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ABSTRACT 

We discuss an extension of a theorem which is apparently due to Feingold. Both 
the theorem and its extension follow mutatis mutandis from the corresponding 
material associated with the Bauer-Fike theorem. Feingold made no claims for his 
result and indeed referred to it as trivial. Although it proves to be rather disappoint- 
ing, an understanding of the source of its weakness is instructive and leads to related 
techniques which are of greater value. 

1. THE BAUER-FIKE THEOREM 

The main topic of this paper is a result due to Feingold (oral communica- 
tion) which is a simple generalization of the Bauer-Fike theorem [l]. Since we 
wish to make some comparisons with the latter, we begin with a brief 
description of it and of its limitations. 

If A is an n x n matrix with linear elementary divisors, then there exists a 
nonsingular X such that 

YHAX = X-‘AX = diag(hi). (1.1) 

The columns of X and Y are right-hand and left-hand eigenvectors 
tively. We are interested in inclusion domains for the eigenvalues of 
where llEl/ = 1 in some norm and TJ >, 0. From (1.1) we have 

respec - 
A+qE 

XP’(A + VE - X1)X = diag(X, - X) + qX-‘EX, 
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and for X to be an eigenvalue of A + rlE the matrix on the right of (1.2) must 
be singular. There are two cases: 

(i) A = Xi for some i. 
(ii) X # Xi for all i. 

In the second case diag(X, - h) is nonsingular and singularity in (1.2) 
requires that 

Z+rZ[diag(hi-A)] P’Xm’EX (1.3) 

be singular, giving 

mill(h, - A( < ?~(Ix’~~‘ll llxll = TJK(x) 0.4) 

for any norm in which 

I]diag(a,) I]= maxIail. (1.5) 

This is true of the Holder norms. The relation (1.4) is obviously satisfied in 
case (i), and hence in either case all eigenvalues lie in the union of the discs 

Ixi - A( < qK(X). (1.6) 

There is some freedom of choice in the columns of X, but when X has 
been chosen Y is determined uniquely from the relation Y H = X I. Even 
when A has simple eigenvalues we can scale each column of X indepen- 
dently and arbitrarily; when A is derogatory there is an even greater freedom 
of choice. The proof shows that the inclusion domain is the union of the discs 

IX,--X(<nminK(X), (1.7) 

where the minimum is over all permissible X. 
In [7] we obtain a bound for K(X) in terms of the sensitivity factors l/s, 

as follows. Let xi and yi be scaled so that 

IlYillZ = llxtll!2 = l7 si = yyx, > 0. 

Now scale the columns of X and Y to give X and Y with 

(1.8) 

fi = X,/sy2, fji = yi,/sy2, (1.9) 
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and we have then 

This gives as the inclusion domain the union of the discs 

(1.11) 

A weakness of the result is that all the discs are of the same radius. If one 
of the Ai is very sensitive, all of the discs are correspondingly large, even 
those associated with very insensitive eigenvalues. However, if we are inter- 
ested in the smallest perturbation for which two discs coalesce, this is usually 
not too serious. Commonly coalescence first occurs for the two most sensitive 
eigenvalues, and for these the Bauer-Fike discs are not unduly large. Accord- 
ingly the theorem often provides a very realistic lower bound for coalescence. 
For example if A is of order 5 with 

A, = 1 - 10-3, x,=1, x,=2, h,=3, x,=4, (1.12) 

sl= 10-5, s2 = lo-“, s3 = lo-‘, sq = 10-1, ss = 1, (1.13) 

then 

(1.14) 

and there is very little contribution from s3 to s5. In such examples the lower 
bound is almost eqwZ to the minimum. Since the si are commonly the 
primary output of an eigenvalue procedure, the theorem has, in our experi- 
ence, proved to be surprisingly useful. 

The Bauer-Fike theorem is applicable only to matrices with linear elemen- 
tary divisors. However, it is instructive to consider what happens in practice 
when one is given a matrix A (which happens to be defective) and attempts 
to determine its distance from the nearest defective matrix. Most likely the 
QR algorithm will be applied to determine a unitarily similar quasi-triangular 
matrix T. It may happen (though usually it will not) that the computed T - 
itself has a multiple eigenvalue, in which case T is either defective or 
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arbitrarily close to a defective matrix. (The latter will be true if T is merely 
derogatory.) If 71 is the bound for the effect of rounding errors in the QR 
algorithm, the conclusion is that there is a matrix F (with J/F/] < II) such that 
A + F is defective. 

