
DISCRETE
APPLIED

Discrete Applied Mathematics 77 (1997) 27 l-280

MATHEMATICS

Simple but efficient approaches for the collapsing
knapsack problem *

Ulrich Pferschy”, *, David Pisingerb, Gerhard J. Woeginger”

a Universitilt Graz, Institut ftir Statistik und Operations Research. Universitiitsstc. 15. A-8010 Graz. Austria

b DIKU, University of Copenhagen, Universitetsparken I, DK-2100 Copenhagen, Denmark

’ TU Graz, Institut ,ftir Mathematik B, Steyrergasse 30. A-8010 Graz, Austria

Received 3 July 1995; revised 2 May 1996

Abstract

The collapsing knapsack problem is a generalization of the ordinary knapsack problem,
where the knapsack capacity is a non-increasing function of the number of items included.
Whereas previous papers on the topic have applied quite involved techniques, the current paper
presents and analyzes two rather simple approaches: One approach that is based on the
reduction to a standard knapsack problem, and another approach that is based on a simple
dynamic programming recursion. Both algorithms have pseudo-polynomial solution times,
guaranteeing reasonable solution times for moderate coefficient sizes. Computational experi-
ments are provided to expose the efficiency of the two approaches compared to previous
algorithms.

Keywords: Collapsing knapsack problem; Nonlinear Knapsack; 0 1 Programming

1. Introduction

The classical knapsack problem tries to find a maximal-valued subset of items with
a limited total weight. An extension of this problem arises if the capacity of the
knapsack depends on the number of items it contains. The resulting 0- 1 collapsing
knapsack problem is defined as

n
(CKP) maximize 1 cixi

i=l

subject to i$I aixi < b (i xi). xic{O, 1
i=l

a This research was partially supported by the Spezialforschungsbel

),i= 1 , . . . , n,

ich F003 “Optimierung und Kon-

trolle”, Projektbereich Diskrete Optimierung, and by the Christian Doppler Laboratorium fiir Diskrete

Optimierung.

*Corresponding author.E-mail:pferschy@kfunigraz.ac.at.

0166-218X/97/$17.00 0 1997 Elsevier Science B.V. All rights reserved

PII SOl66-218X(96)00134-5

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82575375?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

272 U. Pferschy et al. / Discrete Applied Mathematics 77 (1997) 27I-280

where ci resp. USE N + are the value resp. weight of item i and b(i) is a nonincreasing
functional over (1, . . . , II} representing the capacity of the knapsack. This means that

the capacity of the knapsack will decrease the more items are packed into the

knapsack. If b(.) is a linear function, the problem becomes equivalent to a standard

knapsack problem.

The collapsing knapsack problem was introduced by Posner and Guignard [7] and

has applications in satellite communication where transmissions on the band require

gaps between the portions of the band assigned to each user. Other applications are

time-sharing computer systems, where each process run on the system causes addi-

tional overhead, and design of a shopping center where both the type and size of

a shop must be selected [7].

In the case of b being a nondecreasing functional, the problem can be seen as a 0-l

expanding knapsack problem. It can be interpreted as a “rubber knapsack” whose

capacity increases the more items it contains. Like the collapsing knapsack problem it

has several applications, e.g. in budget control, where the dealer gives trade discount

depending on the number of items purchased, or in manpower planning of state

subsidized projects, where the size of a grant depends on the number of employees.

The collapsing knapsack problem is NY-hard as it contains the O-l knapsack

problem as a special case. The present paper shows that it may be solved in

pseudo-polynomial time through dynamic programming. The first implicit enumer-

ation algorithm for CKP was given by Posner and Guignard [7], but recently Fayard

and Plateau [2] presented a superior algorithm using new tight upper and lower

bounds.

Although the standard knapsack problem with fixed capacity can be solved very

efficiently, currently known CKP algorithms cannot guarantee to solve instances of

larger size (e.g. n 2 100) to optimality within reasonable time. To build a bridge

between these two related problems, we show in Section 2 that any O-1 collapsing

knapsack problem can be represented as an equivalent standard O-l knapsack

problem (SKP) with a fixed capacity. The resulting SKP belongs to the class of “hard”

knapsack instances because the values and weights of the items are highly correlated.

For these kinds of problem instances special algorithms have been developed by e.g.

