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ABSTRACT

In this paper a complex inversion formula for a generalized Laplace transform

4y =
Flo)=—— [ (xt) | F1(4, B; — x1) f(1) dt
I'B) o

where A=8+n+1; B=a+B+n+1; $=0 and n>0 has been obtained and extended to a class of
generalized functions. A uniqueness theorem has been established for it.

1. IN AN EARLIER PAPER [3] WE HAVE EXTENDED THE INTEGRAL TRANSFORM
1) Foo= 2Tt Fya, By —xn f() de

' rey, U
studied by Joshi [2], where | F; denotes the confluent hypergeometric function,
A=f+n+1, B=a+8+n+1,5=0 and >0, to a class of generalized func-
tions and have proved an analyticity theorem for it. (1.1) reduces to Laplace
transform for @ =8=0. In this paper the complex inversion formula

faH)+ft=) 1 evi= Ma+n—s+ 1)

2 = 2mi A TGl —sin 2O

where @(s)={; x*~ 'F(x)dx, valid under certain conditions on f(¢) and
parameters involved, has been extended to a class of generalized functions and
a uniqueness theorem has been established for it.

Let I stand for the open interval (0, o). D(1) is the space of smooth functions
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P
=2
D
7
(4]

on I with compact support. M, ,(I) is the testing function space of all t

on I with compact support. M, ,(J he ing function ce of
complex-valued smooth functions ¢(x) defined on 0<x<o for Wthh
Sup, . ... €™ x***Dix "’¢(x)| is finite for all k=0,1,2,...; where Dy=d"/dx"
and b<0. D'(I) and M, ,(I) are the topological dual of the spaces D(I) and
M, ,(I) respectively. gy is a real number (possibly — o) such that fe Ma, »()
for a>o,and f¢ M, ,(I) for a<oy.
The M, p-transform of fe M, ,(I) denoted by M, g(f) is defined by

F(s)=M 4 g(f)(s)
= (f(x), h(sx)>

where
(1.2) h(sx)— F(B) (sx) 1Fi1(A, B; — sx)
and se &;.

The region Q; is defined as follows:

Q,={s:Res>0,s5#0, —n<args<nj.

sz—l (), h(xu)y dx= (f(u), § x*~ T h(xu) dx)
0

0

where h(xu) is given in (1.2), and Res>1, A=8+n+1, B=a+f+n+1, =0,
n>0.

Let 15  (x) denote the function

0 x<0
l(,m(x){ 1 O<x<o®

and the corresponding generalized function belonging to M, ,(I), then using
the definition of the product of generalized functions [Zemanian 5, p. 121}, we
have for Res>1

2.1 (L, e () f (1), X~ (xu) )
(2.2) = {lgex) {fu),x* " h(au)y)

@.3) = <)% hea) dx.
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From [Slater 4, p. 59] it follows that

I
)

Fi(a, b, —x) x {1+0|x|"}, x> o,Reb>Rea>0

and
Fi(a, b, —x)=0(1), x— 0.

It can be easily seen that for Res>1,
), x* " h(xu)y e M, (1)

and hence step (2.2) is justified and (2.3) follows from it as 1y ,,(x) is a regular
generalized function.

Since the product of generalized functions is commutative (2.1) can be
written as

(1,00 () f(10), X* T h(xu)y = ( f(u), {1g, 0 (x), X*~ LU )

= {(f@), § x* " h(xu) dx).
0
Hence the lemma.
LEMMA 2.2
Let ¢ € D(I),r be a fixed real number. If

o

Pis)={y oy dy

0

where s=c+1i7T with ¢ fixed and
a—pf>Res>max(gy, 1), —0<T<o

and if fe M, ,(I), then

r

1
§ (fl)u™) P(s)dT= <f(u), py fu lA‘Y’(~‘>’)dr>

-r

@4

PROOF.

