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Abstract

A family of setsA is said to be union-closed if{A∪B : A, B ∈ A} ⊂ A. Frankl’s conjecture states
that given any finite union-closed family of sets, not all empty, there exists an element contained in at
least half of the sets. Here we prove that the conjecture holds for families containing three 3-subsets
of a 5-set, four 3-subsets of a 6-set, or eight 4-subsets of a 6-set, extending work of Poonen and
Vaughan. As an application we prove the conjecture in the case that the largest set has at most nine
elements, extending a result of Gao and Yu. We also pose several open questions.
© 2004 Elsevier Ltd. All rights reserved.

1. Introduction

A family of setsA is calledunion-closedif A∪ B ∈ A for every pair of setsA, B ∈ A.
The Union-Closed Sets Conjecture (or Frankl’s Conjecture), generally attributed to Frankl
in 1979 (see [1,2]), states that ifA is a finite union-closed family of sets, not all empty,
then there exists an element belonging to at least half of the sets. By corollary 1 of [4] we
may assume the sets ofA are finite, so letA ⊂ P(n) and|A| = m (writing P(n) for the
power set of{1, . . . , n}).

Very little progress has beenmade on the problem, although Gao and Yu [3] were able to
prove the conjecture in the casesn ≤ 8 andm ≤ 32, Poonen [4] showed that the conjecture
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holds for any family which contains three of the 3-subsets of a 4-set and Vaughan [6–8]
showed that the conjecture holds for any family which contains all five of the 4-subsets of a
5-set, or ten of the 4-subsets of a 6-set, or three 3-subsets of a 7-set with a common element.
Our main aim in this paper is to improve these results by showing that the conjecture holds
for any union-closed family which contains any three of the 3-subsets of some 5-set, four
of the 3-subsets of some 6-set, or eight of the 4-subsets of some 6-set. As an application
of our results we prove the conjecture in the casesn ≤ 9 andm ≤ 36. We also prove a
conjecture of Vaughan [6] on union-closed families with many 2-sets.

Following Vaughan [6], call B an FC(k)-family if it is a union-closed family of sets
containing∅ and whose largest set hask elements, and it has the property that given any
union-closed familyA ⊇ B, one of thek elements of (the largest set in)B is in at least half
the sets ofA. Call afamily FC if it is FC(k) for somek, andcall anFC(k)-family proper
if it contains no strictly smallerFC-family.

Clearly if A contains a one-element set{x} thenx is in at least half the sets ofA, so
{∅, {x}} is anFC(1)-family, and similarly if {x, y} ∈ A then at least one ofx and y is
contained in at least half the sets ofA, so{∅, {x, y}} is anFC(2)-family. However, a single
3-element set is not anFC(3)-family (an example showing this was given in [5]), so there
are no properFC(3)-families.

Given a set systemS ⊂ P(n), we define thefamily generated byS to be the smallest
union-closed family containingS ∪ ∅, i.e. {A ∈ P(n) : A = A1 ∪ · · · ∪ Ar , whereAi ∈
S ∪ ∅ for 1 ≤ i ≤ r }. Since determining exactly which families areFC seems to be
complicated fork ≥ 5, we will concentrate on a slightly simpler question: how manyk-
sets in[n] = {1, . . . , n} necessarily generate anFC-family? To this end, writeFC(k, n)

for the minimalm such that anym of thek-sets in[n] generate anFC-family.
As noted above, Poonen [4] showed thatFC(3, 4) = 3, and Vaughan [6] found some

FC-families fork = 5, 6, 7, in particular showing thatFC(4, 5) ≤ 5 andFC(4, 6) ≤ 10.
Here we improve these results by proving the following theorems.

Theorem 1. A sub-family of P(5) is a proper FC(5)-family if, and only if it is generated
by one of the following set systems (under some permutation of{1, 2, 3, 4, 5}).

(1) Any three of the 3-subsets,

(2) {1, 2, 3}, {1, 2, 4} and{1, 3, 4, 5},
(3) {1, 2, 3}, {1, 4, 5} and{2, 3, 4, 5},
(4) {1, 2, 3}, {1, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5} and{1, 3, 4, 5},
(5) {1, 2, 3}, {1, 2, 4, 5}, {1, 3, 4, 5} and{2, 3, 4, 5},
(6) All five 4-sets.

In particular FC(3, 5) = 3 and FC(4, 5) = 5.

Theorem 2. FC(3, 6) = 4 and7 ≤ FC(4, 6) ≤ 8.

As an application of our results, we prove the following theorem.

Theorem 3. Theunion-closed sets conjecture holds in the case n= 9.
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We will also prove the following theorem on union-closed families, conjectured by
Vaughan [6], and proved by her in the casesn = 5, 6 and7, which will be useful in
proving the above results.

Theorem 4. If A is a union-closed family inP(n) and contains at least
(

n−1
2

)
+ 1 of the

2-sets, then for all0 ≤ k ≤ �n
2	,

|{A ∈ A : |A| = n − k}| ≥ |{A ∈ A : |A| = k}|.

2. Our method of approach

Our main tool in findingFC-families will be the following theorem of Poonen [4].

