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We consider the problem of minimizing the number of words in a code with the 
property that all words in the space F~ are within Hamming distance 1 from some 
codeword. This problem is called the football pool problem, since the words in such 
a code can be used in a football pool to guarantee that at least one forecast has at 
least n - 1 correct results. In this note we show that for 11 and 12 matches, there 
are 9477 and 27702 words, respectively, having the aforementioned property. 
Simulated annealing has played an important role in the search for these words. 
© 1994 Academic Press, Inc. 

1. INTRODUCTION 

Let  Fq  denote  the set of  all n-tuples ( X 1 ,  X 2 . . . . .  Xn) with xi~Fq= 
{0, 1 ... . .  q - 1 } .  W e  define the H a m m i n g  dis tance  d(x,y) between two 
words,  x E F~  and  y s F q ,  as the n u m b e r  of  coord ina tes  in which the two 

n n n-tuples  differ. A code C ~ Fq is said to c o v e r  Fq with cover ing radius  R 
if every e lement  in the space is within H a m m i n g  dis tance  R from at least  
one e lement  in C and  there  is at  least  one word  tha t  is at  d is tance  at  least  
R f rom every codeword .  Such a code is called a (q, n, ICI )R code. W e  
fur ther  deno te  

Kq(n, R) = m i n { M  [ there is a (q, n, M)R code}.  

The  index is usual ly  omi t t ed  in the b ina ry  case. O the r  no t a t i ons  tha t  
have been used include a(n,q)=Kq(n, 1) and  cr,=K3(n, 1). Few exact  
values for Kq(n, R) are  known,  so efforts have been concen t ra t ed  on 
improv ing  lower  and  upper  bounds .  U p p e r  bounds  can be improved  by  
explici t ly  cons t ruc t ing  cover ing codes.  In  this no te  we restr ict  our  a t t en t ion  
to the football pool problem, i.e., the case q = 3, R = 1. Dur ing  the years,  
this p r o b l e m  has been t reated,  e.g., in [2, 4, 5, 7, 11, 15, 18, 20] .  
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TABLE I 

K3(n, 1), n~< 14 

n K3(n, 1) # 

1 1 1 
2 3 1.667 
3 5 1.296 
4 9 1 
5 27 1.222 
6 63-73 1.302 
7 147-186 1.276 
8 393--486 1.259 
9 1048-1356 1.309 

10 2814--3645 1.296 
11 7767-10530 1.367 

9477* 1.230 
12 21395-29889 1.406 

27702* 1.303 
13 59049 1 
14 165775-177147 1.074 

The interesting values for K3(n, 1) are for n ~< 14, since in most countries 
the football pool coupons contain no more than 14 matches I-4]. In Table 
I best known upper and lower bounds (or exact values if these coincide) 
are shown for K3(n, 1), n~<14 1-15, 19]. Improvements obtained in this 
note are marked by a star. The densities of codes attaining the upper 
bounds are also given. The density of a (3, n, M) 1 code is 

# = (2n + 1) M/3". 

For  perfect codes # = 1, otherwise # > 1. It is known that the density of 
an optimal ternary code with covering radius one approaches 1 as n 
approaches infinity I-6]. Of course, that does not prove anything for small 
n, but Table I gives a good indication which attempts to improve upper 
bounds might succeed. 

2. NEW UPPER BOUNDS 

Simulated annealing (SA) [1, 9, 10] was first used in the construction of 
covering codes by Wille [20],  and has since then succesfuUy been used 
many times in the search for good covering codes [11, 14, 15]. SA works 
very well in the search for small codes. However, with an increasing num- 
ber of codewords the processing time required grows very fast, and the 
search for (3, 7, 186)1 codes discussed in [11] required many attempts and 
an extremely slow cooling rate. 
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To overcome this problem, we use a method that was first considered by 
Kamps and van Lint [8]  and later generalized by Blokhuis and Lain [2].  
Carnielli [3]  and van Lint, Jr. [12] independently generalized it to 
arbitrary covering radii. 

