
Indag. Mathem., N.S., 2 (3), 301-310 September 30, 1991 

Complex inversion and uniqueness theorems for a generalized Laplace 

transform 

by A.C. Gupta’ and A.K. Mahato’ 

’ Department of Mathematics, K.C.B. College, Bero (Ranchi) of Ranchi University, Ranchi, 
India 835202 
’ Department of Mathematics, Marwari College, Ranchi of Ranchi Universiiy, Ranchi, India 
834001 

Communicated by Prof. R. Tijdeman at the meeting of February 25, 1991 

ABSTRACT 

In this paper a complex inversion formula for a generalized Laplace transform 

F(x)=~;(~~)~,F,(A,B;-xt)f(t)dt 
r(B) o 

where A =fi+q+ 1; B=u+P+q+ 1; p>O and q>O has been obtained and extended to a class of 

generalized functions. A uniqueness theorem has been established for it. 

1. IN AN EARLIER PAPER [3] WE HAVE EXTENDED THE INTEGRAL TRANSFORM 

(1.1) F(x) = z j(~t)~,F,(a,B;-xt)f(t)dt 
0 

studied by Joshi [2], where ,F, denotes the confluent hypergeometric function, 

A=P+q+l, B=a+/?+~+l,P?O and q>O, to a class of generalized func- 

tions and have proved an analyticity theorem for it. (1.1) reduces to Laplace 

transform for cx = p = 0. In this paper the complex inversion formula 

f(t+)+f(t-) 1 “‘r’” I-(cx+~-s+l)tSP’ 

2 2rci Cm,- r(p+s)T(q-s+ 1) 
D(s) ds, 

where Q(s) = 1,” xS-’ F(x) dx, valid under certain conditions on f(t) and 

parameters involved, has been extended to a class of generalized functions and 

a uniqueness theorem has been established for it. 

Let I stand for the open interval (0,03). D(I) is the space of smooth functions 
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on Z with compact support. M,,(Z) is the testing function space of all those 

complex-valued smooth functions G(x) defined on O<x< 00 for which 

SUP~<~<, jebxx’+kD: x-“@(x)1 is finite for all k=O, 1,2,...; where Dl=d”/dx” 
and I, < 0. D’(Z) and ZkZi, b(Z) are the topological dual of the spaces D(Z) and 

Ma,,(Z) respectively. of is a real number (possibly - 03) such that REM& 

for a>afandfeM&(Z) for a<of. 

The A4 .,B-transform of f~k&,(Z) denoted by M&f) is defined by 

F(s) = MA, B (f)(s) 

where 

= <f(x), Wx) > 

and s E Qf. 

The region szf is defined as follows: 

Qf={s:Res>crf,s#O, -n<args<n}. 

2. WE FIRST PROVE A FEW LEMMAS 

LEMMA 2.1 

If fe M&(Z), then 

p1 <f(u), h(xu)) dx= <f(u), i xs- ’ h(xu) dx) 
0 

whereh(xu)isgivenin(1.2),andRes>l,A=p+rl+l,B=a+p+rl+l,PLO, 

fl>o. 

PROOF. 

It is clear that 

xS~‘(f(u),h(xu)> =(f(u),xS-‘h(xu)>. 

Let lo,m(~) denote the function 

lo,m(x) 
1 

=o x10 

=l o<x<oo 

and the corresponding generalized function belonging to M&(Z), then using 

the definition of the product of generalized functions [Zemanian 5, p. 1211, we 

have for Res> 1 

(2.1) (lo,m(x)f(U),xS-‘h(xU)) 

(2.2) = <lo,,(x), <f04,x”-‘WW 

(2.3) = $ (f(u),x’-’ h(xu)) dx. 
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From [Slater 4, p. 591 it follows that 

and 

P,(&b, -x)= 
Z(b) _ 

px u{l+olxl-‘}, 
T(b - a) 

x-+ m,Reb>Rea>O 

lF,(a,b, -x)=0(1), x+0. 

It can be easily seen that for Res> 1, 

cf(~),x’-‘W~)) EZ%,fAZ) 

and hence step (2.2) is justified and (2.3) follows from it as l+,,(x) is a regular 

generalized function. 