Theorem 5. If B is a union-closed family containing∅ whose largest set has n elements,
say{1, . . . , n}, then the following are equivalent:

1. B is an FC(n)-family

2. There exist non-negative real numbers c1, . . . , cn summing to1 such that for every
union-closed familyA ⊂ P(n) suchthatA 
 B ⊆ A,

n∑
i=1

ci |Ai | ≥ |A|
2

whereA 
 B = {A ∪ B : A ∈ A, B ∈ B} andAi = {A ∈ A : i ∈ A}.
It will be convenient to allow theci to be integers, and to define

K (A) =
∑
A∈A

(∑
i∈A

ci −
∑
i �∈A

ci

)
= 2

n∑
i=1

∑
A∈A

(ci i∈A) − |A|
n∑

i=1

ci .

Write Ni for
∑

{A∈A:|A|=i }
(∑

j ∈A cj −∑
j �∈A cj

)
, the contribution of thei -sets toK (A),

and notice that condition 2 of the theorem holds for a given familyA if and only if
K (A) = ∑n

i=0 Ni ≥ 0. Whenever possible, we will choose theci to be integers, but
the reader should be aware that when proving that no suchci exist (for certain families),
we shall revert to real numbers summing to one. It will always be clear which situation we
are in, and we trust this will not cause any confusion. We will writec = 1 if ci = 1 for all
i , andni for the number ofi -sets inA.

Our proof will also use the following lemmas of Vaughan [6], and the trivial observation
below.

Lemma 1. Suppose thatA andB areunion-closed families inP(n) suchthatA
B ⊂ A,
and that there are exactly r k-sets which are inB but not A. Suppose also that r=(ak

k

)+
(

ak−1
k−1

)
+ · · · + (at

t

)
with ak > · · · > at ≥ t ≥ 1.
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Then for each1 ≤ j ≤ k, thenumber of j -sets inA is bounded above by dj (n, k, r ),
where

dj (n, k, r ) =
(

n

j

)
−
(

ak

j

)
−
(

ak−1

j − 1

)
− · · · −

(
at

t − k + j

)
.

Lemma 2. Let t(i ) = |{A ∈ A : i ∈ A, |A| = 2}|. If t (i ) ≥ k + 1 for all i ∈ [n], thenA
contains all of the(n − k)-sets inP(n).

Remark 1. Note that in general ift j (i ) = |{A ∈ A : i ∈ A, |A| = j }| and t j (i ) ≥(
n−1
j −1

)
−
(

n−k−1
j −1

)
+ 1 for somej and alli ∈ [n], thenA contains all of the(n− k)-sets in

P(n), since for any(n−k)-setK and anyi ∈ K there exists aj -setL suchthati ∈ L ⊂ K .

Observation 1. If A andB are union-closed families withA 
 B ⊆ A, and∅ ∈ A, then
B ⊆ A.

3. Proof of Theorem 4

Proof. The casesk = 0 andk = n
2 are trivial, so fix 1≤ k ≤ �n−1

2 	 and suppose that the

theorem fails fork (i.e.A contains at least
(

n−1
2

)
+ 1 of the2-sets and morek-sets than

(n − k)-sets). Note that we may assume thatA is generated by its 2-sets and itsk-sets,
since the addition of other sets can only increase the number of(n − k)-sets. Consider the
graphG with [n] as the vertices andi j ∈ E(G) ⇔ {i , j } ∈ A (so subgraphs ofG with no
isolated vertices correspond to sets inA), and note that if each vertex ofG has degree at
leastk + 1 then we are done byLemma 2.

Claim: Suppose either more than one element has degree at mostk, or exactly one element
has this property and in the induced subgraph on the othern − 1 vertices some vertex has
degree at mostk. Thenn is odd,k = n−1

2 andG contains an induced copy ofKn−2.

Proof of Claim. We must bemissing at leastn − 1 − k edges from the first vertex, and at
leastn − 2 − k different edges from the second vertex. However, at mostn − 2 edges are
missing fromG, thusn − 2 ≥ (n − 1 − k) + (n − 2 − k), and sok ≥ n−1

2 . It follows that
k = n−1

2 , hencen is odd, and equality holds everywhere, so all missing edges are incident
with one of these two vertices. �

First assume that the assumptions of the claim fail to hold. Thus we may assume that
exactly one vertexhas degree at mostk. Let this element beu, supposeu lies in exactlyr
of the 2-sets inA (so 1≤ r ≤ k ≤ �n−1

2 	). Note alsothat, byLemma 2, A contains all of
the(n − k)-sets and all of the(n − k − 1)-sets inP([n] − u).

Consider which of the(n − k)-sets inP(n) may be missing fromA. Such a set must
containu by the comment above, and cannot contain any element ofΓ (u) = {v : {u, v} ∈
A}, as then it would be the union of some(n − k − 1)-set inP([n] − u) with some pair

{u, v} ∈ A. So there are at most
(

n−r−1
n−k−1

)
such sets.