Martello and Toth [3] and Pisinger [6]. We briefly discuss the practical aspects of

solving the SKP at the end of Section 2.

Several solution techniques known from classical knapsack problems can

also be applied directly to CKP. In particular, a dynamic programming approach for

CKP is presented in Section 3, showing that the problem may be solved in time

O(n’b(l)). Some simple upper bound tests are introduced to limit the enumeration

further.

These two new approaches are finally compared to the implicit enumeration

algorithm by Fayard and Plateau [2] in Section 4. A study of the solution times based

on data models from the literature shows that the reduction to SKP is an attractive

alternative for small instances. The reduction is easy to implement and the resulting

SKP can be solved by standard knapsack routines which are present in many

U. Pferschy et ~(1. i Discrete Applied Mathematics 77 (I 997) 271-280 213

computational environments. Thus, hardly any new code has to be written to solve

small problems.

However, the dynamic programming approach, which is also easy to handle, turned

out to be superior for all instances considered and should be applied for all medium

and large problems.

2. Reduction to a standard knapsack problem

We describe a reduction scheme which generates for any given collapsing knapsack

problem CKP an equivalent instance of a standard knapsack problem SKP. In fact,

the reduction is valid for arbitrary capacity function b(.), since we do not make use of

the monotonicity.

The described construction can be performed in 0(n) time and leads to an instance

of SKP that is twice as large as the original instance of CKP. Further properties and

solution methods for the resulting SKP are given at the end of this section.

Let A = I:= 1 Ui and C = CT= 1 Ci. Without loss of generality, we may assume that

0 < b(i) < A for all i, as otherwise we replace h(i) by A. Moreover, we may assume

II > 3. We construct an instance of the standard 0-l knapsack problem with 2n items

having weights a,, , ct2,, and values yl, . . . , y2,,. The weights are defined as

i

ui + A for i = 1, ,.. , ~1,

‘% = (4n - i)A - b(i - n), for i = n + 1, . . . , 24

while the corresponding values of the new items are defined by

i

Ci + C fori=l,n.

i’i= (3n+l-i)C, fori=n+l,..., 2n.

Finally, the size I? of the standard knapsack is 3nA.

The problem SKP consists in finding a subset of the items with maximum value and

weight at most B, thus

(SKP) maximize iFI ‘/ixi

subject to iiI Nixi d B, xie (0, l}, i = 1, . . ,2n.

Items with index in { 1, . . . , n} are called small items and items with index in

(n + 1, . . . , 2n) are called large items.

Lemma 1. In a ,feusible solution of the above instance of SKP, the knapsack contains at

most one large item. In case it does contain a large item with index j, n + 1 < ,j < 2n, it

contains at most j - n small items

214 (1. Pferschy et al. / Discrete Applied Mathematics 77 (1997) 271-280

Proof. The weight aj of any large item with index n + 1 < j < 2n is at least

(4n - j)A - b(j - n) > 2nA - A > (2n - 1)A

and at most (3n - l)A. Hence, no two large items fit together into the knapsack but

every single large item fits.

For the second statement in the lemma, assume there is a large item with index

n + 1 < j d 2n in the knapsack. For the small items, there remains a weight capacity

of (j - n)A + b(j - n). Since every item has weight greater than A and since

b(j - n) 6 A, at most j - n small items can be packed. 0

Lemma 2. In a feasible solution of the above instance of SKP with objective value at

least (2n + l)C + 1, the knapsack contains a large item with index n + 1 < j < 2n and

exactly j - n small items.

Proof. The overall value of all small items is (n + l)C, hence there must be some large

item j in the knapsack. Let I denote the set of indices of small items in the knapsack.

Suppose 111 < j - n - 1. Then the overall value of the knapsack is at most

yj + E (C + Ci) = (3n + 1 - j)C + JIlC + C Ci < (2n + l)C,
id

a contradiction. Hence, there are at least j - n small items in the knapsack and the

statement in Lemma 1 completes the argument. 0

Theorem 3. The instance of CKP has a feasible solution with objective value V if and

only if the instance of SKP has a feasible solution with objective value V + (2n + l)C.