Because of the effect of rounding errors it is very likely that 7 will not 
have a multiple eigenvalue, and indeed it may not even have any pathologi- 
cally Jose eigenvalues. In this case the Bauer-Fike theorem does apply to T 
and provides a lower bound qi for the perturbations giving a coalescence in 
its eigenvalues. If A really is defective, the computed q1 must satisfy vi < 11, 
thus giving zero as the lower bound for the perturbations in A inducing 
coalescence, since the lower bound cannot be negative. It might be felt that 
this is not a very impressive result. However, one would certainly regard the 
emergence of such a small vi as highly indicative. (It should be emphasized 
that one cannot prove that A is exactly defective via a transformation that 
involves rounding errors.) 

2. FEINGOLD’S THEOREM 

Feingold has suggested a generalization of the Bauer-Fike theorem which 
can be applied to defective matrices. (This generalization follows naturally 
from the techniques developed by Feingold and Varga [5].) Suppose now we 
have 

YHAX = XP’AX = diag(Aii), (2.1) 

i.e. A is blockdiagonalized via the matrix X. We may write 

x= [XI ( x2 1 ... 1 q> Y= [Y, / Y, ( ‘.’ 1 YJ (2.2) 

with conformal partitioning. Since Y HX = XY” = I we have 

YiHXi = I, Y,"X j = 0, I = c XiYiY (2.3) 

We shall assume that the Aii have disjoint spectra. Exactly the same 
argument as in Section 1 shows that for h to be an eigenvalue of A + TJE we 
require either that X must be an eigenvalue of some Ai, (and hence of A) or 

Z+ndiag(Aji-XZ))‘X-‘EX (2.4) 
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must be singular, giving 

(2.5) 

for any norm such that lldiag(Ki)ll = maxllKill. Hence all eigenvalues lie in 
the union of the domains 

(2.6) 

This is Feingold’s result, and from it one may deduce a result analogous to 
(1.11) as follows. 

The inequality (2.6) must hold for all acceptable matrices X. There is now 
a much wider choice for the Xi and Yi. The columns of Xi form a basis for 
the right-hand invariant subspace associated with the spectrum of Aii, while 
the columns of Yi form a basis of the corresponding left-hand invariant 
subspace. If Mi (i = 1,. . . , s) are nonsingular matrices of the appropriate 
dimensions, then 

X = Xdiag(Mi) and y = Ydiag( MiH) (2.7) 

are such that 

yHx”= diag(M,‘)YHXdiag(Mi) = Z (2.8) 

and 

fHAX = diag(M;‘AiiMi). (2.9) 

Hence corresponding to any set of Mi the corresponding Y and r? give a 
block diagonalization of A which is conformal with diag(A,,), the diagonal 
blocks being similar to the Aii. Notice that 

zifiH = X&M, ‘Y,” = xiYiH = pi, (2.10) 

where Pi is the projector associated with the ith left-hand and right-hand 
subspaces. 
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The projector is, of course, independent of the bases. We shall be 
particularly interested in the case when one of each of the pairs X, and Y, is 
an orthonormal basis. According as Xi or Y, is orthonormal we have 

IIy,l12 = lIpill or llxil12 = IIpil12’ (2.11) 

When Xi is orthonormal we write 

zi = IIPil(y2x,, Pi = IIPiljy2Y;; (2.12) 

when Y, is orthonormal we write 

xi = llPJy2xi, Pi = IIP,((yy; (2.13) 

and in either case 

Il~l1211Pl12 G CII’ill2’ (2.14) 

Since only scalar factors are involved, Xi, yi and Xi, Y, give the same set of 
A ii. Hence in the case when one of each of the pairs is orthonormal, our 
result becomes the following: 

All eigenvalues of A + qE lie in the union of the domains 

(2.15) 

When the block form is strictly diagonal, this reduces to (I.ll), since in 
that case lIPill = l/s,. At the other extreme, when there is only one block, i.e. 
A,, = A, we have X = Y = I, IlPll = 1, and the result gives as the simple 
inclusion domain for all n eigenvalues of A 

(2.16) 

Trivial though this is, I have found it the most useful of all results for dealing 
with illustrative examples. Its most impressive feature is its sheer economy. 
Not only are all eigenvalues of all A + tE with 11 El1 = 1 and 0 < t < q 
included in this domain, but every A within it is an eigenvalue of some 
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A + tE satisfying these conditions. Moreover, there is a rank-one perturbation 
which induces that X as an eigenvalue. (The nature of these perturbations is 
discussed in detail in [9].) 

