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SUMMARY

Formative cell divisions are critical for multicellular
patterning. In the early plant embryo, such divisions
follow from orienting the division plane. A major un-
answered question is how division plane orientation
is genetically controlled, and in particular whether
this relates to cell geometry. We have generated a
complete 4D map of early Arabidopsis embryogen-
esis and used computational analysis to demon-
strate that several divisions follow a rule that uses
the smallest wall area going through the center of
the cell. In other cases, however, cell division clearly
deviates from this rule, which invariably leads to
asymmetric cell division. By analyzing mutant em-
bryos and through targeted genetic perturbation,
we show that response to the hormone auxin triggers
a deviation from the ‘‘shortest wall’’ rule. Our work
demonstrates that a simple default rule couples divi-
sion orientation to cell geometry in the embryo and
that genetic regulation can create patterns by over-
riding the default rule.

INTRODUCTION

The generation of a functional body pattern from a single embry-

onic cell requires the spatially coordinated acquisition of

different cell identities, and hence formative divisions that give

rise to new cell types or layers are important drivers of morpho-

genesis (De Smet and Beeckman, 2011). However, underlying

mechanisms are poorly understood and a central question is

how formative divisions differ from proliferative ones. The plant

embryo is an ideal system for addressing this question, as it is

a growing three-dimensional (3D) structure where patterning

emerges de novo. Starting from a single, axis-symmetric cell

attached to a suspensor, cell division patterns in Arabidopsis

embryogenesis appear almost invariant (Jürgens and Mayer,

1994; Scheres et al., 1994), making development highly predict-
D

able. Because cell walls prevent migration, division plane

orientation is an important determinant of pattern formation.

Regulators of plant embryo patterning have been identified

through genetics, and mutations often alter the stereotypical

orientation of formative divisions (Mayer et al., 1991; Tzafrir

et al., 2004). Interpretation of abnormal development, and hence

the cellular function of pattern regulators, is challenging, how-

ever, as the cellular basis for oriented cell division is not known.

One particular limitation is that, while development occurs in

three spatial dimensions, (optical) 2D sections of embryos are

used to define cellular shapes and division patterns. As cells

can have complex, polyhedral shapes, these are not always

easily inferred from sections, and hence our view of the effect

of mutations on cell shapes and division plane control are inher-

ently inaccurate. The recent development of 3D imaging and

cellular segmentation approaches has given a more detailed

insight in relative arrangements of cells (Bougourd et al., 2000;

Truernit et al., 2008; Federici et al., 2012) and shape changes

during organogenesis (Fernandez et al., 2010; Lucas et al.,

2013). The application of this approach to the highly predictable

early embryo in principle should enable the study of the individ-

ual cellular basis for oriented growth and division in a multilay-

ered, 3D context.

Importantly, the highly predictable divisions in the early em-

bryo should allow addressing of the central question of how

genetic regulation interacts with geometric cues to orient divi-

sion planes. For more than a century, botanists have formulated

hypothetical ‘‘rules’’ underlying oriented cell division (summa-

rized in Kwiatkowska, 2004). Hofmeister (1863) suggested that

new wall appears perpendicular to the principal direction of

growth, whereas Sachs suggested that newly inserted walls

should intersect existing walls at 90 degrees (Sachs, 1878). Erre-

ra’s rule states that the new division wall is a surface of minimum

energy (Errera, 1888), drawing an analogy with soap bubbles.

However, no deterministic rule for cell division is able to match

cell division patterns exactly, and Besson and Dumais (2011)

have extended Errera’s rule to include the inherent stochasticity

of cell division. Besson and Dumais (2011) showed that a rule

based on the competition between local minima in energy is

able to predict observed division patterns in a wide range of

land plants and algae and proposed it as a general rule for
evelopmental Cell 29, 75–87, April 14, 2014 ª2014 Elsevier Inc. 75
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symmetric cell division in plants. The rule also has a solid molec-

ular basis, with a plausible mechanism explaining the division

orientation proposed (Lloyd, 1991). In simulation models, the

rule is often approximated as the shortest wall passing through

the center of the cell (Dupuy et al., 2010; Smith et al., 2006;

Stoma et al., 2008), although even here a stochastic component

to the positioning of the cell center has been suggested to

generate more representative cell division patterns (Nakielski,

2000; Sahlin and Jönsson, 2010). While these widely accepted

rules offer an intuitive framework for rationalizing cell division

planes, it is important to note that manifestations of these rules

have so far been tested only in 2D. Therefore, it is not clear

whether such a simple rule can explain division planes in com-

plex 3D cell shapes, let alone explain the establishment of a

patterned, 3D embryo. Finally, if ‘‘default’’ geometric rules un-

derlie cell division orientation in the embryo, an important ques-

tion is how genetic control operates to drive formative divisions.

In particular, an outstanding question is how the changes in divi-

sion planes that are induced by mutations in pattern regulators

relate to this geometric framework. Here, we have addressed

this problem by first generating a four-dimensional reconstruc-

tion of the formative events during early Arabidopsis embryo

development. We use computational approaches and genetic

perturbation to explore the roles of geometry and genetic regu-

lation on cell division and show that the plant hormone auxin

controls pattern formation by overriding a default geometric divi-

sion rule.

