
Journal of Approximation Theory 163 (2011) 163–182
www.elsevier.com/locate/jat

Gamma-type operators and the Black–Scholes
semigroup

Antonio Attalientia, Rosa Maria Mininnib,∗, Ioan Rasac

a Department of Economic Sciences and Mathematical Methods, University of Bari, Via Camillo Rosalba 53, 70124
Bari, Italy

b Department of Mathematics, University of Bari, Via E. Orabona 5, 70125 Bari, Italy
c Department of Mathematics, Technical University of Cluj-Napoca, Str. C. Daicoviciu 15, 400020 Cluj-Napoca,

Romania

Received 28 April 2010; accepted 3 September 2010
Available online 15 September 2010

Communicated by Paul Nevai

Abstract

We study Gamma-type operators from the analytic and probabilistic viewpoint in the setting of weighted
continuous function spaces and estimate the rate of convergence of their iterates towards their limiting
semigroup, providing, in this way, a quantitative version of the classical Trotter approximation theorem.
The semigroup itself has some interest, since it is generated by the Black–Scholes operator, frequently
occurring in the theory of option pricing in mathematical finance.
c⃝ 2010 Elsevier Inc. All rights reserved.
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1. Introduction and notation

The aim of the present paper is to deepen the study of a particular sequence of positive linear
operators, denoted by Qn and introduced in [3,4] as perturbed Post–Widder operators, in the
setting of weighted continuous function spaces.
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In the above papers the authors show how the operators Qn , besides their theoretical interest in
approximation theory, may be successfully employed in concrete cases, namely in representing,
in the spirit of the classical Trotter theorem (see, e.g., [6, Theorem 1.6.7, p. 67]) and according
to formula (2.3), the semigroup (Sm(t))t≥0 generated by a unidimensional Black–Scholes-type
operator, which, in its simplest form, reads as

Lu(x) :=
σ 2

2
x2u′′(x)+ r xu′(x)− ru(x), (x ≥ 0).

As is widely known, the operator L is profoundly involved in the theory of option pricing in
mathematical finance, describing, in fact, the cornerstone model for the whole theory. Here the
volatility σ and the riskless interest rate r are assumed to be constant over time, which actually
happens very seldom in real markets; for a rather complete survey on this subject we refer the
reader to [18,30], for instance.

The existence of the semigroup (Sm(t))t≥0 and its deep interplay with suitable Markov
processes have been established in [5]. Subsequently, other results concerning both the operators
Qn and the limiting semigroup (Sm(t))t≥0, with particular emphasis on shape-preserving
properties and the asymptotic behaviour, have been obtained in [7].

It goes without saying that representation formula (2.3) plays a crucial role in this kind of
approach, falling within a general scheme of investigation of the use of iterates of positive linear
operators in the study of evolution problems, initiated by Karlin and Ziegler in [17] and continued
and developed originally and extensively, in different contexts, by Altomare and his school:
without attempting to be exhaustive in this respect, we confine ourselves to citing [6,3,5,7]
and the references quoted therein.

Turning back to our paper, we proceed along the following lines, described in Sections 2–4.
In Section 2, after observing, as a preamble, how the operators Qn may be rightly regarded

as perturbed Gamma operators, we carry out a detailed analysis of their properties, proving their
commutativity and computing explicitly the norm of each of them.

While performing such investigation, some (possibly) new results concerning the classical
Gamma function Γ (x) come to the fore quite naturally.

Particular attention is devoted to the determination of the moments of any possible order: our
proof herein must be compared with the analogous one stated in [19] concerning the classical
Gamma operators and based upon a different technique, involving Laguerre polynomials.

An alternative proof is presented as well, starting from a probabilistic viewpoint and making
use of the so-called moment generating function.

A probabilistic interpretation in terms of Markov processes of the operators Qn , of their
iterates Qk

n (k ≥ 2) and of the approximation formula (2.3) is given, too.
In Section 3, trying to answer to a natural question concerning the speed of convergence in

the approximation formula (2.3), we manage to prove that ‖Qk(n)
n f − Sm(t) f ‖m = O( 1

n ) as
n → +∞ for sufficiently regular functions f , establishing, in such a way, a quantitative version
of the Trotter theorem which, as far as we know, seems to be new; however, we adopt some
techniques used in [15] in the simpler framework of the classical Bernstein operators.