At first sight the inequalities (2.15) are very attractive, especially in the 

important case when 

All Al2 
A= o 

[ 1 A . 
22 

(2.17) 

It is then natural to take 

x1= [I I OIH, Y,H=[ZI RI, 

x,=[ -RHl ZIHT Yz"= [o I II, (2.18) 

where 

A,, = A,,R - m,,, (2.19) 

so that Xi and Y2 are automatically exactly orthonormal. [Equation (2.19) has 
a unique solution when the spectra of A,, and A,, are disjoint.] The 

corresponding block diagonal form is precisely diag( Aii). Obviously \]I’,\] 2 = 
]I PSI1 2 = 11 P 11 2 (say), and we have as our inclusion domain the union of the 
domains 

and 

(2.20a) 

(2.2Ob) 

(By an elegant argument Demmel [3] has shown that 211 PII 2 may be replaced 

by IlPlla +Wll; - 1) ‘I2 but this is not of great significance in the current > 
context.) 

From (2.16) we see that the domain defined by (2.20a) is the inclusion 
domain corresponding to all perturbations of norm 2)]P]] 2n in A,, itself, and 
a similar comment applies to (2.20b). The disappointing feature of this result 
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is that these inclusion domains are often far larger than necessary, and in a 
sense the bound itself is rather misleading. 

3. TWO SIMPLE EXAMPLES 

The weakness of the bounds given in (2.20) may be highlighted by two 
simple examples. We consider first the matrix A of order 5 defined by 

X,=ha=X,=A,=&, h,=O, (3.1) 

where E is small, and we think in terms of the leading 4 x 4 matrix A,, and 
the trailing 1 X 1 matrix 0. The inclusion domain corresponding to A itself is 

,,(A-:r)-‘/, “’ 

and using the 1, norm for simplicity, this gives 

(3.2) 

(3.3) 

for all E for which the first row sum of ]( A - XI)-‘] is the maximum. 
In order to induce an eigenvalue at h = ~/2, for example, we need a 

perturbation which is (~/2)~ [ 1 + O(E)]; indeed, to induce an eigenvalue at 
any point ke where k = O(1) a perturbation of order E,’ is required. 

To apply (2.20) we require ]]P]]a, which is most simply determined via 
]]Z’a]]a. Since A,, is a one-by-one matrix, lIPa]] = l/s,, and from 

x;= (1, - E, E2, - E3, &4), y;= (O,O,O,O,I) (3.4) 

we have 

E4 1+0(&a) 

s5= 1+0(&a) ’ lIPlIe= e4 (3.5) 
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Hence the inclusion domains given by (2.20) are 

’ + ;“” . (3.6) 

The second of these is quite satisfactory. However, for values of X in 
which we are interested the first domain is essentially 

(A - &I4 1+0(&a) 

It-O(E) G211 E4 . 
(3.7) 

If it were sharp, that would imply that an eigenvalue could be induced at 
s/2 (say) by a perturbation of ~‘/2’, whereas we already know that it 
requires a perturbation which is essentially ~~/2’. In fact a double eigenvalue 
can be induced at E/S by a perturbation of precisely 44e5/55 = 0.08192E5 in 
the (5,l) element. It is easy to see quite rigorously from (3.3) that if we are 
using the 1, norm and E < 10m3, for example, then it is not possible to make 
the eigenvalue at A = 0 coalesce with one of the eigenvalues at A = E until n 
is almost as large as this. When T) = 0.081e5, for example, the domain 
containing X = 0 has reached out to a point between 0.17~ and 0.18~ while 
the domain containing h = E has reached out to a point between 0.23~ and 
0.22s. Notice that the second of the inequalities in (3.6) shows that us long as 
q is smaller than the smallest value which makes the two domains coalesce, 
the average speed of the eigenvalue starting at X = 0 is bounded by twice its 
original maximum speed, l/s,. However, the first domain is so absurdly large 
that this statement is weaker than it may seem. As is often the case, it is 
much easier to make sound deductions from the inclusion domain (2.16) for 
all n eigenvalues than to attempt to use the inclusion domains (2.20). 