RESULTS

Analysis of Cellular Patterns in 3D
Plant embryos are encapsulated in seed and fruit and this, along

with their small size (Figure 1A), poses challenges in imaging.

Traditionally, embryos have been analyzed by optical micro-

scopy of entire seeds (Figure 1B and Figure S1A available online)

or by 2D sections (Figure S1B). To accurately analyze cell

volumes and division planes in 3D, we adapted a procedure for

fluorescent staining of fixed embryos (Truernit et al., 2008) and

performed high-resolution confocal imaging followed by the seg-

mentation of cell volumes (Figure 1C). These volumes are likely

accurate as the imaging procedure itself imposed very limited

deformation of spherical beads (Figure S2A). Furthermore, the

cell wall staining procedure does not induce artifacts, as seg-

mentation of live embryos, visualized using a fluorescent

membrane dye, gave identical results (Figure S2B). We next

generated a complete series of embryo stages up to the late

heart stage, thus capturing all formative events of embryogen-

esis (Figures 1D–1F).

In many animals, the zygote first undergoes a series of rapid

cleavage divisions that partition the original cell volume before

further growth increases embryo volume (Kimmel and Law,

1985; Mulnard, 1967), and based on 2D observations a similar

mode has been suggested in Arabidopsis (Mansfield and Briarty,

1991). To determine if Arabidopsis embryogenesis follows an

analogous pattern, we measured cellular and embryo volumes

from the 1-cell to early globular stage (Figure 2A). We found

that the volume of individual cells rapidly decreases from 1-cell

to 8-cell stage (Figure 2A; decrease �4-fold). After 8-cell stage,

cell volume remained almost constant. In contrast, the overall
76 Developmental Cell 29, 75–87, April 14, 2014 ª2014 Elsevier Inc.
embryo volume increased only by �2-fold up to the 8-cell stage

and steeply increased at later stages (Figure 2A). This suggests

that the first divisions in the Arabidopsis embryo partition the

original volume with only limited expansion, superficially analo-

gous to cleavage divisions in several animal species. Subse-

quently, this switches to a distinctly different mode of growth

from 8- to 16-cell stage, where the contribution of expansion

to overall growth increases.

In the Arabidopsis embryo, early stages are named after the

number of cells in the pro-embryo (1-cell through 16-cell;

Jürgens and Mayer, 1994), and the discrete identification of

2-, 4-, 8-, and 16-cell stages suggests that cell divisions may

be synchronized. This prediction has not been substantiated,

but intermediate stages have not been reported. By observation

in 3D, we found embryos with intermediate cell numbers (Fig-

ure 2B, inset), which suggests that synchronization might not

be absolute. We segmented and counted cell numbers in >200

randomly isolated wild-type embryos. Cell numbers showed a

clear peak at the ‘‘canonical’’ stages, while the population of

the intermediate stages was very low (Figure 2B). Thus, we

conclude that cell divisions during early embryo development

may indeed be synchronized up until the 16-cell stage. However,

the occurrence of intermediate cell numbers demonstrates that

synchronization is not absolute.

Another key question in plant embryogenesis is how determin-

istic the cell division patterns are. While regenerative properties

allow reconstruction of near-normal body patterns from altered

cellular templates (e.g., Sena et al., 2009), the high level of regu-

larity of cell divisions during normal development suggests some

degree of determinism. Indeed, fate mapping suggested that the

lineages giving rise to the two cotyledons arise very early during

embryo development, possibly in the 2- to 4-cell stage (Sauls-

berry et al., 2002). As the two cotyledons are invariably posi-

tioned relative to the medio-lateral seed axis at later stages,

we analyzed whether the first embryonic division might con-

tribute to positioning the two cotyledon lineages. Therefore, we

quantified the orientation of the first embryonic division relative

to the axis of seed symmetry in cross-section and found this

orientation to be preferentially orthogonal to the plane of symme-

try of the ovule (Figures 2C and 2D). As the shape of the embryo-

surrounding cavity is almost radially symmetric (Figure 2C), it is

unclear what mechanisms might underlie the orientation of this

division. However, this suggests early determinism in orienting

the embryo within the seed.

Geometric Asymmetry Predicts Differential Cell
Specification
Development heavily relies on differential specification, where

two daughter cells are not equal in gene expression and protein

accumulation (Knoblich, 2008), and one mechanism that may

give rise to such differences is geometric asymmetry during divi-

sion. In the context of cell division, we use the term asymmetric

to denote a difference in volume of daughter cells and the term

differential when speaking of cell fate. To investigate the relation-

ship between asymmetric division and cell identity, we quantified

cellular volumes (Figures 3A–3D) and compared pairs of

daughter cells (Figure 3E) in a large number of randomly sampled

embryos. Based on this analysis, the first two cell divisions were

symmetric (Figure 3E; data not shown), but these were followed
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Figure 1. Arabidopsis Embryo Development in 3D

(A) Arabidopsis embryos (heart and globular stage; lower right corner) and immature seed (containing globular stage embryo), shown alongside a human hair for

size reference.

(B) Differential Interference Contrast (DIC) image of cleared globular stage embryo inside an immature seed.

(C) Procedure of cellular segmentation in MorphoGraphX. A series of optical sections, 100 nm apart, is taken through an embryo of which cell walls are fluo-

rescently stained. These are merged into a z-stack, in which the cellular segmentation algorithm detects cellular volumes in a mesh. Cell volumes can be

visualized separately, and virtual section can be made.