We also point out that some other results in this direction have been recently achieved
in [9,10,14,21].

Finally, the last Section 4 deals with the asymptotic behaviour of Qn f (x) and, more generally,
of Qk

n f (x) (k ≥ 2) as x → +∞: the main result ensures the existence of an asymptote at +∞

and is strongly connected to [7, Theorem 3.1].
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Passing to a concrete case, a specific application of all our main results to the classical
Black–Scholes problem for European call options is fully treated as well.

The notation used throughout the paper is quite standard: if k ≥ 1 is an integer and I is a
real interval, Ck(I ) denotes the vector space of all real-valued functions on I that are k times
continuously differentiable. The space of all real-valued continuous functions on I is, as usual,
denoted by C(I ).

Occasionally we shall encounter the space L1(I ) of all real-valued Lebesgue integrable
functions on I .

For any real λ ≥ 0, eλ stands for the power function eλ(x) := xλ (x ≥ 0), whereas o( · ) and
O( · ) denote the classical Landau symbols. If x is a real number, [x] is the integer part of x .

Other notation which is not encompassed above will be specified at each occurrence.

2. Preliminary properties

For every integer m ≥ 1 let us define

E0
m :=


f ∈ C([0,+∞[)| lim

x→+∞

f (x)

1 + xm = 0

,

which turns out to be a Banach space with respect to the weighted norm ‖ f ‖m := sup
x≥0

| f (x)|
1+xm . For

fixed parameters σ > 0 and r ≥ 0, we shall consider the Black–Scholes unidimensional operator

Lu(x) :=
σ 2

2
x2u′′(x)+ r xu′(x)− ru(x) (x ≥ 0), (2.1)

with u belonging to the domain

Dm(L) :=


u ∈ E0

m ∩ C2(]0,+∞[) | lim
x→0+

σ 2

2
x2u′′(x)+ r xu′(x)


= lim

x→+∞

1
1 + xm


σ 2

2
x2u′′(x)+ r xu′(x)


= 0


.

In [5] (L , Dm(L)) was shown to be the infinitesimal generator of a positive strongly
continuous semigroup (Sm(t))t≥0 on E0

m .
Subsequently, in [3] (see also [4]), aiming at representing explicitly (Sm(t))t≥0 in the spirit of

Altomare’s theory, the authors introduced certain perturbed Post–Widder operators defined by

Qn f (x) :=


1 −

r

nσ 2

 n2σ 2

(nσ 2 + r)x

n
1

Γ (n)
·

∫
+∞

0
e
−

n2σ2 y
(nσ2+r)x yn−1 f (y)dy (2.2)

for all n ≥ r/σ 2, f ∈ E0
m and x ≥ 0, and proved the following:

• the sequence (Qn)n≥r/σ 2 is a positive approximation process on E0
m ;

• if m ≥ 2, for any f ∈ E0
m and t ≥ 0 one has

Sm(t) f = lim
n→+∞

Qk(n)
n f in E0

m, (2.3)

(k(n))n≥1 being an arbitrary sequence of positive integers such that limn→+∞
k(n)

n = σ 2t.

A closer insight into the foregoing operators and semigroup may be found in [7]. In order to
continue and deepen such investigation, we first note that, in a slowly different fashion, (2.2) may
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be rewritten as

Qn f (x) =

∫
+∞

0
Kn(x, y) f (y)dy (n ≥ r/σ 2, f ∈ E0

m, x ≥ 0), (2.4)

so each Qn may be rightly understood as perturbed Gamma-type operator with kernel

Kn(x, y) :=


1 −

r

nσ 2

 n2σ 2

(nσ 2 + r)x

n

·
1

Γ (n)
e
−

n2σ2 y
(nσ2+r)x · yn−1 (x > 0, y ≥ 0). (2.5)

As a historical remark, we recall that the classical Gamma operators have been introduced by
Müller in [23] and investigated in subsequent papers [20,24,25,29,19,1,2], for example.