For ¢(y)=0, the proof is trivial.
Let ¢(¥)#0 and let

2.5 (Sw)u™) =)

The left hand side of (2.5) is justified as u *e M, ,(I) for Res<a—pf. A(s)
is seen to be analytic in @ — f#>Res>max(gy, 1) and P(s) is also analytic for all
finite values of s. Thus the left hand side of (2.4) is an integrand which is an
analytic function over a finite region and hence converges uniformly. Now

dﬂ

1 r
bu, a+n -8 —s
eu Y(s)dT

du"u {271 ,j,u ) }i
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ebuua+n{_1_ g a’ u—(ﬂ+s)(lj(s)dT
2r 2, du”

s% 5 |®u B=S||(= D' (B+sHB+s+ D). (B+s+n—1)P(s)dT|.
Since |, (B+8)(f+s+1)...(f+s+n—1)¥(s)dT is finite and

Sup [e?u""F~%| <
O<u< ™
for a— f>Res>max(ay, 1) and b<O0.
We see that

a" 1 -
Sup eb“u“”—u/]{— fuw(E)dT | <oo.
O<u< oo du” 27 _r

This proves that
120§, u™¥(s)dTe M, ,(I).

Hence the right hand side of (2.4) is meaningful. Now to prove the equality
let us partition the path of integration on the straight line from ¢ —ir to c+ir
into m sub-intervals each of length 2r/m. Let s, =c+iT, be a point in the pth
interval. Let us set

mo 2r
Vo)=Y u¥(s,)—.
1 m

p=

We can write

1 - m ] 2
— § (S, uy P dT=Lim ¥ — (f(u),u~7y ¥(s,) —
2 27 m

_r mooo p_|

(2.6)

m-— o

1

. mo 1 2r
=Lim <f(u), Yy —u? ‘P(sp)—>.
po1 27 m
If we can show that the sum within the last expression converges in M, ,(I)
to 1/27 § u™" ¥(s) d7, the equality (2.4) will be proved.
Let us consider A(u, m) where

—~

Aw,my=e®u** "D u PV, )~ | u—s¥(s)dT]

=P UL Y (= 1) (s, + B)(s,+ B+ 1)
Q7 < 7=

o 2r
(st Brn—Du b ”‘l’(x,,);

[ (=) s+ B+ B+ D). (54 Bn—Du— B @(s)dT].

~ -r
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We have to show that A(u, m) converges uniformly to zero on 0<u< o as
m— co.
For b<0, we see that

le®u=B=S(s+ B)s+B+1)...(s+B+n—1)|
tends uniformly to zero on —r<T7T=<r as u — o, Hence for given £¢>0, there

exists a u'>0 such that u>u'>0and —r<T<r,

|ebuua—ﬂAs(s+ﬁ)(s+ﬁ— D...(s+8+n-1|< g[ § '1’(s)dT]’l

[since ", [¥(s)dT| is finite and nonzero because of ¢(¢)+#0.]
It follows that

d" r £
(2.8)  Sup eb“u‘”"Fu’B{ § u'S'I’(s)dT}‘<§.
u Zr

u>u’

Also for all m

n

d
(2.9)  Sup |e™u""—u PV, (u)
u>u’ du

e or
<L POATI > § ¥,
; m

- n
i 14

Thus, there exists my such that for m>m,, the right hand side of (2.9) is
bounded by 2¢/3.
From (2.8) and (2.9) we have for m>m,,

u>u', |A@w,m| <e.

Let us now consider the range O<u=<u’, with ¢ fixed in a— f>Res>
max(as, 1). We see that U P S (s+ B)s+ B+ ). . (s+B+n—-1)¥(s) is a uni-
formly continuous function of (1, T), 0<u=<u’, —r=<T=r. This together with
(2.7) shows that there exists m; such that for all m>m,, |A(u, m)|<e on
O<u<u’ as well.

Thus when m >max(m,m,), we have |A(y, m)| <& uniformly on 0<u < co.

Hence the lemma.

LEMMA 2.3

If () peD{)

(i) a,b,¢ and r be real numbers such that a—b>c>max(o, 1) and <0,
then

¥\~ sinrlogy/u
> ——dy—- o)

1 e
n (j) q)(y)(; ulogy/u

in M, ,(I) as r— .

