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Abstract 

The collapsing knapsack problem is a generalization of the ordinary knapsack problem, 
where the knapsack capacity is a non-increasing function of the number of items included. 
Whereas previous papers on the topic have applied quite involved techniques, the current paper 
presents and analyzes two rather simple approaches: One approach that is based on the 
reduction to a standard knapsack problem, and another approach that is based on a simple 
dynamic programming recursion. Both algorithms have pseudo-polynomial solution times, 
guaranteeing reasonable solution times for moderate coefficient sizes. Computational experi- 
ments are provided to expose the efficiency of the two approaches compared to previous 
algorithms. 

Keywords: Collapsing knapsack problem; Nonlinear Knapsack; 0 1 Programming 

1. Introduction 

The classical knapsack problem tries to find a maximal-valued subset of items with 
a limited total weight. An extension of this problem arises if the capacity of the 
knapsack depends on the number of items it contains. The resulting 0- 1 collapsing 
knapsack problem is defined as 

n 
(CKP) maximize 1 cixi 

i=l 

subject to i$I aixi < b ( i xi). xic{O, 1 
i=l 
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where ci resp. USE N + are the value resp. weight of item i and b(i) is a nonincreasing 
functional over (1, . . . , II} representing the capacity of the knapsack. This means that 

the capacity of the knapsack will decrease the more items are packed into the 

knapsack. If b( .) is a linear function, the problem becomes equivalent to a standard 

knapsack problem. 

The collapsing knapsack problem was introduced by Posner and Guignard [7] and 

has applications in satellite communication where transmissions on the band require 

gaps between the portions of the band assigned to each user. Other applications are 

time-sharing computer systems, where each process run on the system causes addi- 

tional overhead, and design of a shopping center where both the type and size of 

a shop must be selected [7]. 

In the case of b being a nondecreasing functional, the problem can be seen as a 0-l 

expanding knapsack problem. It can be interpreted as a “rubber knapsack” whose 

capacity increases the more items it contains. Like the collapsing knapsack problem it 

has several applications, e.g. in budget control, where the dealer gives trade discount 

depending on the number of items purchased, or in manpower planning of state 

subsidized projects, where the size of a grant depends on the number of employees. 

The collapsing knapsack problem is NY-hard as it contains the O-l knapsack 

problem as a special case. The present paper shows that it may be solved in 

pseudo-polynomial time through dynamic programming. The first implicit enumer- 

ation algorithm for CKP was given by Posner and Guignard [7], but recently Fayard 

and Plateau [2] presented a superior algorithm using new tight upper and lower 

bounds. 

Although the standard knapsack problem with fixed capacity can be solved very 

efficiently, currently known CKP algorithms cannot guarantee to solve instances of 

larger size (e.g. n 2 100) to optimality within reasonable time. To build a bridge 

between these two related problems, we show in Section 2 that any O-1 collapsing 

knapsack problem can be represented as an equivalent standard O-l knapsack 

problem (SKP) with a fixed capacity. The resulting SKP belongs to the class of “hard” 

knapsack instances because the values and weights of the items are highly correlated. 

For these kinds of problem instances special algorithms have been developed by e.g. 

Martello and Toth [3] and Pisinger [6]. We briefly discuss the practical aspects of 

solving the SKP at the end of Section 2. 

Several solution techniques known from classical knapsack problems can 

also be applied directly to CKP. In particular, a dynamic programming approach for 

CKP is presented in Section 3, showing that the problem may be solved in time 

O(n’b(l)). Some simple upper bound tests are introduced to limit the enumeration 

further. 

These two new approaches are finally compared to the implicit enumeration 

algorithm by Fayard and Plateau [2] in Section 4. A study of the solution times based 

on data models from the literature shows that the reduction to SKP is an attractive 

alternative for small instances. The reduction is easy to implement and the resulting 

SKP can be solved by standard knapsack routines which are present in many 



U. Pferschy et ~(1. i Discrete Applied Mathematics 77 (I 997) 271-280 213 

computational environments. Thus, hardly any new code has to be written to solve 

small problems. 