(D–F) Surface view (D) and longitudinal (E) and transverse (F) cross-section of Arabidopsis embryos. From left to right: zygote, 1-cell, 2-cell, 4-cell, 8-cell, 16-cell,

early globular, mid globular, late globular, transition, early heart, and late heart stage. Cells in (D) are colored randomly, while in (E) and (F) cells are colored

according to their lineage, as indicated in the color legend in (E).

Scale bars represent 100 mm in (A) and 10 mm in (D)–(F). See also Figure S1.
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by two rounds of asymmetric division (Figures 3A–3E). While

upper tier (Figure 3D) cells in the 8-cell stage were slightly but

significantly smaller than lower tier (Figure 3D) cells, outer cells
D

in the 16-cell stage (Figure 3D) were more than twice the volume

of the inner cells (Figure 3E). This is counterintuitive as the divi-

sion plane ran approximately through the center, making these
evelopmental Cell 29, 75–87, April 14, 2014 ª2014 Elsevier Inc. 77
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Figure 2. Nonrandom Progression, Volume, and Orientation of Early Embryogenesis

(A) Volumetric changes of whole embryo (line graph, right y axis) and embryonic cells (‘‘violin’’ plots, left y axis) from 1-cell to globular stage. The width of each

‘‘violin’’ reflects distribution of values, and the ‘‘violin’’ spans from the lowest to the highest value. The thick black lines indicate the range between the first and the

third quartile, and the white circle marks the median. More than ten embryos were used at each stage.

(B) Frequency distribution of embryonic stages (as cell numbers on x axis) in wild-type (dark gray; n = 206) and fassmutant (light gray; n = 110) embryos from 1- to

16-cell stages. Canonical stages are indicated as numbers. Inset shows wild-type embryos at intermediate stages, with cell numbers indicated.

(C) Orientation of first division of the embryo. Ovules with 2-cell-stage embryos were aligned with x, y, and z axes oriented such that the z axis was perpendicular

to the micropylar-chalazal axis of the ovule, and the y axis was parallel to the division plane of the apical cell of the embryo. The angle (a) between the plane of the

first cell division and the z axis was measured in the (x, z) plane.

(D) Frequency distribution of the observed orientations of the first division wall (n = 34 embryos) relative to the z axis (0�) and the x axis (90�). The red linemarks the

estimated density of probability of the orientation of the division wall.

See also Figure S2.
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asymmetries impossible to detect in 2D sections (Figure S1B).

The same volume ratio was found in segmented live embryos

and in newly divided cells in embryos intermediate between

8- and 16-cell stage (Figure S2B), ruling out a significant influ-

ence by postmitotic expansion. In following stages, divisions in

the upper hemisphere were very different from the lower hemi-

sphere (e.g., Figure 3F). While both the orientation of the cell

division plane and the volumetric asymmetry were extremely
78 Developmental Cell 29, 75–87, April 14, 2014 ª2014 Elsevier Inc.
regular in the lower embryo hemisphere (Figure 3F), this was

less constrained in the upper half (Figure 3F). Therefore, we

focused our analysis on the lower part, in which cell identities

are also well defined for all cells (Figures 1E, 1F, and 3D; Scheres

et al., 1994).

At the transition from the 16-cell to the early globular stage, the

next division round in the lower tier was asymmetric in both outer

and inner cells. Outer cells generated a larger apical and smaller
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Figure 3. Cell Volumes Reveal Asymmetric Divisions

(A–C) Cellular volumes in longitudinal (A) and radial (B) cross-sections of 2-cell, 8-cell, 16-cell, early globular, mid globular, and late globular stage embryos, as

well as individual cell clusters (C). Volumes are expressed as false colors according to the scales in (A) (left). The upper two embryos have their own scale, while

the same scale is used for the lowest four stages.

(D) Average cell volumes (N =number of cells) in different cell types. Distributions of values are depicted as violin plotswith the average indicated as awhite dot and

the values between the first and third quartile as a thick black line. Outliers aremarked by asterisks. All unique cell types (x axis) aremarkedby a code in the scheme

in the top. Full names of cell types are listed in the right panel. Also, p values (unpaired Welch’s t test) are given for comparisons between average cell volumes.

(E) Cell volume ratio distribution between two sister cells at 2-cell, 8-cell (mean = 1.18), and 16-cell (mean = 2.21) stage (n = 13, 34, and 64, respectively). Error bars

represent SEM.

(F)Cell division pattern in apical, central, andbasal layers of early globular embryo (left). Cells in apical and central layers are colored randomly, while thebasal tier is

colored according to identity (pink, vascular; yellow, ground tissue; white, protoderm). Table shows the distribution (%) of the two cell division patterns observed.

See also Figure S3.

Developmental Cell

Control of Oriented Plant Cell Division in 3D

Developmental Cell 29, 75–87, April 14, 2014 ª2014 Elsevier Inc. 79



Developmental Cell

Control of Oriented Plant Cell Division in 3D
basal cell (Figures 3A and 3D), while the inner cell generated a

larger, outer ground tissue precursor (Figure 3D) and a smaller,

inner vascular precursor (Figures 3A, 3C, and 3D). Subsequently,

ground tissue precursors divided longitudinally (Figures 3B and

3C), while vascular precursors divided transversely (Figures 3A

and 3C). Next, ground tissue cells also divided transversely.