Since the product of generalized functions is commutative (2.1) can be 

written as 

= <f(u), 7x”-‘h(xu) dx). 
0 

Hence the lemma. 

LEMMA 2.2 

Let @ E D(Z), r be a fixed real number. If 

‘Z’(s)=k’@(_v) dy 
0 

where s = c + iT with c fixed and 

a-P>Res>max(af,l), -oo<T<m 

and if f~k&(Z), then 

(2.4) & i 
r 

(f(u), u-‘> Y(s) dT= (f(u), ; i 
r 

UP Y(s) dT) 

PROOF. 

For @(y) = 0, the proof is trivial. 

Let Q(y) # 0 and let 

(2.5) <f(u), u-s> =A@). 

The left hand side of (2.5) is justified as u~‘EM~,,(Z) for Res<a-P. A(s) 

is seen to be analytic in a-p> Res>max(af, 1) and Y(s) is also analytic for all 

finite values of s. Thus the left hand side of (2.4) is an integrand which is an 

analytic function over a finite region and hence converges uniformly. Now 

d” ebuua+n_U- p 
du” 

& j 
r 
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& jr -$ .-(p+s)Y(s) dTj / 

s& ~~~eb”ua~~-“~~(-l)~(~+s)(~+s+1)...(/3+s+n-l)Y(s)dT~. 

Since j[,(P+s)(/?+s+l)...(P+s+n-l)Y(s)dTis finite and 

Sup ~ebuUa-fl-sI < 03 
O<u<m 

for a-p>Res>max(a/, 1) and b<O. 
We see that 

d” 
Sup ebuua+n-u & j uPY(s)dT <m. 

O<u<m du” r 

This proves that 

Hence the right hand side of (2.4) is meaningful. Now to prove the equality 

let us partition the path of integration on the straight line from c - ir to cs ir 

into m sub-intervals each of length 2r/m. Let s,=c+ iTp be a point in the pth 

interval. Let us set 

We can write 

(2.6) 

, ups> Y(s) dT= Lim f i <f(u), ~0’) Y&,)x 
m-m p=, 27c 

If we can show that the sum within the last expression converges in MO,,(I) 

to l/277 S UP Y(s) dT, the equality (2.4) will be proved. 

Let us consider A(u, m) where 

A(U,m)=ebuua+“D,“U-8[V,(U)- j u-sY(s)dT] 
mr 

(2.7) < 
=ebuua+“[p~, (- l)“(sp+P)(sp+P+ 1) 

. ..(s.+p+n-l)u~~P~8-‘lvl(x,)~ 

i 
- j,(- l)“(s+~)(s+~+ l)...(s+P+n- l)z.PBPnY(s)dT]. 
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We have to show that A(u,m) converges uniformly 

m-+03. 

For b< 0, we see that 

~e%“-~-~(s+/3)(s+~+ l)... (s+P+n- 1)1 

to zero on O<u<o3 as 

tends uniformly to zero on - r5 Trr as u + 00. Hence for given &>O, there 

exists a u’>O such that u>u’>O and -rs Tsr, 

~eb”u”~P-S(s+~)(S+~-l)...(.s+~+n-l)~< i[j y(QdT]P1 
r 

[since j[, /Y(s) dTl is finite and nonzero because of @(t)#O.] 

It follows that 

d” 
(2.8) Sup ebuuain-u 

U>U’ 
pp{ j u-“Y(s)dT) < 5. 

du” _r 

Also for all m 

d” 
(2.9) Sup ebuua+n-u -%,(u) 

U>U’ du” 
+ 

r 
Pf’Wd~ll-‘~pi, I’u@,)l. 

Thus, there exists m. such that for m>m,, the right hand side of (2.9) is 

bounded by 2&/3. 

From (2.8) and (2.9) we have for m>m,, 

u>u’, IA(u,m)l <E. 