However, the dynamic programming approach, which is also easy to handle, turned 

out to be superior for all instances considered and should be applied for all medium 

and large problems. 

2. Reduction to a standard knapsack problem 

We describe a reduction scheme which generates for any given collapsing knapsack 

problem CKP an equivalent instance of a standard knapsack problem SKP. In fact, 

the reduction is valid for arbitrary capacity function b( .), since we do not make use of 

the monotonicity. 

The described construction can be performed in 0(n) time and leads to an instance 

of SKP that is twice as large as the original instance of CKP. Further properties and 

solution methods for the resulting SKP are given at the end of this section. 

Let A = I:= 1 Ui and C = CT= 1 Ci. Without loss of generality, we may assume that 

0 < b(i) < A for all i, as otherwise we replace h(i) by A. Moreover, we may assume 

II > 3. We construct an instance of the standard 0-l knapsack problem with 2n items 

having weights a,, , ct2,, and values yl, . . . , y2,,. The weights are defined as 

i 

ui + A for i = 1, ,.. , ~1, 

‘% = (4n - i)A - b(i - n), for i = n + 1, . . . , 24 

while the corresponding values of the new items are defined by 

i 

Ci + C fori=l, . . ..n. 

i’i= (3n+l-i)C, fori=n+l,..., 2n. 

Finally, the size I? of the standard knapsack is 3nA. 

The problem SKP consists in finding a subset of the items with maximum value and 

weight at most B, thus 

(SKP) maximize iFI ‘/ixi 

subject to iiI Nixi d B, xie (0, l}, i = 1, . . ,2n. 

Items with index in { 1, . . . , n} are called small items and items with index in 

(n + 1, . . . , 2n) are called large items. 

Lemma 1. In a ,feusible solution of the above instance of SKP, the knapsack contains at 

most one large item. In case it does contain a large item with index j, n + 1 < ,j < 2n, it 

contains at most j - n small items 
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Proof. The weight aj of any large item with index n + 1 < j < 2n is at least 

(4n - j)A - b( j - n) > 2nA - A > (2n - 1)A 

and at most (3n - l)A. Hence, no two large items fit together into the knapsack but 

every single large item fits. 

For the second statement in the lemma, assume there is a large item with index 

n + 1 < j d 2n in the knapsack. For the small items, there remains a weight capacity 

of (j - n)A + b( j - n). Since every item has weight greater than A and since 

b( j - n) 6 A, at most j - n small items can be packed. 0 

Lemma 2. In a feasible solution of the above instance of SKP with objective value at 

least (2n + l)C + 1, the knapsack contains a large item with index n + 1 < j < 2n and 

exactly j - n small items. 

Proof. The overall value of all small items is (n + l)C, hence there must be some large 

item j in the knapsack. Let I denote the set of indices of small items in the knapsack. 

Suppose 111 < j - n - 1. Then the overall value of the knapsack is at most 

yj + E (C + Ci) = (3n + 1 - j)C + JIlC + C Ci < (2n + l)C, 
id 

a contradiction. Hence, there are at least j - n small items in the knapsack and the 

statement in Lemma 1 completes the argument. 0 

Theorem 3. The instance of CKP has a feasible solution with objective value V if and 

only if the instance of SKP has a feasible solution with objective value V + (2n + l)C. 

Proof. (Only if) Assume CKP has a feasible solution with objective value V and define 

the set I = {ilxi = 1). In other words, CiolCi = V and CiElai < b(lIl) holds. Define 

a solution for SKP that contains all small items with indices in I and the large item 

with index n + 111. The objective value of this solution is exactly V + (2n + l)C, and 

the weight is 

a,+lIl + 1 cti = (3n - III)A - b(lll) + C (A + ai) = 3nA 
id id 

+(zai-b(l)) 6 hA=B. 