Interestingly, while longitudinal divisions were either symmetric

or asymmetric (Figure 3B), transverse divisions were invariably

asymmetric (Figures 3A, 3C, and 3D). The polarity of asymmetric

transverse divisions depended on tissue identity; divisions in

vascular precursors gave rise to larger basal cells, while those

in ground tissue and protoderm produced larger apical cells (Fig-

ures 3A–3D).

None of these previously undetected asymmetric divisions

were obvious in 2D sections, and in some cases such sections

even suggested opposite asymmetry. For example, in both the

divisions giving rise to protoderm and inner cells at the 8-cell

stage and those giving rise to vascular and ground tissue precur-

sors, the outer cell appears either equal to or smaller than the

inner cell. Yet 3D analysis demonstrates that in both cases the

outer cell is significantly larger.

All obligate asymmetric divisions were accompanied by differ-

ences in gene expression between the two daughter cells as re-

ported by gene expression markers (Figure S3), while symmetric

divisions produced cells of equal fate. Hence, this analysis iden-

tifies a set of asymmetric divisions during early embryogenesis

and shows that asymmetric cell division strongly correlates

with differential identity of the daughter cells.

Patterning by Deviations from a Default Division Rule
We next asked whether cell division in the embryo follows a

default rule approximated by the minimal surface area of con-

stant curvature (Errera, 1888), or how it may differ. A model of

cell division was created that was capable of using shapes of

actual cells segmented from microscopic images. When

analyzing division patterns in 3D, we noticed that walls in the

early embryo appear very flat in 2D cross-sections (Figures

4A–4C). To more precisely determine the shape of internal walls,

we measured local maximum curvature. Curvature of the youn-

gest walls in segmented live embryos was indeed close to zero

(Figures 4D and 4E). This suggests that the new walls are accu-

rately represented as a flat surface. Hence, we implemented the

3D equivalent of the ‘‘shortest wall’’ rule by finding the plane of

minimal area passing through the geometric center of the cell.

We then compared actual division planes to potential division

planes found by the shortest wall rule. In this analysis we used

a stochastic approach and also considered local minima (Fig-

ures 4F, 4G, and 5A), as previously implemented in 2D (Besson

and Dumais, 2011). This analysis showed that while the divisions

leading to the 4-cell and 8-cell stages were using the shortest

wall rule (Figure 5A), those giving rise to the 16-cell stage do

not correspond to a minimum, even local, at least if only planar

division walls are considered. At the 2-cell stage, the cell aspect

ratio was such that the difference between the division walls of

largest (vertical) and smallest (horizontal) area was only about

5%. Interestingly, the divisions that avoided the global minimum

were highly asymmetric (Figure 5A). To test whether this devia-

tion from the default rule is a consequence of genetic regulation,

we looked for mutants where such regulation might be
80 Developmental Cell 29, 75–87, April 14, 2014 ª2014 Elsevier Inc.
perturbed, that is, mutants that revert back to the shortest

wall rule.

Many embryo-defective mutants have been reported (Mayer

et al., 1991; Torres-Ruiz and Jürgens, 1994; Tzafrir et al.,

2004), and using our approach such defects can be visualized

in 3D (Figures 5B–5E and S4). While very few of these mutants

show discrete changes in the pattern of cell division, mutations

in the AUXIN RESPONSE FACTOR5/MONOPTEROS (ARF/MP;

Hardtke and Berleth, 1998) and its inhibitor IAA12/BODENLOS

(BDL; Hamann et al., 2002) cause a distinctive switch from verti-

cal to horizontal division in the 1-cell embryo (18% of embryos in

heterozygous BDL/bdl background according to Hamann et al.,

1999), and our analysis suggests that this represents a switch

from regulated division to the shortest wall (Figure 5A). Auxin

response is highly genetically buffered, and several other ARF

genes are expressed at this stage of development (Rademacher

et al., 2011). To test if auxin response alters the division program

in other cells in a similar way, we ubiquitously misexpressed a

nondegradable version of bdl (RPS5A[bdl) that nonspecifically

inhibits ARFs and thus generically suppresses transcriptional

auxin response (Rademacher et al., 2012). Misexpression of

bdl using this strategy causes strong auxin-insensitive pheno-

types during later stages, including loss of root and cotyledon

initiation and suspensor-derived embryogenesis (Rademacher

et al., 2012). While early defects as observed in bdl ormpmutant

embryos could not be efficiently induced with this transgenic

approach, at the 8- to 16-cell transition, nearly all cells divided

abnormally (Figures 5C and S4; 98.8%, n = 172 cells; wild-

type: 0%, n = 160 cells). Instead of the regular division that

separates the inner and outer cells that create the protoderm

(Figures 1D and 1E), cells switched to a wall that was best

approximated by the shortest wall rule (Figure 5A). In addition,

cell divisions became nearly symmetric (Figure 5A). Therefore,

we hypothesize that auxin response prevents the default short-

est wall rule as defined by cell shape, forcing the cell to choose

another division wall. To test whether this mechanism also oper-

ates in cells with a very different shape, we analyzed division

orientation in the uppermost extraembryonic hypophysis cell

(Figure 3D), which has been shown to also depend on auxin

response (Rademacher et al., 2012). We found that while the

normal asymmetric division follows a wall approximating

the longest one (Figure 5A), cell division orientation in

RPS5A[bdl embryos switched to a much shorter, local mini-

mum and created two daughters of equal volume (Figure 5A).