Let us now consider the range 0< us u’, with c fixed in a--p> Res> 

max(af, 1). We see that u “-“-S(s+p)(S+p+ l)...(s+p+n- l)Y(s) is a uni- 

formly continuous function of (u, T), 0< u 5 u’, - r-5 TI r. This together with 

(2.7) shows that there exists ml such that for all m>m, , jA(u, m)l <E on 

O<u<u’ as well. 

Thus when m > max(mom,), we have IA(u, m)j <E uniformly on 0< u< co. 

Hence the lemma. 

LEMMA 2.3 

If (i) f$ ED(I) 

(ii) a, 6, c and r be real numbers such that a- b>c>max(of, 1) and 6<0, 

then 

in M&(I) as r-+ m. 

PROOF. 

Let 
cP i sin r log y/u 

u log y/u 
dy. 
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Putting logy/u = t i.e., y = u e’ in Z, we have 

sin rt 
I= L 5 @(uet)eCc- l)[ - ue’dt 

7t -m ut 

= i j @(ue’)eC’ y dt. 
cc 

Hence 

Let 

[I - G(u)] = k j @(ue’)eC’ y dt - o(u) 
m 

= i j [ec’@(ue’) -G(u)] v dt 
co 

m sin rt 
since j -dt=rr . 

-cc t 1 
B,(u)=ebuuain$u + L 7 [e”@(ue’) - @I(U)] 

n -cc 
ydt. 

Our lemma will be proved if we are able to show that B,(u) -+ 0 uniformly on 
O<u<oo as r-+03, n=O,1,2. 

Taking the differential operator inside the integral sign, we have 

B,(U) = _! ebuU”+n 
7c 

7 [ec’D,“u-P~(ue’)-D,“u-P~(u)] y dt 
-cc 

1 
=-ebuea+n[ 3 + j + y] 

II -a -a a 

Here Zr (u), Zz(u) and Zs (u) denote the quantities obtained by integrating over 
the intervals - 00 < t < - d, - d < t c d and a < t < GO, respectively, where a > 0. 

Let us consider Z2 first and set 

R(t, u) = ebuua+” 
ec’o,“u-P~(ue’)-D,“u-B~(u) 

t 

Here R(t, u) is a continuous function of (t, u) for all u and t # 0. Also, 

Lim R(t, u) = Lim ebuua+‘Dt [ec’D,“u-8@(ue’)] 
t-0 1-O 

(By L’Hospital’s Rule). 

Hence assigning the value 

to R(0, u), we see that R(t, u) is a continuous function of (t, u) in - a < t C m, 
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0 c u < 00 and since e(u) is smooth, R(t, u) is bounded, say by K. Hence for any 
E>O, there is a a so small that 

or, lIz( 5 K 2a/rc<&, if a is so fixed that a< ne/2K. 
Now let us consider Z,(U). 

I~(~)= Ieb’y+” jl [eC’D,“u -8@(ue’) - D,“u-B@(u)] 
7c 

ydt 

1 = _ ebuUa+n r” [e”D,“u-fi@(ue’) y dt 

71 -Cc 

1 = _ebuUa+n r” [D’$&#,(,)] $!dt 
II --m 

= JI (u) - Jz(u) (say). 

We have 

Now as {ebuua+nD~u-B@(u)) is bounded in 0 < u < 00 and St, sin z/z dz 
is convergent, J2(u) tends uniformly to zero in 0< UC 00 as r+ 03 (since 
j:Lsin z/z dz = 0). 

On integration by parts 

J,(U)= LebuuQ+n - e”D,” up8@(ue’) cos rt -a 

7r t r 1 -02 
+ L ebuUa+n 

-J C-I 

j cosrtD, dt 
rtr --CD 

$0,” upP@(ue’) 
1 

since G(u) E D(Z) and c > 1, we have 

- epca 0,” upP@(uema) cos rt 

-a r 1 

I 
+ Lim Lebuua+” e”D,” umB@(ue’) cos rt 

,-1-m 7c t r 1 
+ ~ebuUofn 

-J 

(2.10) 1 cos rt D, f Dz&@(ue’) dt 
7rr --o) 1 

I 
1 = _ebuUa+n e-CaD,“u-B@(ue-a) cos ra 

~ +o 
lz a r 1 

+ LebuU”fn 
-J Cf 
5 cos rt D, f D,“umPc,b(uer) dt. 