Proof. (Only if) Assume CKP has a feasible solution with objective value V and define

the set I = {ilxi = 1). In other words, CiolCi = V and CiElai < b(lIl) holds. Define

a solution for SKP that contains all small items with indices in I and the large item

with index n + 111. The objective value of this solution is exactly V + (2n + l)C, and

the weight is

a,+lIl + 1 cti = (3n - III)A - b(lll) + C (A + ai) = 3nA
id id

+(zai-b(l)) 6 hA=B.

Hence, we have found a feasible solution for SKP with objective value V + (2n + l)C.

(Zf) Now assume that SKP has a feasible solution with objective value

V + (2n + l)C. Lemma 2 states that the knapsack contains a large item with index

n + 1 d j < 2n and exactly j - n small items. Let I denote the set of indices of small

items in the knapsack, 1 I I = j - n. The overall weight of a feasible solution for SKP is

U. Pferschy et al. / Discrete Applied Mathematics 77 (1997) 271-280 215

at most B, i.e.

B = 3?L4 3 Xj + 1 pi = (4n - j)A - b(j - n) + 1 (A + Ui) = 3nA
isI isI

Hence, CiEl Ui d b(lZl). The objective value of the solution is

(2n + l)C + I/ = yj + 1 yi = (3n + 1 - j)C + C (C + Ci) = (2il + l)C + C (‘i.
id itl id

Consequently, CierCi = I/. Summarizing, the items of CKP with indices in I have

objective value V and weight at most b(l11). 0

There is one disadvantage of the above reduction scheme: very large coefficients

appear, and moreover the values and weights are highly correlated. Both properties

make these instances difficult to solve.

Martello and Toth [3] consider the so-called uncorrelated instances with similar
weights, where the items are randomly generated as aj randomly distributed in

[lOOOOO, 100 1001 while the values cj are distributed in [l, lOOO]. It is demonstrated

that such instances are very hard to solve. The SKP instances considered in this paper,

however, are even more difficult as the values are also distributed in a large interval

and have a large correlation with the weights.

It should thus be expected that SKP is nearly impossibly to solve. This was indeed

the case when we tried to solve these instances using the MT2 algorithm by Martello

and Toth [4], as only very small sized instances could be solved in reasonable time.

Thus, we tried instead to solve SKP by using the MINKNAP algorithm presented in [6].

The MINKNAP algorithm is based on dynamic programming, thus having a time bound

O(nB), which in our case also corresponds to O(n’A) as B = 3nA. If we consider

instances where the weights are bounded by a fixed constant a’, the solution time

becomes 0(n3u’) which however for moderate weight values and moderate problem

sizes is practicable. Detailed results on the computational experiments are given in

Section 4.

3. A dynamic programming approach to CKP

A simple dynamic programming algorithm (DCKP) with time bound O(n’b’) where

h’ = maXi= 1, ,, ,,b(i) may be defined as follows: Let &(E); i = 1, . , n; k = 1, . . . , i;

E=O , ..’ 3 b(k) be an optimal solution to the following two-constrained knapsack

problem defined on the first i items:

fi,k(?)=max

216 U Pferschy et al. / Discrete Applied Mathematics 77 (1997) 271-280

Initially, we set f&(Z) = 0 for all c” = 0, . . . , b’, and f&(E) = - cc for all k = 1, . . . , n
and all c” = 0, . . , b’. Subsequent values of & are easily found by using the recursion

fi,k(t) = max fi-l’k(’
&i,k_i(E-Ui)+Ci ifk>O,c”--ai > 0.

At any step i of the recursion, we may derive a lower bound z as

z = max _Mb(i)),
k=O, ,.. ,i

which for i = n yields the optimal objective value. The corresponding solution vector

may be found by backtracking through the states at previous levels of the recursion.

Note that the recursion actually does not make use of the monotonicity of b(.). Thus,

both the dynamic programming scheme and the reduction of Section 2 are valid for

arbitrary distributions of the capacity function.

If we use dynamic programming by reaching, we only need to save states (rc, p) with

rc =fi,k(p), thus generally decreasing the time and space demand considerably. A fur-

ther improvement is obtained by using some bounding rules to fathom inferior states.

For this purpose we assume that the capacities are in nonincreasing order. Without

loss of generality, we may also sort the items according to nonincreasing value-to-

weight ratio. Then we have

Proposition 4. An upper bound on a state (TC, p) where IT =J,k(p) is given by

Proof. As per definition the state (rc, p) corresponds to a solution vector with

If=1 Xj = k, th us any improved solution must contain k + 1 or more items.