Now observe that anyk-set which containsu but no neighbour ofu is not generated by

the 2-sets ofA. There are
(

n−r−1
k−1

)
such sets. Since

(
n−r−1
n−k−1

)
≤
(

n−r−1
k−1

)
whenr ≥ 1,
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we must have some of these sets inA as generating sets. However, if such ak-setA ∈ A,
then every(n − k)-set containingA andn − 2k different elements ofP([n] − u −Γ (u)) is
also inA, by taking theunion ofA with some(n−k−1)-set inP([n]−u−Γ (u)) containing
A. Moreover each of these(n − k)-sets was counted as missing fromA − u above.

In this way, each of thesek-sets generates
(

n−r−k
n−2k

)
new(n − k)-sets, and each(n − k)-

set is generated by
(

n−k−1
k−1

)
of the k-sets. But now simply observe that

(
n−r−k
n−2k

)
=(

n−r−k
k−r−2

)
≤
(

n−k−1
k−1

)
whenr ≥ 1, and it is clear that the number of missing(n − k)-

sets must beno greater than the number of missingk-sets.
We are left to deal with the (easier) case thatn is odd,k = n−1

2 and G contains an
induced copy ofKn−2. Let the remaining two vertices beu andv and letd(u) ≤ d(v). We

may assume that the assumptions of the claim hold, and thate(G) =
(

n−1
2

)
+ 1.

Suppose first thatuv ∈ E(G). Thenu and v must bemissing n−1
2 and n−3

2 edges
respectively, and the only(n−k)-set which may be missing fromA is [n]−Γ (u). However,
if A contains all thek-sets then it contains this set as well, so we are done.

So assumeuv �∈ E(G), and that each ofu andv is missingn−1
2 edges. Then the only

(n − k)-sets which may be missing are[n] − Γ (u) and[n] − Γ (v). As before if either of
these is actually inA then we are done. But ifA contains anyk-set which is a subset of one
of these(n − k)-sets and contains bothu andv, thenA must also contain that(n − k)-set,
and since there are at least two suchk-sets whenn ≥ 7, and the remaining cases are trivial,
we are done. �

4. FC(k)-families for small values of k

First let us consider the casek = 5. In [6], Vaughan showed that a 5-set with all its
4-subsets, and a 5-set with four of its 4-subsets and four of its 3-subsets areFC(5)-families,
usingTheorem 5with c = 1. By using different values ofci and a (fairly simple-minded)
computer program, we have been able to showmuch more, characterising exactly the
FC(5)-families.

Proof of Theorem 1. First we show that the given families areFC, usingTheorem 5. The
required inequalities, K (A) ≥ 0 for allA ⊂ P(5) suchthatA
B ⊆ A, follow by a tedious
case analysis (either by hand or by computer) once the correct values ofci have been
identified. The search is narrowed by considering only solutions to the five inequalities
given byA = B 
 P([5] − i ) for i = 1, . . . , 5.

The following are examples ofc’s which work:

(1) If the three 3-sets are contained in some 4-set then letc = 1 (this is corollary 4 of [4]).
If the 3-sets cover [5] then there are three cases to consider:

1. {1, 2, 3}, {1, 2, 4}, {1, 2, 5} : c = (3, 3, 2, 2, 2) will do;
2. {1, 2, 3}, {1, 2, 4}, {1, 3, 5} : c = (6, 5, 5, 3, 3) works;
3. {1, 2, 3}, {1, 2, 4}, {3, 4, 5} : c = (2, 2, 2, 2, 1) is an example.

(It is easy to see that all other possibilities are just permutations of one of these three.)
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For the restof the setsystems listed inTheorem 1, suitable values ofc are

(2) c = (24, 22, 19, 19, 4)

(3) c = (4, 3, 3, 3, 3)

(4) c = (4, 3, 3, 3, 3)

(5) c = (14, 14, 14, 9, 9)

(6) c = 1 (this is theorem 4.2 of [6]).

Now we show that these are the only properFC(5)-families (up to permutations of
{1, 2, 3, 4, 5}). It suffices to show that the following families are notFC.

1. {1, 2, 3}, {1, 4, 5}, {1, 2, 3, 4}, {1, 2, 3, 5} and{1, 2, 4, 5}
2. {1, 2, 3}, {1, 2, 4}, {1, 2, 3, 4}, {1, 2, 3, 5} and{1, 2, 4, 5}
3. {1, 2, 3}, {1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 4, 5} and{1, 3, 4, 5}.

In each case we show that no values ofci simultaneously satisfy the inequalities given
by K (A) ≥ 0, with A = B 
 P([5] − j ) for j = 1, . . . , 5. The result then follows by
Theorem 5.

1. Noting thatc1 + c2 + c3 + c4 + c5 = 1, the five inequalities reduce to

c1 ≤ 1

4
(1)

4c1 − 12c2 + 2c3 ≥ −1 (2)

9c1 + 5c2 + 5c3 ≥ 4 (3)

c1 + c2 ≥ 3c3. (4)

From (1) and (2) we havec2 ≤ c3+1
6 and from (1) and (3) we havec2 + c3 ≥ 7

20. But

now, since 7
20 ≤ c2 + c3 ≤ 7c3+1

6 ⇒ c3 ≥ 11
70, 3c3 ≤ c1 + c2 ≤ 2c3+5

12 ⇒ c3 ≤ 5
34 and

5
34 < 11

70, we have a contradiction.

