual or microwave histoprocessing in paraffin. Embedded osteochondral sections were sectioned to 5 µm and either stained with Safranin-O/Fast Green or immunostained for collagen type II. Synovial sections were stained with H&E.

Results: Microwave processing substantially decreased processing time from 46 to 3.25 hours for cartilage, and 8 to 3.25 hours for synovial tissue, without the use of toxic xylene and toluene. Both methods produced high quality tissue sections that underwent minimal shrinkage, contained very few artifacts, and did not exhibit swelling of connective tissue fibers. Cartilage zones contained chondrocytes with good morphological characteristics and the subchondral bone contained osteoclasts with few morphological alterations. Cartilage GAG staining intensity observed with Safranin-O and Fast Green staining kits was comparable for both manual and microwave histoprocessing methods. The latter was not associated with an increase in the number of osteoclasts. Microwave processing preserved bone marrow structures and allowed differentiation between marrow cell types.

Conclusions: Microwave histoprocessing consistently produced high quality, reproducible and equivalent histological results when compared with routine manual histoprocessing for both osteochondral and synovial tissues samples. Microwave use, however, demonstrated significant benefit through much shorter histoprocessing times in a safer environment.

P174

Effect of Intraarticular Growth Factor Injections on Cartilage Repair in a Rat Model of Acute Chondral Injury

M.H. Griffith¹, T. Wanich², K. Osusky³, G. O’Shea⁴, X. Yang⁵, M.P.G. Bostrom⁶; ¹Hospital for Special Surgery, New York City, New York, United States of America, ²Orthopaedic Surgery, Hospital for Special Surgery, New York City, United States of America

Purpose: To evaluate the effect of intraarticular injections of growth hormone and insulin-like growth factor-1 on cartilage repair in a rat model of partial thickness cartilage injury.

Methods and Materials: Thirty-five Sprague-Dawley rats were used in this study. Partial thickness cartilage injuries were created in the lateral femoral condyle of rats by a micronet device. Rats were divided randomly into 3 groups. Group 1 received 0.1 mL saline, group 2 received 0.1 mL rhGH, and group 3 received 0.1 mL rIGF-1. Tissue was harvested from the injury site and cultured for 6 weeks with DMEM 10% FBS in agarose in a humidified incubator at 37°C and 5% CO2.

Results: At 6 weeks, cartilage samples from all groups were analyzed for cartilage content, using histological techniques. No statistically significant differences were found between the groups in terms of cartilage content.

Conclusions: This study demonstrates that insulin-like growth factor-1, when injected into the joint, enhances cartilage repair after acute injury. Growth hormone showed a trend towards producing higher cartilage scores compared with a saline control but this was not statistically significant. Intraarticular growth factors may have a role in enhancing cartilage repair after partial-thickness chondral injury.

P175

Administration of TGF beta-1 during the expansion of human articular chondrocytes may trigger the ontogenesis of endochondral bone formation in the cultured cells

R. Narcisi¹, P. Giannoni¹, R. Arbico¹, A. Muraglia³, V. Ullivi¹, R. Cancedda⁴; ¹Deso.s.f.g., University of Genova, Genova, Italy, ²Biorigen srL, Biorigen srL, Genova, Italy, ³Nat. Inst. Cancer Research, Lab. Regenerative Medicine, Genova, Italy, ⁴Nat. Cancer Res. Institute, Lab. Regenerative Medicine, Genova, Italy

Purpose: Cell-based cartilage resuracing (ACR) requires the ex-vivo expansion of autologous articular chondrocytes. Defined culture conditions have been devised to minimise phenotypic changes consequent to the loss of a 3D environment. However these culture conditions must be carefully assessed to avoid reactivating the ontogenesis of endochondral bone formation in dedifferentiated articular cells. Interestingly, in proliferating cultured chondrocytes, TGFβ-1 regulates the expression of cartilage proteins but also contributes to the differentiation potential of those ex-vivo expanded cells. We therefore evaluated if TGF administration could unlock the immature articular stage and reactivate the endochondral ossification fate in cultured human articular cells.

Methods and Materials: To this purpose human primary articular chondrocytes were expanded in serum-free Medium (SF), with or without TGFβ-1 (TGF). Cell aliquots were maintained in alginate or as micromasses for immunocitochemistry and TUNEL analysis, or replated in osteogenic medium. RT-PCR and mineralization assays were performed after the expansion phases and the osteogenic induction, for both a single and a double amplification conditions.

Results: In chondrogenic 3D culture systems, TGFβ-expanded cells showed a partial loss of matrix components, as assessed by Alcian blue, anti-aggrecan and anti- type II collagen immunocitochemistry, and TGFβ-1 also allowed the presence of apoptotic cells, paralleling a reduction of BCL-2 levels. After osteogenic induction, TGFβ-expanded cells strongly mineralised, displaying an increased osteocalcin level.

Conclusions: Exposure to TGFβ-1 triggers the onset of the endochondral maturation that may lead, under histological conditions, the cells still able to undertake either the articular or the endochondral differentiation. The latter fate is clearly detrimental to ACI attempts.

P176

Subperiosteal injection of growth factors improves in vitro periosteal cartilage formation

J.S. Fitzsimmons¹, M.E. Capser², H. Chung³, J. Schagennmann², T.J. Ruesink², S.W. O'Driscoll², G.G. Reinholt²; ¹Cartilage & Connective Tissue Research, Mayo Clinic College of Medicine, Rochester, MN, United States of America, ²Cartilage & Connective Tissue Research, Mayo Clinic College of Medicine, Rochester, MN, United States of America, ³Department Of Orthopedics, Mayo Clinic, Rochester, United States of America

Purpose: To determine the potential of subperiosteal injection of TGF-B1 and IGF-I, alone or in combination, to enhance in vitro periosteal cartilage formation and overcome the age-related decline in chondrogenic potential.

Methods and Materials: 111 male New Zealand white rabbits (6 months, 1 year, or 2 years old) were anesthetized, injected (subperiosteally) with TGF-B1 (20 or 200ng), IGF-I (0.2 or 2 mg), TGF-B1 plus IGF-I (200 ng + 2 mg), or vehicle in the medial proximal tibia. Rabbits were sacrificed after 3, 5, or 7 days. Periosteal explants were harvested from the injection sites and cultured for 6 weeks with DMEM 10% FBS in agarose suspension with 10 ng/mL TGF-B1 for the first 2 days. The explants were weighed, embedded in paraffin, sectioned and stained with Safranin O/fast green. Cartilage yield (% area) and total cartilage (mg) were determined by histomorphometry. Results were analyzed using 1, 2, or 3-factor ANOVA and means comparisons where appropriate.

Results: Injection of 200 ng TGF-B1 or the combined treatment of TGF-B1 plus IGF-I significantly increased cartilage production in all age groups, but not at all time points (p<0.05). IGF-I alone did not significantly enhance cartilage production in any group. However, a synergistic effect of TGF-B1 plus IGF-I was observed in the 2 year-old rabbits in the combined treatment group (p>2-fold increase over TGF-B1 only).

Conclusions: These studies strongly suggest that it is possible to enhance the chondrogenic potential of periostea by a one-time injection of growth factors, specifically TGF-B1 and TGF-B1 plus IGF-I.