Hence, we have found a feasible solution for SKP with objective value V + (2n + l)C. 

(Zf) Now assume that SKP has a feasible solution with objective value 

V + (2n + l)C. Lemma 2 states that the knapsack contains a large item with index 

n + 1 d j < 2n and exactly j - n small items. Let I denote the set of indices of small 

items in the knapsack, 1 I I = j - n. The overall weight of a feasible solution for SKP is 
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at most B, i.e. 

B = 3?L4 3 Xj + 1 pi = (4n - j)A - b( j - n) + 1 (A + Ui) = 3nA 
isI isI 

Hence, CiEl Ui d b(lZl). The objective value of the solution is 

(2n + l)C + I/ = yj + 1 yi = (3n + 1 - j)C + C (C + Ci) = (2il + l)C + C (‘i. 
id itl id 

Consequently, CierCi = I/. Summarizing, the items of CKP with indices in I have 

objective value V and weight at most b(l11). 0 

There is one disadvantage of the above reduction scheme: very large coefficients 

appear, and moreover the values and weights are highly correlated. Both properties 

make these instances difficult to solve. 

Martello and Toth [3] consider the so-called uncorrelated instances with similar 
weights, where the items are randomly generated as aj randomly distributed in 

[lOOOOO, 100 1001 while the values cj are distributed in [l, lOOO]. It is demonstrated 

that such instances are very hard to solve. The SKP instances considered in this paper, 

however, are even more difficult as the values are also distributed in a large interval 

and have a large correlation with the weights. 

It should thus be expected that SKP is nearly impossibly to solve. This was indeed 

the case when we tried to solve these instances using the MT2 algorithm by Martello 

and Toth [4], as only very small sized instances could be solved in reasonable time. 

Thus, we tried instead to solve SKP by using the MINKNAP algorithm presented in [6]. 

The MINKNAP algorithm is based on dynamic programming, thus having a time bound 

O(nB), which in our case also corresponds to O(n’A) as B = 3nA. If we consider 

instances where the weights are bounded by a fixed constant a’, the solution time 

becomes 0(n3u’) which however for moderate weight values and moderate problem 

sizes is practicable. Detailed results on the computational experiments are given in 

Section 4. 

3. A dynamic programming approach to CKP 

A simple dynamic programming algorithm (DCKP) with time bound O(n’b’) where 

h’ = maXi= 1, ,, ,,b(i) may be defined as follows: Let &(E); i = 1, . , n; k = 1, . . . , i; 

E=O , ..’ 3 b(k) be an optimal solution to the following two-constrained knapsack 

problem defined on the first i items: 

fi,k(?)=max 
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Initially, we set f&(Z) = 0 for all c” = 0, . . . , b’, and f&(E) = - cc for all k = 1, . . . , n 
and all c” = 0, . . , b’. Subsequent values of & are easily found by using the recursion 

fi,k(t) = max fi-l’k(’ 
&i,k_i(E-Ui)+Ci ifk>O,c”--ai > 0. 

At any step i of the recursion, we may derive a lower bound z as 

z = max _Mb(i)), 
k=O, ,.. ,i 

which for i = n yields the optimal objective value. The corresponding solution vector 

may be found by backtracking through the states at previous levels of the recursion. 

Note that the recursion actually does not make use of the monotonicity of b( .). Thus, 

both the dynamic programming scheme and the reduction of Section 2 are valid for 

arbitrary distributions of the capacity function. 

If we use dynamic programming by reaching, we only need to save states (rc, p) with 

rc =fi,k(p), thus generally decreasing the time and space demand considerably. A fur- 

ther improvement is obtained by using some bounding rules to fathom inferior states. 