2. Form the inequalities as before, and noting the symmetries inB, let x = c1 + c2,
y = c3+c4 andz = c5+c6. Addinginequalities and making the substitutionz = 1−x−y
gives

x ≤ y (5)

2x ≥ 3y (6)

16x + 14y ≥ 13. (7)

But (5) and (6) ⇒ x = y = 0, so again we have a contradiction.

3. Again noting thesymmetries we letx = c1 andy = c2 + c3, and reduce as before to
get

−6x + y ≥ −1 (8)

4x − 5y ≥ −1 (9)

9x + 7y ≥ 5. (10)

But (8) and (9) ⇒ x ≤ 3
13 andy ≤ 5

13, so 9x + 7y ≤ 62
13 < 5, contradicting (10). �
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We next considerFC(6)-families. Vaughan [6] proved that any ten 4-sets, or any eight
4-sets togetherwith six 5-sets, generate anFC-family. Theorem 2improves these results,
and also gives the exact number of 3-sets in{1, . . . , 6} which areguaranteed to generate
anFC-family.

Proof of the first half of Theorem 2. The upper bound again follows by computer-based
case analysis. If any three of the 3-sets do not cover all six elements then we are done
by Theorem 1. Hence each element of [6] must lie in at least (and so exactly) two of the
3-sets. If some pair of 3-sets intersect in two elements then the 3-sets must be{1, 2, 3},
{1, 2, 4}, {3, 5, 6} and{4, 5, 6} (under some permutation of{1, 2, 3, 4, 5}). Otherwise the
sets are{1, 2, 3}, {1, 4, 5}, {2, 4, 6} and{3, 5, 6}. In either case condition 2 ofTheorem 5
is satisfied byc = 1.

The lower bound follows by applying the method ofTheorem 1to the family generated
by {1, 2, 3}, {1, 2, 4}, and{3, 5, 6}. Let x = c1 + c2, y = c3 andz = c4, andget

y + z ≥ x

4y + z ≤ 1

x ≥ 3z

x + 2y + z ≥ 1.

Now, from the first and third equations we gety ≥ 2z, and so by the second,z ≤ 1
9.

Hencex + 2y + z ≤ 3y + 2z ≤ 3(1−z
4 ) + 2z = 3

4 + 5z
4 < 1, a contradiction. �

Unfortunately from now on the case analysis involved in proving upper bounds on
FC(k, n) becomes too lengthy to be performed by our computer program, so for the second
half of Theorem 2we need to be a little more clever.

Proof of the second half of Theorem 2. LetB be generated by eight 4-sets, and note that
each element of [6] = {1, 2, 3, 4, 5, 6} must be contained in at least four of the 4-sets, else
we are done by theorem 4.2 of [6]. We will show that in all but a few special cases the
result follows byTheorem 5with c = 1, and then deal with those cases separately.

Recall thatni denotes the number ofi -sets inA. In all cases we may assume thatn1 ≤ 5,
and byTheorem 4we may assume thatn2 ≤ 10 whenc = 1. Also recallLemma 1and
observe that a trivial calculation (as in [6]) gives usd2(6, 4, r ) ≤ 10−r for all 1 ≤ r ≤ 10.

Suppose first that the eight 4-sets generate at least 5 of the 5-sets, and letc = 1, so
K (A) = ∑3

i=1 i (n3+i − n3−i ). Thenn5 ≥ n1, since if A is missing at least two of the
5-sets inB then byLemma 1n1 ≤ d1(6, 5, 2) = 0, if A is missing exactlyone of the 5-sets
in B thenn1 ≤ d1(6, 5, 1) = 1, and ifA contains all of the 5-sets inB thenn5 ≥ 5 ≥ n1 by
assumption. Also, sinced2(6, 4, r ) ≤ 10− r for all 1 ≤ r ≤ 8, Theorem 4andLemma 1
give usn4 − n2 ≥ −2.

Now, if ∅ �∈ A thenK (A) ≥ 0, so assume that∅ ∈ A. Thenn5 ≥ 5 andn4 ≥ 8, and
so if K (A) < 0, we must haven1 = n5 = 5. But the 1-sets now generate at least one new
4-set, son4 ≥ 9 andn2 = 10. We are done if each 5-set in [6] contains at most three 4-sets
of B, sincethenn4 ≥ 10, so assume some four of the 4-sets lie in{1, 2, 3, 4, 5}. Also note
that sincen5 = 5, at least seven of the 4-sets inB containi , where [6] −i is the missing
5-set.
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Claim 1: If at least seven of the 4-sets contain 1, no otherelement is contained in more than
six, and four of the 4-sets are contained in{1, 2, 3, 4, 5}, then the conditions ofTheorem 5
hold withc = (11, 9, 9, 9, 9, 9).

Proof of Claim. The values ofci were chosen by consideringP([6] − i ) 
 B for i =
2, . . . , 6, assumingc2 = · · · = c6 and minimisingc1. LetA ⊂ P(5) suchthatA
B ⊆ A,
and note that we still have thatA contains at leastn1 of the 5-sets andn2 − 2 of the4-sets
of B. Recall thatNi denotes the contribution toK (A) of the i -sets inA, andnote that
N3 ≥ −20.

