On the dimension of n-point sets

David L. Fearnley a,b,*, L. Fearnley a,b, J.W. Lamoreaux a,b

a Department of Mathematics, Utah Valley State College, Orem, UT, USA
b Department of Mathematics, Brigham Young University, Provo, UT, USA

Received 10 January 2002

Abstract

We give an affirmative answer to a question raised by Khalid Bouhjar and Jan J. Dijkstra concerning whether or not every one-dimensional partial n-point set contains an arc by showing that a partial n-point set is one-dimensional if and only if it contains an arc.

MSC: 54B05; 54H05; 54F45

Keywords: n-point set; Zero-dimensional

1. Introduction

The subject of n-point sets has been studied since 1914 with the result of S. Mazurkiewicz that there exists a subset of the plane which intersects every straight line in exactly two points. An n-point set is a subset of the plane which intersects every straight line in exactly n points. A partial n-point set is a subset of the plane which intersects every straight line in at most n points. In this paper we answer a question of Bouhjar and Dijkstra [1] concerning whether or not every one-dimensional partial n-point set contains an arc, thereby establishing a characterization of one-dimensional n-point sets. These results extend the results of David L. Fearnley and Jack W. Lamoreaux that every three point set is zero-dimensional [4].

* Corresponding author.

E-mail addresses: davidfearnley@juno.com (D.L. Fearnley), jack@math.byu.edu (J.W. Lamoreaux).
2. Every one-dimensional n-point set contains an arc

It has been shown by Kulesza [5] that every 2-point set is zero-dimensional. For $n > 3$ is has been shown by Bouhjar et al. [2] that n-point sets may contain arcs.

We will now show that every partial n-point set which is one-dimensional contains an arc. Throughout this paper all closed intervals stated are assumed to mean non-degenerate closed intervals unless otherwise stated.

As discussed in Engelking [3], for separable metric spaces all the usual definitions of dimension are equivalent. We will use small inductive dimension in this paper.

Theorem 2.1. Every non-zero-dimensional partial n-point set contains an arc.

Proof. Let S be a partial n-point set which is not zero-dimensional. Let p be a point of S where S is not zero-dimensional and let O be an open set in the plane containing p such that no open set containing p is contained in O and has a boundary which is disjoint from S. Choose horizontal line segments U_p and L_p above and below p, respectively, which are contained in O which do not contain points of S directly above or below p so that all points between points of U_p and L_p are also contained in O. This is possible because there are no more than n points of S on the vertical line through p. Hence, we may choose horizontal lines closer to p than any other point of S on the vertical line containing p. Since there are also only finitely many points of S on these horizontal lines, there are horizontal line segments whose projections onto the x-axis are closed intervals, which are contained in these horizontal lines, centered directly above and below p which contain no points of S. Let I be the interval of points in the intersection of the projections of U_p and L_p onto the x-axis. For each $z \in I$ we define $R(z)$ to be the vertical line $x = z$. We refer to the union of all the segments of points $R(x)$ for all $x \in I$ which are between U_p and L_p as T, which is a rectangle contained in O.

We denote in descending order by height $x(1), x(2), \ldots, x(j)$ to be the points of S on $R(x)$. We define a point $x(k)$ to be avoidable if there is an arc entirely contained in T which is a positive distance from the vertical line containing p containing no points of S, containing a point on $T \cap R(x)$ below $x(k)$, which is between $x(k)$ and $x(k+1)$ if $x(k+1)$ exists, and a point on $T \cap R(x)$ above $x(k)$, which is between $x(k-1)$ and $x(k)$ if $x(k-1)$ exists. It follows that all vertical lines through points of I on either the right or left side of p contain points which are not avoidable (or else one could construct an arc avoiding all points on some vertical line on both sides of p, connect them at segments U_p and L_p on the top and bottom of T, and then the open set bounded within this path would be an open set with empty boundary in S, contradicting the assumptions regarding p and O). So, we may choose a closed interval H contained in I so that for all $x \in H$, $R(x)$ contains unavoidable points of S, and H is a positive distance from the x-coordinate of p.

For each $x \in H$ we let x_F be the highest point of S in T on $R(x)$ so that x_F is unavoidable. We define a one to one function $g : H \to S$ by $g(x) = x_F$. We wish to show that on some interval g is continuous, and hence its image is an arc.

For each point $x \in H$ we choose horizontal line segments $U(x)$ and $L(x)$ directly above and below x_F respectively, which do not intersect S, whose projections onto the x-coordinate are closed intervals centered at x and are of equal radius δ_x, which intersect
R(x) at points closer to x_F than to any other point of S on the line R(x). Then since we may choose such a δ_x for each point x ∈ H, by the Baire category theorem there is a set of points D which is dense in some non-degenerate closed interval K ⊂ H so that for some positive number γ, for each point x ∈ D, it is the case that δ_x > γ. We wish to show that g is continuous on the interior of K.

Suppose g is not continuous on the interior of K. Then we may choose a point z in the interior of K, and an ε > 0, so that for each δ > 0 there is some x ∈ K so that |x − z| < δ and the distance between the vertical coordinates of x_F and z_F is greater than ε. In the same manner as we have done previously, we may choose closed horizontal line segments U_z and L_z which have empty intersection with S, and are centered directly above and below z_F, respectively, whose projections onto the x-axis are contained in the interior of K, so that all points of U_z and L_z are closer to z_F than half of the minimum of ε and the distance from z_F to the nearest other point of S on the line R(z). We let J be the intersection of the projections of U_z and L_z onto the x-coordinate, and note that J is a closed interval centered at z. We choose x ∈ (D ∩ J) so that |x − z| < γ and the distance between the vertical coordinates of x_F and z_F is greater than ε. Now, if x_F is below L_z then one can see that z_F is avoidable by following U_z, then essentially following R(x) down, replacing segments by arcs to avoid any points on R(x) ∩ S that lie between U_z and L_z, and finally following L_z back to R(z). This involves a contradiction. If x_F lies above L_z then one can see that z_F is avoidable by following U_z, then essentially following R(x) down, replacing segments by arcs to avoid any points on R(x) ∩ S that lie between U_z and L_z, and finally following L_z back to R(z). Thus, either way we reach a contradiction. It follows that g is continuous on the interior of K and so S contains an arc. □

Every n-point set is a partial n-point set and every subset of the plane which contains an arc is at least one-dimensional. Hence, the following corollary is a direct result of this theorem.

Theorem 2.2. An n-point set is one-dimensional if and only if it contains an arc.

It is also of interest to note that there is no place that the fact that there are only n points of S on each line was used in the above proof, only that there were only finitely many points of S contained in each line. Hence, we may observe that the following theorem also follows directly.

Theorem 2.3. Let S be a subset of the plane which intersects every straight line in only a finite number of points. Then S is one-dimensional if and only if S contains an arc.

References