Our second example exhibits the weakness of the result even more 
cogently. Consider now the matrix 

A= 

The eigenvalues are simple, and when E is small they are all very sensitive. 
(We assume below that e Q 10m3.) We have 
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so that h, is the most sensitive. Again for 11 PJI a we have 

Hence the inclusion domains are 

(3.10) 

(3.11a) 

(3llb) 

and again the second of these is satisfactory. 
The first is the inclusion domain for eigenvalues of A,, subject to 

perturbations bounded by 21)/s,. Now suppose TJ is infinitesimally small. We 
know that the maximum perturbation of Ai is q/si (i = 1,. . . ,4). Let l/s”, be 
the sensitivity factor of Xi (i = 1,. . . ,4) regarded as an eigenvalue of A iI. All 
we can deduce from (3.11a) is that the perturbation in Xi is bounded by 

_ ’ 

sSsi 

(3.12) 

However, we know that q/s, is itself larger than q/si, since X, is the most 
sensitive eigenvalue. The alarming weakness of the bound is now apparent. 
The factor 2/s, already more than accounts for the sensitivity of Xi (the 
factor 2 is a gratuitous insult), and yet it is being reinforced by multiplication 
with the sensitivity of Xi as an eigenvalue of A,,. In fact 

2?J/s,s, = o( l/E’)TJ, (3.13) 

compared with the true result 0(l/e4)n. The overestimate is strictly com- 
parable with that in the previous case. 

If we are interested in the smallest perturbation which makes h = 0 
coalesce with X = + E. the Bauer-Fike theorem gives a lower bound which is 
of the correct order of magnitude in E. The inclusion domain (2.16) for all five 
eigenvalues of A when working with the 1, norm is 

](P- &2)(X2- 4&2)X] 

l+lhl[l+IX+eel+I(x+zE)(h+E)I+I(x+ee)(xZ-E”)1] <n (3.14) 
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for values of A in which we are interested. For small E and X = O(E) the 
denominator in (3.14) is essentially 1 and the domain is effectively 

1(X - &)(h + &)(X - 2&)(h +2&)h(< 11. (3.15) 

For very small 77 this domain consists of five disjoint regions which are almost 
exactly circles centered on the Xi. These spread out as 9 is increased, the one 
centered on X = 0 expanding fastest (as we would expect from the si), and it 
reaches X = ~/2 and X = - .e/2 when n = 45~‘/32 = 1.41~~. At this stage 

the domain centered on E ( - E) has extended only to 0.598 ( - 0.59.s). If we 
are measuring perturbations in the I,, I,, or I, norms the domains coalesce at 

approximately X = + 0.54~ with a perturbation of approximately 77, = 1.42~~. 

(The value is actually very slightly different for the three norms.) 
For the I, norm the optimal perturbation to give coalescence at 0.54~ is 

q,E=q,[e,( - l,l,LLl)]r~ (3.16) 

and this “direction” for E gives the optimal perturbation for inducing an 
eigenvalue anywhere between 0 and E. For the I, norm the optimal perturba- 
tion is 

rl,E=q,e,(L -LLL1), (3.17) 

and again this direction of E gives the optimal perturbation for inducing an 
eigenvalue anywhere between 0 and E. For the I, norm the optimal direction 

is not quite so simply expressed. 
This topic is discussed in detail in [9]. It might seem surprising that the 

optimal E is so different in the I, and 1, norms. This is because it is the 
e5er component which is achieving almost the whole effect. In the 1, norm, 
for example, the other components contribute only to the denominator in 
(3.14). If they are omitted the domain reduces to that given in (3.15). 
However, the I, norm of E is not changed by including the other compo- 
nents. One has a slightly improved performance without increasing the norm. 
A similar comment applies to the 1, norm. 

It is salutory to remember that if the eigenvalues 0 and E are to be moved 
to coalescence via a continuously varying perturbation, then one or other 
must pass through a point X = eei8/2 for some value of 8. To induce any h 
as an eigenvalue the minimal perturbation in the 2, norm is given on the 
left-hand side of (3.14). Hence as a simple lower bound we have rl= 45~~/32. 
Similar comments apply to the coalescence of any two neighboring eigenval- 
ues of the five. The lower bounds obtained in this way are far superior to any 
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obtained from our extension of Feingold’s result, and to obtain them we do 
not need the (A - AZ)-’ in algebraic form. 