Then the bound appears by linear relaxation as a solution to:

max{rr + C;=k+i CjXjlp + Cy,k+l UjXj 6 b(k + 1); Xj 3 O}. 0

Thus we may fathom any state with u(rc, p) < z as it will not lead to an improved

solution. The following proposition further reduces the number of states we have to

consider.

Proposition 5. Let h=max{jlCi,,ai 6 b(j)} and d&e K =max{jlb(j)

> C:=, ai}. Then Cl= 1 xi 6 K in any optimal solution to CKP.

Proof. Let B = CF=, ai. An optimal solution to the O-l knapsack problem:

max{z=Cr=,CiXiICr=laiXi d B; XiE{O, l}} . g’ 1s iven by z = Cl=, Ci, which also is

a feasible solution to CKP. For any 0- 1 knapsack problem defined on the same items

but with smaller capacity b(k) < B, k = K + 1, . . . , n and additional constraint

CT= i Xi = k, no better objective value is obtainable than z. 0

U. Pferschy et al. J Discrete Applied Mathematics 77 (1997) 271-280 277

Hence, we can ignore all states 71 =fi,k(p) with k > K, meaning that the time

complexity becomes O(nKb(1)).

Further improvements may be obtained by deriving upper and lower bounds on the

number of items in an optimal solution as well as deriving tighter bounds in the

enumeration. Both techniques are described in [a], but we chose not to incorporate

these reductions in order to keep things simple.

4. Computational experiments

We compare the two presented simple approaches for the CKP with the algorithm

FPCK90 by Fayard and Plateau [2]. The latter is a very advanced algorithm, deriving

upper and lower bounds by outer linearization of the capacities b(.), as well as using

some specialized reduction rules for the CKP. As the code for FPCK~O is not available

the solution times in this section have been taken from [2].

The instances considered are generated as described in [2, 71: Values cj are random-

ly distributed in [l, c’], the weights Uj are distributed in [l, a’] while the capacities

b(.) are constructed as follows: Generate m random numbers in [l, b’], sort these

values in nonincreasing order and assign them to b(l), , b(m), setting b(,j) = 0 for

j=m+ 1,n.

The computational experiments by Fayard and Plateau [2] were carried out on

a IBM 9370/60, while the algorithms presented here were tested on a Digital Alpha-

Server 2000 5/250 with performance index 5.96 (SPECint95), resp. 8.39 (SPECfp95).

Although our computational times are not directly comparable to the times given in

[2], the characteristics of each of the algorithms are so striking, that we may disregard

these differences.

Fayard and Plateau assigned an upper limit of 45 min for the solution of each

instance, while we use a space bound of 32 Mb for each of the algorithms. In those

cases where not all of the ten examples generated for each parameter set could be

solved within these bounds the entry in the table is empty.

Table 1 considers small-sized instances with n = 30. All the algorithms are able to

solve these instances in fractions of a second, and this also applies to Table 2 where

instances of size n = 50 are considered.

Medium-sized instances with n = 100 are considered in Table 3. The FPCK90 code is

not able to solve several of these instances, for large values of b’. On the other hand both

of the algorithms presented here are able to solve the instances in reasonable time,

although the dynamic programming algorithm clearly is superior to the SKP algorithm.

Finally, Table 4 considers large sized instances with n = 1000. The F.PCK~O algo-

rithm is only able to solve these instances if the number of items in the knapsack is

very small. On the other hand the SKP algorithm has better solution times the more

items fit into the knapsack. This may be explained by the well-known fact [11, that it is

relatively easy to obtain a filled knapsack if many items are present, and thus to obtain

a good lower bound. Instances with large values of m could however not be tested for