Consider first the case∅ �∈ A. ThenN6 + N0 = +56, since we may assume [6] ∈ A.
Also N4 + N2 ≥ −44, since 2-sets contribute at least−20, and all but at most one of the
4-sets inB contributes 20, the other contributing 16. Suppose{2, 3, 4, 5, 6} �∈ A. Then we
haveN3 ≥ −8, andN5 + N1 ≥ 0, soK (A) ≥ 0. If {2, 3, 4, 5, 6} ∈ A thenN5 + N1 ≥ 34
(assumingn1 ≤ 5), so sinceN3 ≥ −20, K (A) ≥ 0 still holds.

So assumenow that∅ ∈ A, son4 ≥ 8 andn5 ≥ 5 by Observation 1. First note that if
n1 ≤ 3 thenN5 + N1 ≥ 76, N4 + N3 + N2 ≥ −64 and we are done. So assumen1 ≥ 4
and again suppose that{2, 3, 4, 5, 6} �∈ A. If n1 = 4 thenN5 + N1 ≥ 38, N3 ≥ −8 and
so if K (A) < 0 thenn2 = 10 andn4 = 8. But this is impossible since any four 1-sets and
ten 2-sets clearly generate either{2, 3, 4, 5, 6} or a 4-set not inB. If n1 = 5, then since
{2, 3, 4, 5, 6} �∈ A, theonly possibilities forA areP([6]− i )
B andP([6]− i )
B
{1, i },
wherei ∈ {2, 3, 4, 5, 6} (we may assume no extra 3-sets containing 1 are added toA, since
these increaseK (A)). We chosec so thatK (A) ≥ 0 in the former case, and the latter gives
a higher value ofK (A), since new 4-sets are generated.

Hence we may assume that{2, 3, 4, 5, 6} ∈ A, and son5 = 6. If n1 ≤ 4 we get
N5 + N1 ≥ 72 and are done as before, so assume also thatn1 = 5. If {1} �∈ A we get
N5 + N1 = 34 andn4 ≥ 12, butn2 ≥ 13 ⇒ n4 = 15, so we are done. But if{1} ∈ A we
get N5 + N1 = 38, N3 ≥ −8 andN4 + N2 ≥ −24 (sincen4 ≥ 9), so againK (A) ≥ 0,
and the proof of claim 1 is complete. �

Sofrom now on we may assume thatB contains at most four 5-sets. But since any two
4-sets in a 5-set generate that 5-set (so a missing 5-set implies four missing 4-sets), and
each 4-set is contained in only two 5-sets of [6], eight 4-sets in [6] must generate at least
four 5-sets. HenceB contains exactly four 5-sets. But now we can reduce the problem to a
single family, for suppose wlog that{1, 3, 4, 5, 6} and{2, 3, 4, 5, 6} are the 5-sets missing
from B. ThenB must contain all 4-sets which contain both 1 and 2, one containing 1 and
not 2, and one containing 2 and not 1. These last two sets must have intersection 2, as
otherwise we would have five 4-sets in{1, 2, 3, 4, 5}, andby symmetry we may take any
pair with this property.

It follows that the proof of the upper bound is completed by the following claim.

Claim 2: If B is generated by the sets{1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, 6}, {1, 2, 4, 5},
{1, 2, 4, 6}, {1, 2, 5, 6}, {1, 3, 4, 5} and {2, 3, 4, 6}, A ⊂ P(5), A 
 B ⊂ A and c =
(8, 8, 7, 7, 7, 7), thenK (A) ≥ 0.

Proof of Claim. As in claim 1, the values ofci were chosen by looking atP([6] − i ) 
 B
for 1 ≤ i ≤ 6, letting c3 = · · · = c6 and minimisingc1 + c2. Our approach follows the
same lines as the proof of claim 1. Note first that ifn1 = 5, either {1, 3, 4, 5, 6} ∈ A or
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{2, 3, 4, 5, 6} ∈ A, son5 ≥ 5 and asbeforeA still contains at leastn2 −2 of the4-sets and
n1 of the 5-sets ofB.

Consider first the case∅ �∈ A. We haveN6 + N0 = 44, N5 + N1 ≥ 0, N4 + N2 ≥ −36
(since 2-sets contribute at least−16, and six of the 4-sets inB contribute 16, the other two
contributing 14), andN3 ≥ −4, soK (A) ≥ 0.

So we may assume that∅ ∈ A, son4 ≥ 8 andn5 ≥ 4 byObservation 1. If n5 = 4, then
{5}, {6} �∈ A andn2 ≤ 8, since the only 2-sets containing 5 or 6 which can be inA are{1, 5}
and{2, 6}. HenceN5+N1 ≥ 4 andN4+N2 ≥ (16×6)+(14×2)−16−(14×6)−12= 12.
We still haveN3 ≥ −4, soK (A) ≥ 0.