4. THE SOURCE OF THE WEAKNESS 

It is pertinent to ask, “What is the source of the weakness exhibited in 
these examples?” Essentially it is the fact that we replace an arbitrary 
perturbation in A itself by a related perturbation in each of the Aii. 
Unfortunately we obtain only a bound for the norm of this related perturba- 
tion. Now this bound is, in fact, quite sharp, but unfortunately it may happen 
that however we choose the perturbation in A, the derived perturbation in 
A ii is always special in that it is of a type to which the eigenvalues of A i i are 
comparatively insensitive. Our second example makes this self-evident. 

We now analyse the phenomenon more closely. Let us consider the 
matrix 

A=; ‘. [ 1 --E (4.1) 

Perturbations qE with q of order ~~ can induce perturbations of order E in 
each of the eigenvalues. Indeed, if we consider a random perturbation EWE, 
then the eigenvalues will be changed by quantities of order E unless the 2,1 
component is poorly represented in E. However, O(E~) perturbations in the 
1,l and 2,2 elements make O(e2) changes in the eigenvalues, while O(.s2) 
perturbations in the 1,2 elements leave the eigenvalues unchanged. A realis- 
tic bound for the norm of the perturbation in A will not be a reliable guide to 
the perturbations in the eigenvalues when there is a danger that the direction 
of E is biased. 

That this can happen is perhaps most easily seen by considering the effect 
of an infinitesimal perturbation TJE in A on the block diagonalization defined 
by Equations (2.1) to (2.3). A complicating factor is that the perturbation in 
A ii is dependent on the form of “normalization” chosen for the perturbed 
invariant subspaces. The most convenient normalization for our present 
purpose is that embodied in the relation 

Xi(q)=Xi+ ~xj[~zjl+Tj2zj2+ -*], (4.2) 
j#i 

i.e., we hold fixed the component of Xi(~) in the subspace Xi. (This is 
analogous to the normalization used in connection with individual eigenvec- 
tors in [7, pp. 68-701. For some purposes it is more convenient to use a 
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normalization in which the perturbation in Xi is taken to lie in the orthogonal 
complement of Xi.) Equation (4.2) implies that 

YiHXi( q) = I. (4.3) 

Writing 

Ai, = Aii + VA’;) + q2A’i2i’ + . . . (4.4 

and equating coefficients of 7 in the equation (A + vE)Xi(q) = Xi( q)A,,( v), 
we have 

EX, + A c XjZjl = c XjZjlAii + X,A($ (4.5) 
j#i j#i 

Premultiplying with YiH and remembering that AX j = X j A jj, YjHXi = 0, and 
YiHXi = I, we have 

Y,“EX, = A’;/. (4.6) 

In conformity with our earlier policy we assume that Xi is orthonormal so 

that Ilri”lls = Ilf’illz, in which case we have 

ll’~/ll G IIYiHl1211El1211Xil12 = IIP,ll2. (4.7) 

The bound is attained when 

‘i 
E=- 

Ilpil12x” 
(4.8) 

(Similar results are obtained when Yi is orthonormal and IlXil1211Pillz.) Hence 
it really is true that perturbations bounded by 17 in A are “equivalent to” 
perturbations bounded by 171 I Pi II 2 in Aii. However, the E in qE is truly 
arbitrary; the corresponding perturbation in Aii is in the direction of YiHEXi. 
It can well happen that all such YiHEXi are very special. 

That is indeed true in both of the examples in Section 3. For the first 
example we have 

X1H=[ZI 01, YP=[ZI Tl, (4.9) 

where 

rH = [ee4, - eC3, &C2, - s-i], giving llPll12 = 1/.s4. (4.10) 
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For all unit E the maximum order of magnitude of the i, jth element of 
YYEX, is E-~+~. It is only the elements in the first row which can be 0(eP4), 
while the key element affecting the eigenvalues of A,, is that in the (4,l) 
position. However we choose E, this element is at most of order eP ‘. 