Tcr -m 1 
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The first term of (2.10) tends uniformly to zero in O< U< 00 as r--+ 00, since a 
and c (> 1) are fixed and ebuuu+” Dcu-B#(,e-a) is a bounded function of u in 
o<u<w. 

Also, 

eb”ua+nD, f Diuep@(ue’) 
I I 

,eb”u”+“( fCec;;ecf)D~u-~~(ue’) 

+ebuua+nc _ ; ;t [D iumP@(ue’)]. 

Since each term is a bounded function of u and t, 0 < u < 03, - m < t < co, hence 
the second term in the right hand side of (2.10) also goes to zero uniformly as 
T--t 00. 

Thus we see that .Zt(u)-+O as r-+m, and hence It(u)-,0 as r+o3. 
In a similar manner we can prove that Z3(u) converges uniformly to zero in 

O<u<o3 as r-+03. 
Combining these results we see that Limr_, I&(u)/ <E, O< u < 03, E > 0 

being arbitrary small. Hence the Lemma. 

3. COMPLEX INVERSION FORMULA 

THEOREM 3.1 

If (a) .fE Mi, b(z) 

(b) F(x) is defined by 

F(x) = <f(u), KG u)> 

where h(xu) = Z(A)/Z(B)(XU)-~ t Ft (A, B; - xu) 
(c) a, p, 8, a, b are real numbers with 

(i) a-P>c>max. (of, 1) 
(ii) b-c0 and 

(iii) /3rO, q>O, O<Re(p+s)<Re(p+rZ+l), s=c+ZT then for any 

KY) E D(Z) 

where G(s) = 6 xs- ‘F(x) dx. 

PROOF. 

The theorem will be proved by justifying the following steps: 
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(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

where, M= 
r(a+?j-s+ 1) 

r(p+S)z-(q-~+ 1) 

M(f(u), p-I h(xu)dx)+@(y)dydZ- 
r 0 

=$ j M(f(u),u-“M~‘>~y”-‘~(y)dydT 
r 0 

= f(u), & a G(y) j u’y’-‘dTdy) 
--I’ 

c-l sinrlogy/u = f(u), ; $ @(Y)(;) 
u log y/u 

dy 
> 

+ (f(u),@(u)> as r--ta. 

Since the integral in (3.1) is a continuous function of y and C$ (y) is a smooth 

function of compact support in (0, oo), (3.1) implies (3.2). As the integral in 

(3.2) is continuous on a closed and bounded domain or integration, we can 

change the order of integration in (3.2) to obtain (3.3), (3.4) and (3.5) are ob- 

vious. (3.6) is justified by Lemma 2.1. 

Now from Erdelyi [ 1, p. 2851 we have 

b-l ,F, (a, c, - t) dt = 
r(b)r(c)r(a- 6) 

O<Reb<Rea. 
T(a) T(c - b) 

Therefore, 

p-IL+ (xu)QqA,B, -xu)dx=uP 
r(p+S)r(q-s+ 1) 

T(cr+17-s+ 1) ’ 

where O<Re(/I+s)<Re(p+n+ 1). Hence (3.7) is a simplification of (3.6). 

(3.8) is obtained by using Lemma 2.2. As the integral in (3.8) converges 
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uniformly we can change the order of integration to obtain (3.9). On simplifica- 
tion (3.9) reduces to (3.10). Lemma 2.3 shows that the integral within the 
brackets in (3.10) converges in M,,,(Z) to G(U) as F+ m. Hence the theorem. 

4. UNIQUENESS THEOREM 

Let f,g~iM&(Z) and 

(i) F(s) = (MA, of), s E Qf 
(ii) G(s) = (MA,ag)(s), s E 52, and 

(iii) F(s) = G(s) for s E sZf Cl Sz, 
then in the sense of equality in D’(Z), f =g. 

The above weak version of uniqueness is an immediate consequence of the 
inversion theorem. 

The authors are thankful to the referee for his valuable constructive sug- 
gestions. 
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