Suppose next thatn5 = 5, and{1, 3, 4, 5, 6} ∈ A, say. Ifn1 ≤ 3 thenN5+N3+N1 ≥ 54
and we are done. Ifn1 = 4 thenN5 + N3 + N1 ≥ 26, son2 = 10 andn4 = 8, which is
impossible. Hencen1 = 5, and{5} �∈ A, so theonly possibilities forA areP([6] − 5) 
 B
andP([6] − 5) 
 B 
 {1, 5} (since{2, 3, 4, 5, 6} �∈ A, and we may assume no extra sets
with non-negative contribution toK (A) are added). But these both giveK (A) ≥ 0, so we
are done with this case also.

So we may assume thatn5 = 6. Now if n1 ≤ 4 thenN5 + N3 + N1 ≥ 52, and so we are
done. But ifn1 = 5 thenN5 + N3 + N1 ≥ 24 andn4 ≥ 10, since no 5-set in [6] contains
more than three 4-sets ofB, soN4 + N2 ≥ −12, and the claim follows. �

For the lower bound consider the set systemS = {{1, 2, i , j } : {i , j } ⊂ {3, 4, 5, 6}}
and let B be generated byS. We apply the usual method. Letx = c1 + c2 and
y = c3 + c4 + c5 + c6, andadd the inequalities to get

38x + 46y ≥ 43

92x + 67y ≥ 78

which imply thatx ≤ 1
4 andx ≥ 11

25 respectively. But14 < 11
25, so we have a contradiction.

This implies thatFC(4, 6) ≥ 7. �
We will also use the following two simple results inSection 5.

Lemma 3. FC(3, 7) ≤ 6.

Proof. Consider any six 3-sets in{1, 2, 3, 4, 5, 6, 7}. Some element is contained in at most
two of them, so we have at least four 3-sets composed solely ofthe other six elements. The
result now follows byTheorem 2. �

Lemma 4. FC(4, 7) ≤ 18.

Proof. Suppose we have eighteen 4-sets in{1, 2, 3, 4, 5, 6, 7}. Then some element must be
contained in no more than ten of them, so we have at least eight 4-sets contained in a 6-set,
and the result follows byTheorem 2. �

5. The case n = 9 of the conjecture

We now provide an application of the above results by proving the Union-Closed Sets
Conjecture in the case that the size of the largest set is at most nine. This improves the
previous known bound by one. The idea of the proof is to show that if the family contains
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none of the aboveFC-families, then either the average size of a set is at least1
2, or the

family contains very few sets. We will needthe following results for theproof.

Theorem 6 (Theorem 3.4 of [3] ). If m ≤ 32 then the UC-sets conjecture holds forA.

Theorem 7 (Theorem 3.1 of [3] ). If n ≤ 8 then the UC-sets conjecture holds forA.

Lemma 5 (Lemma 6 of [4] ). We may assume thatA contains at least two(n − 1)-sets.

Lemma 6. One 3-set and thirteen 4-sets in [9] generate either at least two 7-sets, at least
three 6-sets, oran FC-family.

Proof. Suppose only at most one 7-set and two 6-sets are generated. Partition the 4-sets
according to the size of their intersection with the 3-set. If we have more than six 4-sets
with intersection 2, then we get at least four distinct 2-sets by removing the elements of
our 3-set from them (byTheorem 1(5)), which generate either atleast two 4-sets or three
3-sets, a contradiction. But we can have at most three 4-sets with intersection 3, at most
two with intersection 1 and at most one with intersection 0.�

Lemma 7. Five 3-setsin [9] generate either an FC-family or a 7-set.

Proof. Assume not and choose three of the 3-sets in such a way as to maximise the size of
theirunion. Let this maximum bet . By Theorem 1, t ≥ 6.

Case 1: t= 9. The addition of any other 3-set forms a 7-set so we are done.

Case 2: t = 8. Suppose wlog that the 3-sets are{1, 2, 3}, {4, 5, 6} and {6, 7, 8}. Then
by Theorem 2we must add a 3-set which intersects{1, 2, 3}, and theonly (type of) 3-set
which does so and whose addition does not create a 7-set is{1, 4, 5}. Now, consider the
possible intersections of the fifth 3-set with{1, 2, 3, 4, 5}. By Theorem 1it cannot have
order 3; byTheorem 2if it has order 2 then we have a 7-set; if it has order 1 we clearly
have a 7-set, so the fifth 3-set must be contained in{6, 7, 8, 9}. But thenit must contain 9,
so we have the 7-set{1, 4, 5, 6, 7, 8, 9}.
Case 3: t= 6. Each of the other 3-sets can contain at most one of these six elements (if
two we’d be able to form a 7-set, if three we’d have anFC-family by Theorem 2), so by
maximality no two of the chosen 3-sets intersect in two elements. Hence wlog the chosen
3-sets are{1, 2, 3}, {1, 4, 5} and{2, 4, 6}. At least one of the remaining sets must be of the
form {i , 7, 8} say, withi ∈ {1, 2, 3, 4, 5, 6}, but thenwe have a 7-set. �

Proof of Theorem 3. SupposeA is aunion-closed family inP(9) for which the conjecture
fails, andobserve that byTheorem 7we may assume that [9]∈ A. Also note that we may
assume thatn1 = n2 = 0, since every 1- and 2-set forms anFC-family. We are trying to
showK (A) ≥ 0 for c = 1, so anr -set contributes 2r − 9 to K (A). We will consider the

contribution of the (non-empty) sets in the 7-sets of [9]. Notice that there are
(