A similar argument applies to the second example, and indeed the orders 
of magnitude of the elements of all the key matrices are the same for the two 
examples. In the second example, where all rates of change are finite, it is 
evident that the factor l/P/l = l/s, already covers all the characteristics 
which make the other eigenvalues capable of “moving very fast.” In the 
bound 2/s5Si we are effectively counting some of these characteristics twice. 

When Ai, is a 1 X 1 block (i.e. an eigenvalue hi), Equation (4.5) reduces 
to the well-known result [6] 

dh. 
L=y;Eri, 
dq 

(4.11) 

where yi and xi are now the eigenvectors normalized so that y,“x, = 1 in 
conformity with the normalization YiHXi = I. (In [6] we used the normaliza- 
tion llyille = llxillz = 1 and y,“x, = si = l/lIZ’,lla.) As in the general case, the 
bound is attained when E = yixf/si. However, in the 1 X 1 case the per- 
turbation in the “matrix” really is the perturbation in the eigenvalue and we 
cannot have a weakness of the type described above. 

5. THE SIGNIFICANCE OF llZ’lls 

We have seen that the presence of the factor llZ’llz in (2.20) is rather 
misleading. However, there is a further weakness in that lIPlIz itself is a 
somewhat capricious quantity. Consider the matrix 

(5.1) 

where E is small and y << E. We shall be concerned with two cases: (i) k = i, 
(ii) k = 1, the latter being rather special in that the eigenvalues are symmetric 
about their mean value. The sensitivity factors of the four eigenvalues are 
l/si where 

s1 = 2ke2y, s2 = 2kE2y, s3 = (k + l)& sq = k2( k + 1)&l’, (5.2) 
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the first two eigenvalues being much the more sensitive. The lower bound 
given by the Bauer-Fike theorem for the perturbation needed to make X, and 
X, coalesce is almost exactly ke2y2. On the other hand, if y and - y are to 
move to coalescence via a real path, one of them must pass through 0, and 
since ]](A - 0. I)- ‘11-l = ke2y2, the perturbation required must be at least 
ke2y2. In fact a double eigenvalue may be induced at a point A = 0(X2/e) GC y 
(i.e. a point almost half way between _t y) by a perturbation ke2y2[1 + o(l)] 
in the (4,l) element. These results may be deduced simply (and quite 
rigorously) via the simple inclusion domain l/ ]I( A - AZ) - ‘11~ n. There is no 
essential difference between cases (i) and (ii), and indeed all comments 
remain valid for any k of order unity. 

For partition into two 2 X 2 blocks we have 

P,= [; ;], P2=[i -pl, 

and a rather tedious computation gives 

-- - 

when k=$. 
-- __ 

(5.3) 

(5.4) 

(This is, of course, true for a very wide range of values of k.) When k = 1, 
however, the (1,2) term in R is C&Z& zero, Hence 

lIPlIz = 0(1/~~) [case (91; lIPlIz = 00/E2) 

This difference is not matched by any corresponding 

[case (ii)]. (5.5) 

difference in the 
asymptotic behavior of the perturbations in the eigenvalues. Again the 
explanation is that the (1,2) element of R influences only the first row of 
YYEX,; the critical (2,l) element is quite independent of it. 

Perhaps it should be emphasized once again that easily the most effective 
way of dealing with coalescence in perturbed versions of the matrix in (3.1) is 
via the simple inclusion domain (2.16). For all X in which we are interested 
the first row sum of ]( A - AZ)- ‘1 is the largest and the inclusion domain for 
the 1, norm is 

IO - VW + d(A - 40 + w I < 17 

1+ o(1) 
1 , (5.6) 
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where the numerator comes from the (1,4) element of (A - Xl)’ and the 
o( 1) in the denominator comes from the comparatively unimportant elements 
(I, I), (I,2), and (L3). 

If, for example, k = +, q= E’, and E < 10P3, the minimal perturbation 
which makes A i and h, coalesce is of norm 0.177~~; they coalesce at 
X = 0.721s. (As we would expect, hi travels faster then hs.) A perturbation 
of norm 0.125~~ in the optimal direction 

E = [e,(l,l, - 1, - l)] r (5.7) 

brings the eigenvalue h, to 0.5s; the same perturbation takes X3 only to 
0.885~. The direction E is optimal for inducing an eigenvalue anywhere 
between s2 and E. The calculation to any required accuracy of the minimal 
value of rj giving coalescence is a simple matter. 