The Gamma operators, in turn, may be approximated by using other operators: see, in this
respect, [2,11].

As preparatory material, we also recall that, by means of quite elementary calculus, it is not
difficult to show that for every real λ ∈ [0,m[ one has

Qneλ = an,λeλ with an,λ :=


1 −

r

nσ 2

 
1 +

r

nσ 2

λ
·
Γ (n + λ)

nλΓ (n)
, (2.6)

and, correspondingly, for any t ≥ 0,

Sm(t)eλ = eλ · e(λ−1)( λσ
2

2 +r)t , (2.7)

as well as

‖Sm(t)‖ = e(m−1)(mσ2
2 +r)t (2.8)

(see [7, (4.1), (4.2), (2.5) and (2.4)]).
Moreover, since actually Qn eλ may be computed with good reason for all λ ≥ 0, the

definition of an,λ in (2.6) may be naturally extended to all λ ≥ 0. Due to [7, formula (2.3)],
the same is the case for the semigroup in (2.7), the expression of Sm(t) eλ remaining the same
for all λ ≥ 0 as well.

It will turn out to be useful in the sequel to have at our disposal an expression for the
coefficients an,λ that is easier to handle than (2.6); this is possible at least for an,k , k integer:
indeed, one may show that

an,k = 1 +
(k − 1)(2r + kσ 2)

2nσ 2 +
(k − 2)(k − 1)k(3k − 1)

24n2

+
k(k − 1)r2

− 2kr2
+ rkσ 2(k − 1)2

2n2σ 4 + o


1

n2


. (2.9)

The proof is quite technical, though elementary, so we omit it for the sake of brevity.

Remark 2.1. This short remark is expressly devoted to some consequences of the representation
formula (2.3), concerning the Gamma function Γ (x). Considering the importance of such
functions in pure and applied mathematics, we think that departing a little from the main purpose
of the paper in order to deepen this aspect is, perhaps, an appropriate choice.

To start with, let λ ≥ 0 be given. After choosing m > λ, formula (2.3) gives

Sm(t)eλ = lim
n→+∞

Qk(n)
n eλ in E0

m .
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In particular, for t = 1, from (2.6) and (2.7) we get

e(λ−1)( λσ
2

2 +r)
= lim

n→+∞
ak̃(n)

n,λ ,

where k̃(n)
n → σ 2 as n → +∞, i.e.,

e(λ−1)( λσ
2

2 +r)
= lim

n→+∞


1 −

r

nσ 2

k̃(n)
·


1 +

r

nσ 2

λk̃(n)
·


Γ (n + λ)

nλΓ (n)

k̃(n)

= e(λ−1)r
· lim

n→+∞


Γ (n + λ)

nλΓ (n)

n k̃(n)
n

,

and finally

lim
n→+∞


Γ (n + λ)

nλΓ (n)

n

= e
(λ−1)λ

2 , (2.10)

whence obviously

lim
n→+∞

Γ (n + λ)

nλΓ (n)
= 1. (2.11)

While formula (2.11) is well-known as the Euler–Gauss formula (see, for instance [28, p. 58])
and reduces to the Wallis formula for λ = 1/2, (2.10) seems to be probably new.

If λ is a positive integer, something more may be said: in fact, for any n ≥ 1, using Taylor’s
expansion we compute

n2


Γ (n + λ)

nλΓ (n)
− e

(λ−1)λ
2n


= n2


1 +

1
n


1 +

2
n


· · ·


1 +

λ− 1
n


− e

(λ−1)λ
2n


= n2


1 +

(λ− 1)λ
2n

+
(λ− 2)(λ− 1)λ(3λ− 1)

24n2 + o


1

n2


−1 −

(λ− 1)λ
2n

−
(λ− 1)2λ2

8n2 + o


1

n2


,

and so

lim
n→+∞

n2


Γ (n + λ)

nλΓ (n)
− e

(λ−1)λ
2n


=
(1 − λ)λ(2λ− 1)

12
,

which again seems to be probably a new result.

Now let us pass to establishing the following propositions.

Proposition 2.2. The operators Qn commute, i.e., Qn Qm = Qm Qn for any n,m ≥ r/σ 2.