This result strongly suggests that transcriptional auxin response

is required to prevent the default shortest wall rule in several cell

types of varying geometry. To substantiate this finding, we

analyzed cell divisions in the gnom mutant (Mayer et al., 1993).

GNOM encodes a guanine exchange factor for small ARFs and

is required for polar localization of the PIN1 auxin efflux facilitator

(Steinmann et al., 1999). The gnom mutant shows a complex

phenotype that strongly correlates with reduced auxin accumu-

lation in basal embryo regions and ectopic auxin accumulation in

the embryo apex (Wolters et al., 2011). Consistent with the

altered auxin response in this mutant, we found divisions consis-

tent with the shortest wall at the 8- to 16-cell transition (Figures

5D and S4). This phenotype is specific, as a mutation in the

WRKY2 gene (Ueda et al., 2011) that gives a macroscopic

phenotype similar to that of gnom (Figures 5D, 5E, and S4), but
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Figure 4. Planarity of Newly Formed Cell

Walls and Model Description

(A–C) Longitudinal (A) and transverse (B and C)

cross-sections of stained (FM4-64) live 16-cell

embryos. Transverse planes in (B) and (C) are indi-

cated in (A).

(D) 3D representation of sister cell pair in the upper

hemisphere.

(E) Representative examples of maximum curvature

plots of periclinal cell walls, extracted from seg-

mented live embryos and as indicated in gray in (D).

Curvature (mm�1) is plotted on a false color scale,

with 0 curvature being blue. For comparison, a

sphere of radius 5 mm (e.g., about the size of the

inner cell) has a maximum curvature of 0.2 mm�1.

(F) Discretization of the initial truncated sphere. The

flattened area is in blue (visible due to transparency).

(G) 2D definition of the position of the periclinal wall.

Thewall is parallel to the line fitted to the boundary of

the embryo (orange dashed line). Parameter a in-

dicates the position of thewall (in blue) relative to the

most extreme possible positions (in green).
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affects a pathway that has not been directly linked to auxin accu-

mulation or response (Ueda et al., 2011), did not show this mode

of cell division. To determine whether the auxin-dependent devi-
Developmental Cell 29, 7
ation from a geometrically defined default

is comparable to a randomization of cell

division orientation, we segmented fass

mutant embryos. FASS encodes a protein

phosphatase 2A regulatory B subunit (Ca-

milleri et al., 2002) that is required for the

formation of the preprophase band, a

microtubule structure that forecasts the

position of the new division wall (Traas

et al., 1995). Hence, cell division planes in

the fass mutant appear random in 2D

(Torres-Ruiz and Jürgens, 1994). Segmen-

tation of fass mutant embryos showed

that indeed division planes in 3D were

randomized (Figures 5B and S4). Despite

normal overall embryo size (Figure S2C)

and progression (Figure 2B), these random

divisions caused aberrant volume parti-

tioning unlike the defined switch induced

by RPS5A[bdl, which suggests that

the latter is not the result of division

randomization.

We then asked how these changes in

cell division pattern affected the overall

topology of the intercellular network com-

prising the developing embryo. Embryo

patterning was abstracted by generating

a network of cell connectivity through

the calculation of shared surface areas

between neighbor cells. Edges in this

network represent shared walls between

nodes, which represent cells. The inhibi-

tion of auxin response in RPS5A[bdl
led to altered cell division patterns and an increase of connectiv-

ity in the embryo compared towild-type (Figures 5F and 5G). This

demonstrates that ARF-mediated asymmetric cell divisions act
5–87, April 14, 2014 ª2014 Elsevier Inc. 81



0.6

0.4

RPS5A>>bdlfassB C

Wild-type RPS5A>>bdl
1 2 3 4 5 6

0.2

0.0

Fr
eq

ue
nc

y

# Shared Neigbours

Wild-type
RPS5A>>bdl

F Ggnom wrky2D E

A

N
or

m
al

iz
ed

ar
ea

1.0

0.75

0.5

0.0
8-cell 8-cell16-cell 16-cell

Wild-type RPS5A>>bdl
Hyp. Hyp.4-cell2-cell

Vo
lu

m
e 

ra
tio

5

4

3

2

1

0.25

Figure 5. Asymmetric Division through Violating the Default Shortest Wall Rule

(A) Violin plots representing distribution of cell wall areas as a fraction of the smallest (0 on the left y axis) and largest (1 on the left y axis) wall area within the

consolidated volume of each pair of sister cells. Wild-type stages are shown in green, and RPS5A[bdl in red. The ratios of cell volumes resulting from these

divisions are represented in light gray (wild-type) or dark gray (RPS5A[bdl), and values are on the right y axis. Representative examples of computation are

shown above the graph, where the observed division plane is projected in green, and the global and local minima in red and blue, respectively. Number of cells

(legend continued on next page)
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Figure 6. A Growing 3D Embryo Model Reca-

pitulates Normal andPerturbedDevelopment

(A–C) Simulations of embryo growth in 3D under

assumptions reflecting rules observed in wild-type

(A) (periclinal for division rounds 1 and 4, shortest

wall for divisions 2 and 3),RPS5A[bdl (B) (shortest

wall for all divisions), and fass mutant (C) (random-

ized). Images show successive steps in the simu-

lations. Surface views are shown in (A)–(C) and

longitudinal section views are shown in (A) and (B).