For this purpose we assume that the capacities are in nonincreasing order. Without 

loss of generality, we may also sort the items according to nonincreasing value-to- 

weight ratio. Then we have 

Proposition 4. An upper bound on a state (TC, p) where IT =J,k(p) is given by 

Proof. As per definition the state (rc, p) corresponds to a solution vector with 

If=1 Xj = k, th us any improved solution must contain k + 1 or more items. 

Then the bound appears by linear relaxation as a solution to: 

max{rr + C;=k+i CjXjlp + Cy,k+l UjXj 6 b(k + 1); Xj 3 O}. 0 

Thus we may fathom any state with u(rc, p) < z as it will not lead to an improved 

solution. The following proposition further reduces the number of states we have to 

consider. 

Proposition 5. Let h=max{jlCi,,ai 6 b(j)} and d&e K =max{jlb(j) 

> C:=, ai}. Then Cl= 1 xi 6 K in any optimal solution to CKP. 

Proof. Let B = CF=, ai. An optimal solution to the O-l knapsack problem: 

max{z=Cr=,CiXiICr=laiXi d B; XiE{O, l}} . g’ 1s iven by z = Cl=, Ci, which also is 

a feasible solution to CKP. For any 0- 1 knapsack problem defined on the same items 

but with smaller capacity b(k) < B, k = K + 1, . . . , n and additional constraint 

CT= i Xi = k, no better objective value is obtainable than z. 0 
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Hence, we can ignore all states 71 =fi,k(p) with k > K, meaning that the time 

complexity becomes O(nKb(1)). 

Further improvements may be obtained by deriving upper and lower bounds on the 

number of items in an optimal solution as well as deriving tighter bounds in the 

enumeration. Both techniques are described in [a], but we chose not to incorporate 

these reductions in order to keep things simple. 

4. Computational experiments 

We compare the two presented simple approaches for the CKP with the algorithm 

FPCK90 by Fayard and Plateau [2]. The latter is a very advanced algorithm, deriving 

upper and lower bounds by outer linearization of the capacities b( . ), as well as using 

some specialized reduction rules for the CKP. As the code for FPCK~O is not available 

the solution times in this section have been taken from [2]. 

The instances considered are generated as described in [2, 71: Values cj are random- 

ly distributed in [l, c’], the weights Uj are distributed in [l, a’] while the capacities 

b( .) are constructed as follows: Generate m random numbers in [l, b’], sort these 

values in nonincreasing order and assign them to b(l), , b(m), setting b( ,j) = 0 for 

j=m+ 1, . . ..n. 

The computational experiments by Fayard and Plateau [2] were carried out on 

a IBM 9370/60, while the algorithms presented here were tested on a Digital Alpha- 

Server 2000 5/250 with performance index 5.96 (SPECint95), resp. 8.39 (SPECfp95). 

Although our computational times are not directly comparable to the times given in 

[2], the characteristics of each of the algorithms are so striking, that we may disregard 

these differences. 

Fayard and Plateau assigned an upper limit of 45 min for the solution of each 

instance, while we use a space bound of 32 Mb for each of the algorithms. In those 

cases where not all of the ten examples generated for each parameter set could be 

solved within these bounds the entry in the table is empty. 

Table 1 considers small-sized instances with n = 30. All the algorithms are able to 

solve these instances in fractions of a second, and this also applies to Table 2 where 

instances of size n = 50 are considered. 

Medium-sized instances with n = 100 are considered in Table 3. The FPCK90 code is 

not able to solve several of these instances, for large values of b’. On the other hand both 

of the algorithms presented here are able to solve the instances in reasonable time, 

although the dynamic programming algorithm clearly is superior to the SKP algorithm. 