Notice that the average speed of h, relative to that of h, when the 
former has reached h = 0.5~ is higher than when they have reached coales- 
cence. This is because l/s, Z+ l/s,, so that X, initially moves much faster, 
but when they are about to coalesce they are moving at equal and opposite 
(almost infinite) speeds. Considerations of this kind usually simplify the 
problem of making initial estimates of the values of A giving equality in (5.6). 

The bounds (2.20) do give reasonably precise information when 11 Pllz = 
O(1). They then show that perturbations restricted to the form of 
77 diag(E,, E,) where E, and E, are conformal with A,, and A,, can be 
almost as effective as general perturbations in A. However, this comes as no 
great surprise. We would have expected a priori that in this case the 
eigenvalues of A,, and A,, would behave almost independently of each 
other. 

6. RELATED RESULTS 

In recent work Demmel [4] has presented a theorem which can be 
deduced directly from our version of Feingold’s theorem, though it is 
expressed in terms in which the relationship is not immediately apparent. 
Demmel’s theorem is specifically associated with the case when there are two 
blocks. It is expressed in terms of the I, norm and is therefore related to the 
bounds (2.20). Demmel’s theorem is 

diss2(al(All),a2(A22)) 2 
wh(Allp A,,) 

llPll2 + (IIW - v2. 
(f-3.1) 
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Essentially diss,( a,( A,,), us, A,)) is the minimal perturbation in A (mea- 
sured in the 2, norm) needed to make the domain associated with the 
spectrum of A,, just intersect the domain associated with the spectrum of 
A =. On the other hand sep,(A,,, A,) is the minimal perturbation of the 
form diag(E,,, E,,) which achieves the same result. Hence our extension of 
Feingold’s result expressed in these terms is 

(6.2) 

The factor ]]P]lz +(]]P]]i - 1)112 replaces the factor 21]P(], in our result, as 
mentioned in Section 2. Except when 1) P (I 2 = O(l), this gives only a marginal 
improvement. Of course the weaknesses we have discussed are equally 
present in Demmel’s theorem, and it is our opinion that expressing the result 
in terms of the highly implicit concepts diss,(u,, a,) and sep,( A,,, A,) 
tends to obscure these weaknesses. 

There is an earlier result of a related type due to Stewart [6] which may 
be expressed in the form 

diss, > 
.sedAlly 4,) 

Wll2 . 
(6.3) 

Here sep(A,,, A,,) is the smallest singular value of the matrix 

A,,eZ - IBAT,,. (6.4) 

This is the matrix of the system of linear algebraic equations derived from 
(2.19). Demmel’s result is always superior to that of Stewart and indeed often 
markedly so. 

7. COMMENTS 

Although Feingold’s result proves to be rather disappointing, an apprecia- 
tion of the source of its weakness is very instructive. The fact that it gives 
results based solely on norms of matrix perturbations is a serious shortcom- 
ing; the structure of a perturbation is of great importance. The bound 

I I ’ dXi 

dv 1 
- F = lIpill (7.1) 
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would not be nearly so useful were it not supported by the knowledge that 
the maximum rate of change is attained for a perturbation in the direction 
e”yiHxi for any value of 8. This simple result has made it, for us, one of the 
most useful for locating neighboring defective matrices and for determining 
the relevant perturbations. 

The insight that can be gained from the parameter ]]P,]] s is somewhat 
limited, and its use tends to deflect consideration from the invariant sub- 
spaces themselves. Our for-mulation of the bounds (2.15) was originally in 
terms of Xi and Y,, and indeed we have used ]]P,]]s only to facilitate 
comparison with related work of others. It is also worth noting that one 
cannot think in terms of Xi, Y,, or Pi until one has made the decision to 
associate the relevant eigenvalues. 

In a related paper [9] we discuss the coalescence problem in terms of the 
perturbation matrices themselves, and for this we have found the fundamen- 
tal inclusion domain ]](A - AI))‘]]-’ < TJ invaluable, particularly in associa- 
tion with the minimal rank-one perturbation needed to induce X as an 
eigenvalue. As has been indicated in this paper, results in terms of the 1, and 

L norms prove to be simpler (and often more instructive) than those in 
terms of the I, norm. 
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