(D) Quantification of volume ratios (largest cell vol-

ume divided by smallest cell volume) after cell divi-

sion in simulations of wild-type, RPS5A[bdl and

fass embryos. Values are most likely ratios and

ranges indicate the 90% confidence interval.

See also Movies S1, S2, and S3.
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to constrain intercellular connectivity in the wild-type embryo.

Given the importance of cell-cell communication in cell identity

acquisition (Van Norman et al., 2011), we expect such changes

in cell division and connectivity in RPS5A[bdl have significant

effects on cell identity and subsequent pattern formation in this

genotype.

3D Model of a Growing Embryo
To determine whether the rules derived from observations in sin-

gle pairs of cells are capable of explaining development of an

entire embryo, we constructed a growing and dividing model

of the embryo based on the data acquired. The modeling frame-

work was based on an implementation of cell complexes (Bris-

son, 1993; Prusinkiewicz and Lane, 2013), a paradigm well

suited for the modeling of 3D growing plant tissue with cell divi-

sion. Since the overall shape and aspect ratio of the embryo
analyzed in wild-type: 2-cell (n = 13), 4-cell (n = 26), 8-cell (n = 34), 16-cell (n = 64), and hypophysis (Hyp.; n = 9

hypophysis (n = 5).

(B) Randomized cell division planes in fass mutant embryo. From left to right: 1-cell, 4-cell, and 9-cell (with

(C) RPS5A[bdl embryos at 6-cell (left) and 16-cell stage (right, including longitudinal and transverse sect

(D and E) Thirteen-cell gnom mutant embryo (D) and 16-cell wrky2 mutant embryo (E).

(F) Connectivity network of wild-type and RPS5A[bdl embryos at the 16-cell stage. Each cell is represente

represent the shared surface between any two cells, and thickness indicates the relative amount of shared s

node is the hypophysis, green nodes are protoderm (outer), and yellow nodes are the inner cells of the em

(G) Frequency of shared neighbors in wild-type and RPS5A[bdl embryos at 16-cell stage (n = 3). Error b

See also Figure S4.
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does not change significantly until the 16-

cell stage (Figure 2A), we assume it to be

a truncated sphere (Figure 6A) whose

growth is constant and uniform. Divisions

occur when cells reach a threshold volume

based on observed average cell volumes

(Figure 2A). Cell division was modeled by

assuming that the division plane is: (1) the

smallest area plane going through the geo-

metric center, (2) periclinal and parallel to

the embryo surface (e.g., for the 16-cell

stage), or (3) a plane of random orientation

going through the geometrical center of

the cell. Within this framework, the wild-

type embryo was modeled by using the

shortest wall division for all but the last
(i.e., 16-cell stage) division. For the transition to the 16-cell stage,

wematched experimental observations by dividing cells accord-

ing to principle ‘‘2’’ with a volume ratio of 2.2:1 for the basal cells

(Figure 3E), and the division walls of the apical cells are close to

contiguous to the division walls of the basal cells. This simulation

produces a growing embryo with realistic division planes (Fig-

ure 6A;Movie S1).We next analyzedwhether themodel correctly

predicted cell volume ratios (Figure 6D). Up to the 8-cell stage,

these almost perfectly matched the observed ratios (Figure 3E),

although the geometrical asymmetry between apical and basal

cells at the 8-cell stage (Figure 3E) was not reproduced (Figures

6A and 6D; Movie S1). We next simulated the RPS5A[bdl em-

bryo by allowing all cells to use the default shortest wall rule and

found that this faithfully recapitulates the mutant defect both

qualitatively (Figure 6B; Movie S2) and in terms of volume ratios

(Figure 6D). This mode of division is fundamentally different from
); inRPS5A[bdl: 8-cell (n = 28), 16-cell (n = 24), and

longitudinal/transverse section).

ion).

d as a node with its size reflecting cell volume. Edges

urface area. Blue nodes are suspensor cells, the red

bryo.

ars represent SEM.
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complete randomization of the division plane (Figures 6C and

6D; Movie S3), which qualitatively resembles the observed fass

mutant defects (Figures 5B and S4). These simulations showed

a much larger variation in cell volume ratios than wild-type or

RPS5A[bdl (Figure 6D), which is in linewith the erratic divisions

(Figures 5B and S4) andmore variable embryo sizes (Figure S2C)

observed in the fass mutant. The simulations show that the divi-

sion patterns in 3D can be produced by a minimal set of rules

based on cell geometry. It also provides a framework to visualize

the impact of cellular division rules on overall embryo develop-

ment and of developmental regulators on division patterns,

and confirms that normal development requires local overriding

of the default, geometric cell division rule.