9
7

)
= 36 of

them, and that the contribution of [9],∅ and the 8-sets ofA is at least+14.
Consider a single 7-set of [9], not necessarily inA. If the 7-set itself is in A then

it contributes+5 to K (A), but eachr -subset lies in
(

9−r
7−r

)
different 7-sets, so we must

divide its contribution by this number. Summing over all 7-sets will then give us the total
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contribution of the 3-, 4-, 5-, 6- and 7-sets toK (A). Hence 6-sets contribute+1, 5-sets
+1

6, 4-sets− 1
10 and 3-sets−1

5.
We need a lower bound on the contribution of a given 7-set’s non-empty subsets. Letr i

denote the number ofi -sets in this 7-set, and divide into cases as follows:

Case 1:The 7-set is inA. Then the contribution is at least 5− r4
10 − r3

5 ≥ 5− 17
10 − 5

5 = 23
10,

by Lemmas 3and4.

Case 2:The largest subset inA has six elements. Then the contribution of the subsets is at
least 0, sincer4 ≤ 7 andr3 ≤ 3 by Theorem 2, so we mayassume that eitherr3 = 2 and
r4 = 7, or r3 = 3. But thenr5 ≥ 1, so we may assume thatr3 = 3 andr4 ≥ 6. But now
r5 ≥ 2 and we are done.

Case 3:The largest subset inA has five elements. Then it follows fromTheorem 1that the
worstcase isr3 = 2, r4 = 3, which gives a total contribution of−16

30.

Case 4:The largest subset inA has fewer than five elements. Thenr3 ≤ 2 andr4 ≤ 1, so
the contribution is at least−1

2.

Claim: If A contains a 7-set thenK (A) ≥ 0.

Proof of Claim. First note that if n8 ≥ 3 then we are done, since thenK (A) ≥
21 −

(
36× −16

30

)
> 0, so assume thatn8 = 2. Suppose thatn7 ≥ 2. ThenK (A) ≥

14 + 4.6 −
(
34× −16

30

)
> 0, so assume thatn7 = 1 andobserve that ifK (A) < 0

then at least 31 of the 7-sets contain no 6- or 7-set, since 14+ 2.3 −
(
30× −16

30

)
> 0.

Hencen3 ≤ (31×2)+(4×3)+5
15 < 6 since each 3-set appears in 15 different 7-sets, andn4 ≤

(31×4)+(4×7)+17
10 < 17, since each 4-set appears in 10 different 7-sets. It follows that the

total contribution toK (A) of all except the 5- and 6-sets is at least 14+5−16−15= −12,
so assume that the 5- and 6-sets contribute at most+11. Note also that

∑
i �=5,6 ni ≤ 26.

Now, from above ifn3 = 0 thenK (A) > 0, so byLemma 6, eithern6 ≥ 3, orn4 ≤ 12.
In the former case we getn5 + n6 ≤ 5, som ≤ 31 and we are done byTheorem 6. In the
latter case the 5- and 6-sets can contribute at most+7 and

∑
i �=5,6 ni ≤ 22, which gives

m ≤ 29 and we are again done. �

So we may assume thatn7 = 0, and byLemma 7 we haven3 ≤ 4. Now, let
p = |{7-setswith r4 ≤ 3}| and q = |{7-setswith r4 = 4}|. Then Theorem 1and
the observations above imply that16

30 p + 13
30q > 14 if K (A) < 0. But then 10n4 ≤

3p + 4q + 7(36− p − q) = 252− (4p + 3q) ≤ 252− 105+ q
4 ≤ 156, son4 ≤ 15.

Hence the total contribution to K (A) of all except the 5- and 6-sets is at least
14− 15− 12= −13, so we may assume that the 5- and 6-sets contribute at most+12, and
we have

∑
i �=5,6 ni ≤ 23. The result now follows exactly as before, usingLemma 6and

Theorem 6: n3 ≥ 1 so eithern6 ≥ 3, in which casen5 + n6 ≤ 6 andm ≤ 29; orn4 ≤ 12,
in which casen5 + n6 ≤ 9, andm ≤ 29. �

Although our method does not seem to easily extend to larger values ofn (at least,
not without first improving our upper bounds onFC(k, n)), it does give a short proof of
Theorem 7.
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Alternative proof of Theorem 7. Suppose A is a counter-example and letb =
maxA∈A |A|. Sincen1 = n2 = 0, we may assume thatb ≥ 7.

Case 1: b= 7. By Lemma 3we haven3 ≤ 5, and byLemma 5n6 ≥ 2, so the average set
size isat least34

9 > 7
2 and we are done.

Case 2: b = 8. Apply the method of the proof ofTheorem 3. There are
(

8
6

)
= 28

6-sets, each contributing at least−1
5 to K (A) (two 3-sets in a 4-set). But nowK (A) ≥

(2 × 3) − 28
5 > 0, so again we are done. �

We also get the following improvement without doing any extra work.

Theorem 8. Theunion-closed sets conjecture holds in the case m≤ 36.