Proof. Indeed, for fixed n,m ≥ r/σ 2, f ∈ E0
m and x ≥ 0, we have

Qn(Qm f )(x) =

∫
+∞

0
Kn(x, y)(Qm f )(y)dy

=

∫
+∞

0
Kn(x, y)

∫
+∞

0
Km(y, z) f (z)dz


dy

=

∫
+∞

0

∫
+∞

0
Kn(x, y)Km(y, z)dy


f (z)dz,
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and therefore it is sufficient to prove that the composition of the corresponding kernels is
commutative, i.e.,∫

+∞

0
Kn(x, y)Km(y, z)dy =

∫
+∞

0
Km(x, y)Kn(y, z)dy.

This is equivalent to showing that∫
+∞

0

yn−1

xn ·
zm−1

ym e
−

n2σ2 y
(nσ2+r)x

−
m2σ2z

(mσ2+r)y dy =

∫
+∞

0

ym−1

xm ·
zn−1

yn e
−

m2σ2 y
(mσ2+r)x

−
n2σ2z

(nσ2+r)y dy,

which may be readily achieved through the change of variable y =
xz
t in the first integral, and

the proof is complete. �

Proposition 2.3. For any n ≥ r/σ 2 the norm of Qn : E0
m → E0

m is equal to an,m (see (2.6)).

Proof. Let us select f ∈ E0
m , ‖ f ‖m ≤ 1. Then | f (x)| ≤ 1 + xm for all x ≥ 0, i.e., | f | ≤

e0 + em . Since Qn acts naturally on em (even though em ∉ E0
m), this implies that |Qn f | ≤

Qne0 + Qnem = an,0 e0 + an,mem , yielding

|Qn f (x)|

1 + xm ≤
an,0 + an,m xm

1 + xm for all x ≥ 0.

The function on the right hand side is increasing with respect to x , so sup
x≥0

|Qn f (x)|
1+xm ≤ an,m ,

i.e., ‖Qn f ‖m ≤ an,m ; we infer that ‖Qn‖ ≤ an,m . In contrast, let λ ∈ [0,m[ be a real number
and recall that, by (2.6), eλ ∈ E0

m with Qn eλ = an,λ eλ. It immediately follows that ‖Qn‖ ≥ an,λ;
letting λ → m gives ‖Qn‖ ≥ an,m since an,λ is continuous with respect to λ. The desired claim
is therefore fully established. �

As a conclusion of this section, we calculate the moments of order k, i.e., Mn,k(x) :=

Qn (e1 − xe0)
k(x)(n ≥ r/σ 2, x ≥ 0).

For the classical Müller’s Gamma operators, the related moments have been investigated
in [19] with the help of some properties of Laguerre polynomials.

Obviously, since the power k runs between 0 and m − 1, it is meaningful to assume m ≥ 3 in
our investigation.

In order to simplify the notation, from this point onward we set

ρ :=
r

σ 2 . (2.12)

As a first step, we note that for all n ≥ ρ and x ≥ 0 we have

Mn,0(x) = Qne0(x) = 1 −
ρ

n
, and

Mn,1(x) = Qne1(x)− x Qne0(x) =


1 −

ρ

n

 ρ
n

x .
(2.13)

Next, for a general k = 1, . . . ,m − 2, differentiating we compute

M ′

n,k(x) = −
n

x
Mn,k(x)+


1 −

r

nσ 2

 n2σ 2

nσ 2 + r

n
1

Γ (n)
x−n

×

∫
+∞

0


n2σ 2(y − x)+ n2σ 2x

(nσ 2 + r)x2 e
−

n2σ2 y
(nσ2+r)x yn−1(y − x)k
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− e
−

n2σ2 y
(nσ2+r)x yn−1k(y − x)k−1


dy

= −
n

x
Mn,k(x)+

n2σ 2

(nσ 2 + r)x2 Mn,k+1(x)+
n2σ 2

(nσ 2 + r)x
Mn,k(x)

− k Mn,k−1(x),

and from this we deduce the recurrence formula

Mn,k+1(x) =


1
n

+
ρ

n2


x2 M ′

n,k(x)+ k Mn,k−1(x)

+
ρ

n
x Mn,k(x), (2.14)

which holds true for k = 1, . . . ,m − 2 and x ≥ 0. In this way we are in a position to evaluate
the moments of all (possible) orders k, starting from (2.13).