PROOF.
Let

[ = y\“lsinrlogy/u
I=—{ ¢(y)<—> ———dy
o u ulogy/u
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Putting log y/u=t i.e., y=u €' in I, we have

1
I=— 5 o(ue'ye~ e S 7t ue' dt
n ut
1 = i
=— | q)(ue’)e"fgl—r—tdt.
T _ t
Hence
1 @
[L-e@N=—§ f ¢(ue’)e“ ™ dt- pu)
l = / sin rt
- 5 [e” p(ue’) — p(u)] dt
7r t
. = sinrt
[smce § , dt=7t].
Let
n 1 0 :
B =eut Ly 81 T o ety - pluy) S
du T

Our lemma will be proved if we are able to show that B,(#) — 0 uniformly on
O<u<ow as r—o, n=0,1,2.
Taking the differential operator inside the integral sign, we have

nrt

Br(u)=— Pyt 5 [e” Djju" p(ue") - Djju" p(u)]

1 -] 3 ©
=_ebuea+n[§ + 5 +H
s - -3 3

=L+ L)+ Lu).

Here I,(u), I,(u) and I;(u#) denote the quantities obtained by integrating over
the intervals —oo<t< — 3, —9<f<0d and d<t< oo, respectively, where 4>0.

Let us consider 7, first and set
e"D{:u“%(ue')—D:u-%(u)]
; .

R(tuy=e"u"*" [

Here R(t,u) is a continuous function of (f,«) for all ¥ and r#0. Also,

Lim R(¢,u) = Lim e®u®*" D, [ D! u=# ¢ (ue")]

t—-0 t—0
(By L’Hospital’s Rule).
Hence assigning the value
e®u*"D,[e" D u~Pp(ue),—o

to R(0,u), we see that R(t,u) is a continuous function of (f,u) in —d<t< oo,
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0 < u< oo and since ¢(u) is smooth, R(#, u) is bounded, say by K. Hence for any

£>0, there is a 9 so small that
| 1
|L(u)| = ’— 5 R(t,u)sinrtdr| < — } |R(t,u)| dT

or, |L(u)|<K23/n<e, if 3 is so fixed that d<me/2K.
Now let us consider I, (u).

1 sin rt
Ij(u)=—e"u “"S le D u~" p(ue') - Dyu P ()]

n
1 -9 sin rt

=;eb”u‘”" § [ Diu=* p(ue’) . dt
1 -9 sin rt

=—eu"*" | [Dju~Pp(u)] dr
7 Cw t

=J, () - J,(u) (say)

We have

1 —rd '
Jr)=—e e u" " {Dju o)} | _z_d

— o

Now as {®u’""D!u"?@(u)} is bounded in 0<u<oco and .

sin z/zdz

is convergent, J,(u) tends uniformly to zero in O0<u<o as r— o (since

{_Isinz/zdz=0).

On integration by parts

ain —e"Dl'u=P p(ue’) cosrt]?
t r _®

1,
Jiw)y=—e"u
n

1 - e
+—ePu*" | cosrtD, {—D,’,’u‘[%(ue’)} dt
nr e t
since ¢p(u) e D(I) and c>1, we have

4 1 o+ [ —e D"y P p(ue ) cos rt]

Jy(u)=—e®
1) n —-a r

e Dl'u~? p(ue’) cos rt
t r

1
+ Lim — e y2tn
t—s -0 TT

1 —3 ct
2.10) < + —ePut*" | cosrt D, {%D[}uﬂq)(ue’)} dr

nr — o

i) r

L gbuyaen [ e Dju"’ gp(ue™) cos ra] o
n

\_ nr —

1 X e
+—ePutn § cosrt D, {7 D,'}u‘%)(ue')} dr
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The first term of (2.10) tends uniformly to zero in 0<u < oo as r-» oo, since d
and ¢ (>1) are fixed and eb”u‘””Dl’,'u‘ﬁ(p(ue‘a) is a bounded function of u in
O<u<oo,

Also,

e(‘t
e utD, [ - D] u‘ﬁ(p(ue’)}

tce< — et
:ebuua+n <—7—>D;’u'ﬁq)(ue’)

ct

d
+ebuyatn eT — D p(ue).