Let A = (I; M) = (al,  ..., an) be an r x n matrix where I is the r x r identity 
matrix and M is an r x (n - r) matrix with entries from Fq. For  s e F ;  we 
define 

Sa,R(S)= {s + ~, ~jaj l ~j~ Fq, ,{ j [  %.~0}1 ~<R}. 
j = l  

and say that s R-covers SA, R(S) using A. Consequently, A = I corresponds 
r r to covering in the traditional sense. A subset S of Fq R-covers Fq using A 

if 

Fq= U Sa.R(s). 
s E S  

TI-mOREM 1 (Carnielli [3, Theorem 2.1], van Lint, Jr. [-12, Theorem 
1.4.4]). I f  S R-covers Fq using an r×n matrix A = ( I ; M ) ,  then W= 
(w ~ Fq I Aw ~ S} covers Vq with radius R. [W[ = ISI. q , - r .  

Now SA can be used to find the codewords (S) and the matrix A (i.e., 
the M part), after first fixing the parameters of the spaces and IS[. The 
energy function is E =  IFq\Us~sSa.R(S)[ (cf. [11]).  If the value of this 
function reaches 0, a solution is found. Since we now have to find both 
codewords in the set S, and the matrix M, it is not immediately clear how 
to use SA in the search for a covering. In [11 ] the approach is to change 
both the codewords in S and the matrix M during the annealing process. 
This method has turned out to perform well only when there are very few 
words (less than about 10) in S. 

A closer analysis of this approach reveals that the code we construct 
using this method can be seen as a union of [SI translates of a linear code 
whose parity check matrix is A r. In the sequel we call two matrices non- 
equivalent if their transposes are parity check matrices of nonequivalent 
codes. If there is a small number of nonequivalent matrices A, all these 
matrices can be considered in finding a covering set S. The number of non- 
equivalent matrices of size r x n over Fq having no repeated columns and 
no columns of zero is denoted by ~q(n, r) (cf. [17]). Tables on ~z(n, r) 
were first calculated by Slepian [-16] (where Snr = ~b2(n, r) is used). Some 
values are also given by Sloane in [17]. 

The task of producing ~q(n, r), n > r, nonequivalent matrices having no 
repeated columns and no columns of zero is much more difficult than just 
enumerating them. Only for the simplest case (i.e., M has only one column) 
an easy explicit description of the classes can be given, qSq(n, n -- 1) = n - 2; 
M is then a single column vector with 2 to n - 1 nonzero positions. 
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In our approach we have speeded up the construction of nonequivalent 
matrices by only considering matrices whose transposes are parity check 
matrices for codes with different weight distributions (we consider the 
Hamming weight enumerator 1-13, p. 146]; i.e., the weight of a codeword is 
the number of nonzero components). Unfortunately we do not get all non- 
equivalent matrices, but as can be see from the results to be presented, the 
approach is quite promising. 

Having computed the nonequivalent matrices M it is possible to use SA 
in trying to find a set S for all these possibilities. With tens of thousands 
of matrices this method is very time-consuming. A considerable speed-up 
can be achieved by performing the first annealing with a fast cooling rate, 
after which matrices M that lead to bad coverings can be discarded. Repeti- 
tions of this procedure with slower and slower cooling rates and fewer and 
fewer matrices M hopefully lead to a covering. 

2.1. 11 Matches 

The densities in Table I indicate that the upper bounds for 11 and 12 
matches can be improved. To find suitable parameters, we maximize 
a < 100 (not to get too many codewords in S) such that a3k< b, where k 
is an integer and b is the best known upper bound. For  11 matches this is 
fulfilled for a = 43, k = 5. Following the procedure described earlier we have 
been able find a record-breaking code, and it turned out that covering 
codes could be found with a 6 x 11 matrix A and IS[ = 39. We were even 
able to find some symmetrics, which led to the following simplification of 
the results. Let [100001122oi] 

0 1 0 0 0 1 0 1 0 1 

A =  0 0 1 0 0 1 0 0 1 1 . 

0 0 0 1 0 0 1 1 0 1 

0 0 0 0 1 0 1 0 1 1 

THEOREM 2. 
F~ using A: 

The set S consisting of the following 13 codewords 1-covers 

01112 10101 20011 

01121 11010 21100 

01211 10220 20220 

02111 12002 22002 

02222. 
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In the following the word cover is used in the meaning "covered by S 
using A." 

LEMMA 1. For any Xl, x2, x3, x4, x5 ~ F3 the following holds. 

(a) (0, x2, x3, x4, xs) is covered iff  (0, x2, x4, x3, xs) is covered. 