DISCUSSION

During early plant embryogenesis, all major tissue types and

their stem cells are generated in a very predictable fashion. In

the absence of cell migration, oriented cell division and expan-

sion drive the development of amature embryo from the fertilized

egg cell. Hence, Arabidopsis embryogenesis is a good model to

study the genetic control of plant development, and several

important regulators have been identified (Tzafrir et al., 2004;

Lau et al., 2012). Thus far, plant embryogenesis has been

described and studied in 2D, which left important questions un-

answered. Here, we have generated a complete description of

cellular patterns and volumes in 3D for all stages up to the heart

stage, at which the embryonic leaves (cotyledons), shoot and

root meristems, and hypocotyl are established. We use this

description to address questions about control of oriented cell

division, lineage patterns, asymmetric division, and the genetic

and geometric influence on division orientation.

A surprising finding is that the orientation of the first division of

the embryonic cell after zygote division is not random relative to

the symmetry axis of the surrounding seed. Rather, division

planes fall within a narrow range of 45�. Previously, it had

been shown using marked sector analysis that the cell lineages

that give rise to the left and right cotyledon are separated very

early, perhaps before the 2- to 4-cell stage (Saulsberry et al.,

2002). Therefore, our findings suggest that the orientation of

the cotyledons within the seed is determined by tight control

of the first embryonic cell division. This early determination

could be biologically meaningful as the seed cavity that houses

the embryo has a very defined shape, and the embryo axis and

cotyledons occupy precise locations in this cavity at maturity.

The early determination of cell division orientation, by posi-

tioning the axis of bisymmetry, could help to ensure that

cotyledons are correctly positioned in the mature seed. The

orienting influence at the first embryonic cell division is entirely

unknown, and it is unclear whether it is of chemical or physical

nature. What is clear though is that either the maternal tissues

exert an effect on division orientation in the embryo or

the developmental trajectory of the ovule prior to fertilization

predisposes later embryonic cell division. Interestingly, this

bias is not limited to the first cell, as later divisions in the apical

protoderm are also biased to occur perpendicular to the left-

right axis (Figure 3F). The testable prediction that follows from

this finding is that mutations that affect seed coat structure or

ovule development before fertilization will also cause abnormal-
84 Developmental Cell 29, 75–87, April 14, 2014 ª2014 Elsevier Inc.
ities in embryonic cell division orientation, and perhaps in coty-

ledon positioning.

Oriented cell divisions are a major morphogenetic driver in

plant development. We have used the Arabidopsis embryo to

address how pattern and shape are genetically controlled in a

growing 3D structure. Our work provides quantitative 3D data

on the effect of cell shape on division planes, supporting theories

of plant cell division proposed more than a century ago. Interest-

ingly, many cells divide in unequal volumes, creating asymmetry

that we find to correlate with the formation of daughter cells with

distinct identity. Invariably, these divisions depart from the

default geometric rule. By genetic perturbation, we demonstrate

that auxin transcriptional response is required to override this

default rule to allow asymmetric division.

In the 8-cell embryo, this deviation from the default allows the

separation of outer and inner cells, which will form protoderm

and inner cell types, respectively. The finding that auxin

response inhibition perturbs this division suggests that there

might be a direct link between auxin response and protoderm

formation. By definition, any division in these cells that is not

perpendicular to the surface of the embryo will fail to separate

outside and inside. Therefore, auxin response is formally

required for this step. However, later RPS5A[bdl embryos do

form a separate outer layer (Rademacher et al., 2012), which

suggests that auxin response is not critically required for

epidermis formation. It will be interesting to see whether the

link between auxin-dependent transcription (as inhibited by

bdl) and the epidermal specification process is direct, or if it

follows from the geometric constraints of the 8-cell embryo.

Correlations between division asymmetry and differential cell

fate determination have been shown in other systems, such as

the stomatal lineage (Robinson et al., 2011) and lateral root initi-

ation (De Smet et al., 2008). We extend these findings to show

that in the early embryo, 3D asymmetry is a reliable indicator of

differential cell specification. An important question is how

critical these asymmetries are and if they are utilized by pattern

formation pathways. Division of a cellular volume by a ratio of

1:2.2 (at the 16-cell stage) causes significant absolute differ-

ences in the number of organelles and molecules inherited, but

concentrations of molecules will be equal in the two daughter

cells. Depending on whether concentrations or numbers matter,

such differences can have significant consequences. Future

studies should address if this partitioning mechanism is ex-

ploited by embryo patterning regulators such as, for example,

the epidermal specifier ATML1 (Lu et al., 1996; Takada and

Jürgens, 2007; Takada et al., 2013).

This work provides a conceptual framework and several ge-

netic, microscopic, and computational tools to understand the

cellular basis of patterned 3D growth and to rationalize normal,

as well as perturbed, development. An interesting prediction

following from our model is that the ‘‘cleavage-like’’ divisions

that lead to the 8-cell embryo might require no input other than

a general coupling of cell geometry to a ‘‘shortest wall’’ principle.

In contrast, an alternative model where cell division orientation is

actively switched after every division will require more regulatory

input.