Finally, Table 4 considers large sized instances with n = 1000. The F.PCK~O algo- 

rithm is only able to solve these instances if the number of items in the knapsack is 

very small. On the other hand the SKP algorithm has better solution times the more 

items fit into the knapsack. This may be explained by the well-known fact [ 11, that it is 

relatively easy to obtain a filled knapsack if many items are present, and thus to obtain 

a good lower bound. Instances with large values of m could however not be tested for 
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Table 1 

Solution times in seconds, small problems n = 30, average of 10 instances 

n C’ a’ b’ m FPCK90 SKP DCKP 

30 100 100 300 10 

20 

30 

0.02 

0.03 

0.01 

30 100 100 600 10 0.32 

20 0.84 

30 0.19 

30 200 100 300 10 

20 

30 

30 200 100 600 10 

20 

30 

0.01 

0.01 

0.02 

0.03 

0.05 

0.03 

< 0.01 

0.01 

0.01 

< 0.01 

0.01 

0.01 

< 0.01 

0.01 

0.01 

< 0.01 

0.01 

0.01 

< 0.01 
< 0.01 

< 0.01 

< 0.01 

< 0.01 

< 0.01 

< 0.01 

< 0.01 

< 0.01 

< 0.01 

< 0.01 

< 0.01 

Table 2 

Solution times in seconds, small problems n = 50, average of 10 instances 

n Cl a’ b m FPCK90 SKP DCKP 

50 300 1000 1000 10 

20 

30 

40 

50 

50 300 1000 2000 10 

20 

30 

40 

50 

0.03 0.01 < 0.01 

0.02 0.06 < 0.01 

0.03 0.13 < 0.01 

0.03 0.19 < 0.01 

0.03 0.19 < 0.01 

0.06 0.01 < 0.01 

0.04 0.05 < 0.01 

0.14 0.12 < 0.01 

0.03 0.17 < 0.01 

0.04 0.19 < 0.01 

the SKP algorithm, due to the space limit. Finally, we notice that the dynamic 
programming algorithm has superior solution times even for these large sized instan- 
ces, solving all problems in less than 1 minute. 

From these experiments we may conclude, that for instances up to medium size, the 
SKP algorithm is a good alternative to FPCK~O, due to its stable behavior. None of the 
two algorithms is however able to solve large-sized instances when the range of b( .) 
gets large. These instances may only be solved by the dynamic programming algo- 
rithm, which also for the small-sized instances is superior to both of the previous 
approaches. The dynamic programming recursion is however very simple, but by 
using some improved reduction rules on an expanding core problem (see e.g. [S] for 
details) we may expect to solve even very large-sized collapsing knapsack problems in 
reasonable time. 
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Table 3 
Solution times in seconds, medium-sized problems n = 100, average of 10 instances 

n a’ b’ WI FPCK90 SKP DCKP 

100 300 1000 1000 10 0.03 0.05 < 0.01 

30 0.26 0.64 < 0.01 

50 0.13 1.84 < 0.01 

70 0.04 3.30 < 0.01 

100 0.22 4.57 < 0.01 

100 300 1000 5000 10 0.05 < 0.01 

30 20.78 0.60 < 0.01 

50 1.67 < 0.01 

70 2.94 < 0.01 

100 148.23 3.15 < 0.01 

100 300 1000 10000 10 0.05 < 0.01 

30 0.53 0.01 

50 1.46 0.01 

70 2.69 0.01 

100 2.47 0.01 

Table 4 

Solution times in seconds, large-sized problems n = 1000, average of 10 instances 

n a’ b’ in FPCK90 SKP DCKP 

1000 300 1000 1000 100 187.83 3353.47 0.03 

500 0.42 0.03 

1000 300 1000 10000 100 1387.76 0.97 

500 -_ 0.95 

1000 300 1000 50000 100 938.18 16.10 

500 39.94 

It is also important to emphasize the importance of having pseudo-polynomial time 

bounds for the two presented algorithms, as this guarantees reasonable and more or 

less predictable solution times for moderate coefficient sizes. In contrast to this, the 

FPCK~O algorithm has exponentially growing solution times in the worst case, al- 

though it may be quite fast for some instances. The overall performance of FPCK~O 

seems to be very unstable for large problems as can be seen in Tables 3 and 4. 
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