(b) (1, x2, x3, x4, xs) is covered iff (2, x2, x4, x3, xs) is covered. 

(c) (xl ,  x2, x3, x4, xs) is covered iff (xl ,  xs, x4, x3, x2) is' covered. 

(d) (xl ,  x2, x3, x4, xs) is covered iff (x , ,  x4, xs, x2, x3) is covered. 

Proof We can see that (1, x2, x3, x4, xs)((O, x2, x3, x4, xs)) is a word 
in S or a column (or its multiple) of A iff (2, x2, x4, x3 ,xs)  
((0, x2, x4, x3, xs)) also is. Equivalences (a) and (b) are easily proved using 
this fact. We get (c) by noting that if (xl, x2, x3, x4, xs) is a word in S or 
a column (or its multiple) of A, so is (xl, xs, x4, x3, x2). Finally, (d) 
follows from the fact that if (Xl, x2, x3, x4, xs) is a word in S or a column 
(or its multiple) of A, so is (Xl, x4, xs, x2, x3). Especially note that 
2 . ( 0 , 1 , 2 , 2 , 1 ) = ( 0 , 2 , 1 , 1 , 2 ) .  | 

Some symmetries have been proved in Lemma 1. These will help the 
presentation of the proof of Theorem 2. 

Proof of  Theorem 2. We show that (Xx, x2, x3, x4, xs) is covered for all 
Xl, X2, X 3, X4, X5 ffF3. Lemma l(b) makes it possible to exclude the case 
x 1 = 2 immediately. We first consider the case x, = 0. By using words in S 
that have a 0 in the first coordinate and the I part of A the following cases 
are proved (in the parentheses the number of zeros, ones and twos in the 
last four coordinates are given): (0, 0, 4), (0, 1, 3), (1, 0, 3), (0, 2, 2), 
(0, 3, 1), (1, 2, 1), and (1, 3, 0). By further considering all columns of A that 
have a zero in the first position the following distributions of the values are 
also settled: (3, 0, 1), (3, 1, 0), (0, 4, 0), and (4, 0, 0). Due to Lemmas l(a), 
(c) and (d), the following results are enough to complete this case: 
(0, 2, 2, 2, 2 ) +  (0, 1, 2, 2, 1 ) =  (0, O, 1, 1, 0), ( 2 , 0 , 0 , 1 , 1 ) + ( 1 , 0 , 0 , 0 , 0 ) =  
(0 ,0 ,0 ,1 ,1) ,  ( 2 , 1 , 1 , 0 , 0 ) + 2 . ( 2 , 1 , 0 , 1 , 0 ) = ( 0 , 0 , 1 , 2 , 0 ) ,  ( 1 , 2 , 0 , 0 , 2 ) +  
(2 ,1 ,0 ,1 ,0 )  = (0,0,0, 1,2), (2 ,0 ,2 ,2 ,0)  + (1 ,0 ,0 ,0 ,0)  = (0 ,0 ,2 ,2 ,0) ,  
(2, 0, 0, 1, l ) +  (1, 0, 0, 1, 1)= (0, 0, 0, 2, 2), ( 0 , 1 , 1 , 1 , 2 ) + 2 . ( 0 , 1 , 2 , 2 , 1 ) =  
(0,0,2,2,  1), and (2, 0, 2, 2, 0 ) + 2 . ( 2 ,  0, 1,0, 1 )=(0 ,0 ,  1,2,2). 

We now turn to the case x~ = 1. By considering the I part of A (and 
all words in S) the following distributions of the values in the last four 
coordinates are proved: (0, 0, 4), (1, 0, 3), (0, 3, 1), (3, 0, 1), (1, 3, 0), and 
(3, 1, 0). The distributions (0, 2, 2), (2, 0, 2), and (2, 2, 0) are solved by the 
words in S that are of form (1, x2, x3, x4, X5) and the column (0, 1, 1, 1, 1) 
of A. To complete the case xl = 1, we can restrict ourselves to the following 
instances (cf. Lemmas l(c) and (d)): (2, 1, 1 , 0 , 0 ) + 2 . ( 1 ,  1, 1 , 0 , 0 ) =  
(1 ,0 ,0 ,0 ,0) ,  ( 1 , 0 , 2 , 2 , 0 ) + ( 0 , 1 , 2 , 2 , 1 ) = ( 1 , 1 , 1 , 1 , 1 ) ,  ( 0 , 1 , 2 , 1 , 1 ) +  
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(1 ,0 ,0 ,1 ,1 )  = (1, 1,2,2,2) ,  (2 ,2 ,0 ,0 ,2)  + (2 ,1 ,0 ,1 ,0 )  = (1,0,0, 1,2), 
(1, 0, 2, 2, 0 ) + 2 .  (0, 0, 1, 0, 0)=(1,  0, 1, 2, 0), (0, 1, 1, 1 ,2 )+2 . (2 ,  1,0, 1,0) 
= (1 ,0 ,  1,0,2), (2,0,0, 1, 1 )+(2 ,0 ,  1,0, 1 )=(1 ,0 ,  1, 1,2), (1,0, 1,0, 1 )+  