Since each term is a bounded function of ¥ and 7, 0<u < o0, — o0 <f< oo, hence
the second term in the right hand side of (2.10) also goes to zero uniformly as
r— oo,

Thus we see that J, (1) — 0 as r — oo, and hence /,(u)—» 0 as r— .

In a similar manner we can prove that I;(uz) converges uniformly to zero in
0<u<oo as r— oo.

Combining these results we see that Lim __ |B.(4)|<e, 0<u<oo,e>0
being arbitrary smail. Hence the Lemma.

3. COMPLEX INVERSION FORMULA
THEOREM 3.1

If (@) feM, ()
(b) F(x) is defined by

F(x) = (f(u), h(x,u))

where h(xu) =I'(A)/I'(B)(xu)~* F,(A, B; — xu)

©) o, f,n,a, b are real numbers with

(i) a—pB>c>max. (g, 1)

(i) b<0 and

(iii) =0, #>0, O<Re(f+s)<Re(f+n+1), s=c+IT then for any
o(y)e D)

1 evir INa+n—s+1)
<2m' i DB+ T (n—s+1)

where &(s)={7 x*~ ' F(x) dx.

o(s)y° ' ds, ¢(y)> (g as fooo

PROOF.
The theorem will be proved by justifying the following steps:

<1 ervir - a+n—s+1)

. s—1
2ni S TR T —s+ 1) 2P 48 ¢(y)>
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1 c+ir
=<—. | Md(@s)y 'ds, ¢(y)>

27” c—ir
(3.1)
INa+n—-s+1)
where, M=
r'+s)rin-s+1)
3.2) —{ =1 Moy dsp() dy
0 — i
l r @
— [ MP(s) |y 'o(»)dydT
3.3) -r 0
(s=c+iT)
(3.4) = SM{I STIF(x) dx} § v~ 'e(y) dydT
-r Q
1 r o0 ®
(3.5 = o § M{T X1 f ), hOoa)y dx} § v~ o(»)dy dT
-r 0 0
(.6) =L MG, T e dxd § ¥ o(n)dy AT
2n _r 0 0
1 r o
3.7 = ! § MCf@),u™M 'y [y ' o(y) dydT
- 0
1 . sm s—1
3.9) =< b f w1y ¢(y)dydT>
- 0
I = ¢ —5.,5—1
(3.9) =<f 5—§¢(y) fuy dey>
0 —-r
- c—1 o1
_ <f i ; ¢(y)<y> sin rlog y/u dy>
(3.10) T o ulogy/u

- {f(u), p(u)) as r— oo,

Since the integral in (3.1) is a continuous function of y and ¢ () is a smooth
function of compact support in (0, o), (3.1) implies (3.2). As the integral in
(3.2) is continuous on a closed and bounded domain or integration, we can
change the order of integration in (3.2) to obtain (3.3), (3.4) and (3.5) are ob-

vious. (3.6) is justified by Lemma 2.1.
Now from Erdélyi [1, p. 285] we have

°5°xb-1 F(a,c, —t)dt= rorora-b 0<Reb<Rea.
o RS I'@r(c-b)

Therefore,
°§xs 1&(,(“) B F\(A,B, —xu)dx=u LB+ s+ D
° (B INa+n-s+1)

where 0<Re(f+s)<Re(f+n+1). Hence (3.7) is a simplification of (3.6).
(3.8) is obtained by using Lemma 2.2. As the integral in (3.8) converges



uniformly we can change the order of integration to obtain (3.9). On simplifica-
tion (3.9) reduces to (3.10). Lemma 2.3 shows that the integral within the
brackets in (3.10) converges in M, ,(I) to ¢(u) as r —» . Hence the theorem.

4. UNIQUENESS THEOREM

Let f,geM, ,(I) and

() F(s)=My4 p/)s), sy

(i1) G(s)=(M4 pg)s), se 2, and

(iii) F(s)=G(s) for se 2,N K2,
then in the sense of equality in D'({), f=g.

The above weak version of uniqueness is an immediate consequence of the
inversion theorem.

The authors are thankful to the referee for his valuable constructive sug-
gestions.
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