278 U. Pferschy et al. / Discrete Applied Mathematics 77 (1997) 271-280

Table 1

Solution times in seconds, small problems n = 30, average of 10 instances

n C’ a’ b’ m FPCK90 SKP DCKP

30 100 100 300 10

20

30

0.02

0.03

0.01

30 100 100 600 10 0.32

20 0.84

30 0.19

30 200 100 300 10

20

30

30 200 100 600 10

20

30

0.01

0.01

0.02

0.03

0.05

0.03

< 0.01

0.01

0.01

< 0.01

0.01

0.01

< 0.01

0.01

0.01

< 0.01

0.01

0.01

< 0.01
< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

< 0.01

Table 2

Solution times in seconds, small problems n = 50, average of 10 instances

n Cl a’ b m FPCK90 SKP DCKP

50 300 1000 1000 10

20

30

40

50

50 300 1000 2000 10

20

30

40

50

0.03 0.01 < 0.01

0.02 0.06 < 0.01

0.03 0.13 < 0.01

0.03 0.19 < 0.01

0.03 0.19 < 0.01

0.06 0.01 < 0.01

0.04 0.05 < 0.01

0.14 0.12 < 0.01

0.03 0.17 < 0.01

0.04 0.19 < 0.01

the SKP algorithm, due to the space limit. Finally, we notice that the dynamic
programming algorithm has superior solution times even for these large sized instan-
ces, solving all problems in less than 1 minute.

From these experiments we may conclude, that for instances up to medium size, the
SKP algorithm is a good alternative to FPCK~O, due to its stable behavior. None of the
two algorithms is however able to solve large-sized instances when the range of b(.)
gets large. These instances may only be solved by the dynamic programming algo-
rithm, which also for the small-sized instances is superior to both of the previous
approaches. The dynamic programming recursion is however very simple, but by
using some improved reduction rules on an expanding core problem (see e.g. [S] for
details) we may expect to solve even very large-sized collapsing knapsack problems in
reasonable time.

U. Pferschy et al. / Discrete Applied Mathematics 77 (1997) 271-280 279

Table 3
Solution times in seconds, medium-sized problems n = 100, average of 10 instances

n a’ b’ WI FPCK90 SKP DCKP

100 300 1000 1000 10 0.03 0.05 < 0.01

30 0.26 0.64 < 0.01

50 0.13 1.84 < 0.01

70 0.04 3.30 < 0.01

100 0.22 4.57 < 0.01

100 300 1000 5000 10 0.05 < 0.01

30 20.78 0.60 < 0.01

50 1.67 < 0.01

70 2.94 < 0.01

100 148.23 3.15 < 0.01

100 300 1000 10000 10 0.05 < 0.01

30 0.53 0.01

50 1.46 0.01

70 2.69 0.01

100 2.47 0.01

Table 4

Solution times in seconds, large-sized problems n = 1000, average of 10 instances

n a’ b’ in FPCK90 SKP DCKP

1000 300 1000 1000 100 187.83 3353.47 0.03

500 0.42 0.03

1000 300 1000 10000 100 1387.76 0.97

500 -_ 0.95

1000 300 1000 50000 100 938.18 16.10

500 39.94

It is also important to emphasize the importance of having pseudo-polynomial time

bounds for the two presented algorithms, as this guarantees reasonable and more or

less predictable solution times for moderate coefficient sizes. In contrast to this, the

FPCK~O algorithm has exponentially growing solution times in the worst case, al-

though it may be quite fast for some instances. The overall performance of FPCK~O

seems to be very unstable for large problems as can be seen in Tables 3 and 4.

Acknowledgements

The authors would like to thank Gbard Plateau for pointing out the problem

during the ESI-X summer school at Groupe HEC, Paris.

280 U. Pferschy et al. / Discrete Applied Mathematics 77 (1997) 273-280

References

[l] E. Balas and E. Zemel, An algorithm for large zero-one knapsack problems, Oper. Res. 28 (1980)

1130~1154.

[Z] D. Fayard and G. Plateau, An exact algorithm for the O-l collapsing knapsack problem, Discrete

Appl. Math. 49 (1994), 175-187.

[3] S. Martello and P. Toth, Upper bounds and algorithms for hard 0-l knapsack problems, (1996) Oper.

Res., to appear.

[4] S. Martello and P. Toth, A new algorithm for the O-l knapsack problem, Management Sci. 34 (1988)

6333644.

[S] D. Pisinger, A minimal algorithm for the multiple-choice knapsack problem, European J. Oper. Res. 83

(1995) 3944410.
[6] D. Pisinger, A minimal algorithm for the O-l knapsack problem, Oper. Res., (1996) to appear.

[7] M.E. Posner and M. Guignard, The collapsing 0-l knapsack problem, Math. Programming 15 (1978)

155-161.