2. (0, O, O, 1, O)= (1, O, 1, 2, 1), (0, 2, 1, l, 1) + (1, 1, 1, O, O) = (1, O, 2, 1, 1), 
(1, 1,0, 1 , 0 )+2 . (0 ,  1, 2,2, 1)=(1,0 ,  1, 2,2), (2,0, 2, 2 , 0 ) + 2 - ( 1 , 0 , 0 ,  1, 1) 
= (1,0, 2, 1,2), and (1, 0, 2, 2, 0 ) +  (0, 0, 0,0, 1 )=  (1, 0, 2, 2, 1). This com- 

pletes the proof. I 

Theorem 1 applied to the result of Theorem 2 gives a new upper bound 
for the football pool problem for 11 matches. 

COROLLARy 1. K3(11, 1)~<9477. 

2.2. 12 Matches 
Immediately, K3(12, 1) ~< 3. K3(11, 1) ~< 28431, which improves on the 

old bound in Table I. Attempts to find better codes with parameters 
ISI = 12, r =  5, n =  12 have not succeeded. However, the aforementioned 
trivial upper bound can be proved by the fact that if S consists of the 
codewords in Theorem 1, 

- 1  0 0 
0 1 0 
0 0 1 
0 0 0 
0 0 0 
0 0 0 

We have been able to find a record-breaking 

then S'=S@{O, 1, 

0 0 0 1 2 2 1 0 0 -  
0 0 0 1 1 0 0 1 1 

0 0 0 1 0 1 0 1 2 

1 0 0 0 1 0 1 1 2 
0 1 0 0 0 1 1 1 1 
0 0 1 0 0 0 0 0 0 

2} 1-covers F 6 using 

code using this matrix. 

(1) 

THEOREM 3. 

Proof 
using (1): 

K3(12, 1) ~27702. 

Let r = 6  and n =  12. The following 38 codewords 1-cover F 6 

000102 012110 100210 111022 200210 212122 

001010 012221 100211 111111 200211 220112 

002120 020201 100222 112200 201121 221000 

010121 021002 101212 120120 202202 221001 

011120 022121 102021 121000 210100 221002 

012020 022212 110212 121001 212011 222220 

012101 100012. 

Theorem 1 gives that there are 38-3 6 =  27702 codewords that 1-cover F 12. 
Thus K3(12, 1)~<27702. | 
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3. DISCUSSION 

The densities for the new codes are 1.230 and 1.303 for n = 11 and n = 12, 
respectively. The code of length 11 is then certainly quite good, since it has 
the smallest known density for q = 3, R = 1, and 6 ~ n ~< 12. Attempts have 
without success been made to improve other upper bounds for these values 
of n. The case n = 9 is worth mentioning, many coverings that leave one 
single word in F36 uncovered have been found for IS[ = 50 using, e.g., the 
matrix 

- 1 0 0 0 0 0 1 1 1 -  

0 1 0 0 0 0 1 1 0 

0 0 1 0 0 0 1 2 1 

0 0 0 1 0 0 1 2 2 

0 0 0 0 1 0 1 0 2  

0 0 0 0 0 1 0 1 2 

This gives that K3(9, 1)~< 5 1 . 3 3 =  1377, and that there are 50.33=-1350 
codewords that cover all but 27 words in F39. 

We conclude this note by calling attention to the fact that the increasing 
performance of computers will in the future make more thorough attacks 
on the football pool problem possible, which probably will lead to further 
improvements. 
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