Proof. Follow the exactmethod of [3] and [4], replacing the boundn ≥ 9 with
n ≥ 10. �

Problem 1. Can we improveTheorem 6further? A useful step would be (using the
notation of [3]) to get good lower bounds onSr in terms ofS1, given a condition limiting
the average sizeof the sets inA.

Problem 2. Can we generalise or improveLemmas 6and 7? In particular, how many
k-sets in[n] do we need to guarantee either anFC-family or anr -set?

6. General bounds on FC(k, n)

We have found some values ofFC(k, n) for small k andn, but if we hope to use our
method to solve the conjecture we will need good asymptotic bounds. Good upper bounds
are hard to prove, but by Proposition 1.4 of [3] the function is at least defined for anyk for
sufficiently largen. We give thefollowing short proof of the result.

Theorem 9. For any k≥ 1 and n≥ 2k − 2, the familyB generated by all the k-sets in[n]
is an FC-family, and hence FC(k, n) ≤ (n

k

)
.

Proof.
Claim: If A ⊂ P(n) andA 
 B ⊆ A, thennn−r ≥ nr for all r ≤ �n

2	.

Proof of Claim. Note thatB ⊃ {B ∈ P(n) : |B| ≥ k}. So if an r -set A is in A,
then all those(n − r )-sets inP(n) that containA are also inA. Hence eachr -set inA
generates

(
n−r
n−2r

)
(n − r )-sets. Conversely each(n − r )-set inA is generated by at most( n−r

r

) =
(

n−r
n−2r

)
r -sets, so we are done. �

Now let c = 1, soK (A) ≥ 0 for families satisfying the conditions of the claim. The
result follows byTheorem 5. �

Remark 2. This result is almost certainly not best possible, but as yet we have been unable

to improve it. The usual lower bound method gives thatB is not FC if (n − 2)
(

n−2
k−2

)
<

2
∑k−3

i=0

(
n−2

i

)
, whichholds if and only ifk ≥ n

2 +
(

1
2
√

2
+ o(1)

)√
n logn.
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We have the following bounds onFC(k, n) (the first upper bound,FC(3, n) ≤ 2n
3 , is

due to Vaughan [8]). The proofs of the lower bounds are not difficult but lengthy, so we
omit them, giving only the main ideas.

Theorem 10.

(1) �n
2	 + 1 ≤ FC(3, n) ≤ 2n

3 ,

(2)
(

6
25 + o(1)

)
n2 ≤ FC(4, n) ≤ 7

360n4,

(3) cknk−2 ≤ FC(k, n) ≤ ex
(
n, K (k)

2k−2

)
≤ (n

k

)
with ck > 0 constant.

Sketch of proof. The upper bounds are easily obtained by showing that any family inP(n)

with the given number ofk-sets contains one of the families we (or Vaughan) have already
shown to beFC. For the lower bounds, first let

B(n, k, r ) = {B ∈ P(n) : |B| = k and for some 0≤ i ≤ r − 1, either{4i + 1, 4i + 2,

4i + 3} or {4i + 1, 4i + 2, 4i + 4} is the initial segment ofB}.
The bounds are obtained by applying the method of the proofs ofTheorems 1and2,

using the familiesP([n] − i ) for 1 ≤ i ≤ n, to

(1) B = B(n, 3, r ), if n = 4r or 4r + 1, or
B = B(n, 3, r ) ∪ {4r − 1, 4r + 1, 4r + 2} if n = 4r + 2 or 4r + 3.

(2) B = B
(
n, 4,

⌊(
1
5 − ε

)
n
⌋)

, whereε > 0.

(3) B = B(n, k, c′
kn) for some sufficiently smallc′

k > 0. �

7. Questions and conjectures

Several avenues for further research spring readily to mind. For example, given our
experience so far we might hope to show that inTheorem 5it is sufficient to consider only
the familiesP([n] − i ) for 1 ≤ i ≤ n. Unfortunately it is not true that these families give
exactly the permissible values ofc, as the following example shows.

Counter-example 1. Let B = {{1, 2, 3}, {1, 2, 4}, {3, 4, 5}}, and letc = (9, 7, 12, 12, 8).
ThenK (A) ≥ 0 for A = P([5] − i ) 
 B for eachi , but K (A) < 0 for P({2, 3, 4, 5}) 

{1, 2} 
 B.

However, it is still possible that the following question has an affirmative answer.

Question 1. Do the inequalitiesK (A) ≥ 0 given by the familiesP([n] − i ) for 1 ≤ i ≤ n
permit somesolutionc only when one is possible for allA ⊂ P(n) suchthatA 
 B ⊆ A?

In any case we are still inclined to believe the following conjectures, the first of which
was suggested (though not specifically conjectured) in [8].

Conjecture 1. FC(3, n) = �n
2	 + 1 for all n ≥ 4.

Conjecture 2. FC(k, n) = Θ(nk−2) for all k ≥ 2.

A final conjecture is suggested simply on the basis that it seems plausible, and is true
for theFC-families we have discovered so far.
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Conjecture 3. Suppose a union-closed familyB has minimal generating familyS, and let
B′ be generated by S− B + (B ∪ i ) for some set B∈ S. IfB is not FC, thenB′ is not FC
either.
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