An interesting question is how general this mechanism is. We

show that loss of auxin response causes a switch to the shortest

wall rule in various differently shaped cells in the early embryo.
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Hence, when stripped of the capacity to respond to auxin, em-

bryo cells use only geometric cues to orient their cell division

plane. In support of a role for auxin in overriding the default short-

est wall rule, each of these cells shows a clear transcriptional

auxin response as reported by the DR5-GFP marker (Friml

et al., 2003). In other contexts, auxin-regulated development in-

volves divisions that might not be approximated by deviations

from the default rule. Examples include the initiation of organ

primordia in floral meristems (Heisler et al., 2005) or along the

main root (Lucas et al., 2013). Clearly, the formative potential

of every division in the embryo urges tight regulatory mecha-

nisms that operate at the level of individual cells. Such cell-level

control might not be equally important in developmental

processes that are regulated at the level of cell populations.

We envision that similar 3D analyses and simulations of other,

auxin-dependent cell divisions will inform how general this

mechanism is.

Given the apparent geometric input into cell division plane

orientation, it is evident that physical properties of cells will

play an important role. In animal systems, both supracellular

and cellular models for division plane orientation have been pro-

posed. In Drosophila, a packing constraint at tissue level was

shown to influence cell division orientation (Gibson et al.,

2011), and in sea urchin, microtubule organization and hence

division plane were directly influenced by cell geometry (Minc

et al., 2011). It is likely that tensile forces generated by the micro-

tubule cytoskeleton (Lloyd, 1991; Besson and Dumais, 2011), as

well as mechanical properties of pre-existing cell walls, will play

an important role in any mechanism that couples cell shape to a

‘‘shortest wall’’ principle. As bdlmisexpression primarily impacts

transcription through inhibiting DNA-binding ARF transcription

factors (Rademacher et al., 2012), the identification of auxin-

dependent transcriptional networks will be an important next

step in understanding the control of oriented cell division.
EXPERIMENTAL PROCEDURES

Plant Material

Plants were grown at a constant temperature of 22�C in a 16 hr light/8 hr

dark cycle. The following mutant lines of Arabidopsis have been described

previously: fass mutant (fass 325-23, fass 226-32; Torres-Ruiz and Jürgens,

1994), wrky2-1 (Ueda et al., 2011), and gnom (Mayer et al., 1993). The

pRPS5A[bdl embryos that ubiquitously misexpress a nondegradable

version of the auxin response inhibitor bodenlos/iaa12 were generated by

crossing homozygous UAS-bdl (Weijers et al., 2006) pollen onto homozygous

RPS5A-GAL4 (Weijers et al., 2003) pistils. Wild-types were Columbia (RPS5A-

GAL4; UAS-bdl; wrky2-1) or Landsberg erecta (fass 325-23; fass 226-32;

gnom). While RPS5A-GAL4 3 UAS-bdl crossing yielded 100% mutant em-

bryos, all other mutants segregate 25% homozygous embryos, which were

identified based on abnormal morphology.

Fluorescent Staining and Microscopy

Embryos were imaged live in 1 mM FM4-64 in 0.53 Murashige and Skoog

medium or stained by the modified Pseudo-Schiff propidium iodide (PI) stain-

ing method (Truernit et al., 2008) with the following modifications: ovules were

dissected from siliques before fixation and fixed ovules were treated with

periodic acid for 60–80 min and stained with 300 mM of PI for 1–2 hr. For the

staining of embryos at postglobular stages, embryos were dissected from

ovules using fine tungsten needles after staining. The stained ovules/embryos

were mounted in a drop of chloral hydrate in a well generated by pieces of

glass coverslip and observed by confocal microscopy for taking z-stack

images. A series of 2D confocal images were recorded at 0.1 mm intervals us-
D

ing a Zeiss LSM510 microscope or Leica SP5-II system, with excitation at

561 nm and detection at 600–700 nm.

For differential interference contrast (DIC) microscopy, ovules were cleared

in a chloral hydrate:water:glycerol mixture (w:v:v) and imaged on a Leica DMR

microscope with DIC optics.

Optical deformation by the microscope was determined by using fluores-

cent beads of calibrated diameter (15 mm beads: PS-speck Microscope Point

Source Kit, Molecular Probes; 90–180 mm beads: P6 beads, biogel).

For determining the orientation of the first embryonic division relative to the

seed axis, z-stacks were generated of entire seeds containing 2-cell embryos.

Seeds were aligned in MorphoGraphX such that the symmetry plane was

aligned with the X-Y plane of the viewer. A plane was then placed through

the division wall of the apical cell. This enabled the extraction of the angle be-

tween the symmetry plane and the division wall.

Cell Segmentation and Shape Extraction

The segmentation and shape extraction were done using MorphoGraphX

(http://www.MorphoGraphX.org), an open source software package we devel-

oped for the visualization, segmentation, and analysis of 3D images (Kierzkow-

ski et al., 2012). The images were first trimmed using clipping planes to remove

most of the unwanted tissues. Then, the images were smoothed with a 3D

Gaussian filter of radius typically 0.6 mm. After this, the autoseeded morpho-

logic watershed algorithm from the Insight toolkit was used to segment the

cells. The cell shape was then extracted using amodifiedmarching cube algo-

rithm with a cube size of 1 mm.

Computational Methods

Details about all computation, including the analysis of bead deformation, vol-

ume computation, cell classification, division plane detection, simulation, cell

structure representation, division frequency estimation, division surface esti-

mation, simulations of division planes, and cell connectivity networks are

described in the Supplemental Computational Methods.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Computational Methods,

four figures, and three movies and can be found with this article online at

http://dx.doi.org/10.1016/j.devcel.2014.02.002.
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