As a matter of fact, we may say something more: indeed, arguing by induction, on account of
(2.13) and (2.14), one easily gets

Mn,k(x) = dn,k xk for any k = 0, . . . ,m − 1 and x ≥ 0, (2.15)

where the coefficients dn,k fulfill a recurrence formula as follows:
dn,0 =

n − ρ

n
,

dn,1 =
ρ n − ρ2

n2 ,

dn,k+1 =
(k + ρ)n + kρ

n2 dn,k +
k(n + ρ)

n2 dn,k−1, k = 1, . . . ,m − 2.

(2.16)

Incidentally, observe that Mn,k(x) ≥ 0 since n ≥ ρ in any case.
Further information on the coefficients dn,k appearing in (2.15) will be necessary for our

purposes; in fact, a standard induction-principle argument, making use of (2.16), provides the
following identities:

dn,2k−1 =
c2k−1n3k−2

+ p(n)

n4k−2 , k ≥ 2,

dn,2k =
c2kn3k

+ q(n)

n4k
, k ≥ 1,

(2.17)

where p(n) = o(n3k−2) and q(n) = o(n3k) as n → +∞, and both 2k − 1 and 2k do not exceed
m − 1. Moreover we have explicitly

c j =


ρ, if j = 1,

2k−1 (k − 1)!ρ +

k−2−
i=0

(2k − 3 − 2i)!! 2i (k − 1)!
(k − i − 1)!

(2k + ρ − 2i − 2),

if j = 2k − 1, k ≥ 2,
(2k − 1)!!, if j = 2k, k ≥ 1.

Finally, if we set c0 := 1, then

lim
n→+∞

n[
j+1
2 ]dn, j = c j , for all j = 0, . . . ,m − 1. (2.18)

For the proof, simply split to the cases of j “odd” or “even” and apply (2.17).
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Remark 2.4. It is worthwhile noting that formula (2.15) and the calculus of the coefficients dn,k
may be easily obtained through merely probabilistic arguments. More specifically, the moments
Mn,k can be written in the form

Mn,k(x) =


1 −

ρ

n


E[(Y x

n − x)k] for any k = 0, . . . ,m − 1 and x > 0, (2.19)

where E[ · ] denotes the mathematical expectation and Y x
n is a random variable having Gamma

distribution with density

gn,x (y) =


n2σ 2

(nσ 2 + r)x

n

·
1

Γ (n)
e
−

n2σ2

(nσ2+r)x
y
· yn−1, y ∈ [0,+∞[. (2.20)

Recall that the Laplace transform of a random variable X is defined as

G(t) := E

et X


for all t for which this is finite; in a probabilistic setting G(t) is also called the moment generating
function (see, for instance, [8, Ch. 4]), because it can be used to generate the moments of order
k ≥ 1 of X through the following formula:

E[X k
] =

∂k

∂tk G(t)|t=0, (2.21)

which holds true if G(t) exists in some neighborhood of 0.
In our present framework, for fixed n ≥ ρ and x > 0, we are interested in computing the

Laplace transform of the random variable Y x
n − x , i.e., in computing

Gn,x (t) = E

et (Y x

n −x)


= e−t x E

etY x

n


,

where E

etY x

n


is the Laplace transform of the gamma distribution (2.20) given by

E

etY x

n


=

∫
+∞

0
et y gn,x (y)dy =

 n2σ 2

(nσ 2+r)

n2σ 2

(nσ 2+r)
− t x

n

, t <
n2σ 2

(nσ 2 + r)x
.

The moments E[(Y x
n − x)k] of Y x

n − x of order k = 0, . . . ,m − 1 can be evaluated by applying
formula (2.21) with Gn,x (t) instead of G(t). Then (2.19) soon leads to (2.15) and (2.16).

Remark 2.5. It is worthwhile focusing the reader’s attention upon the probabilistic interpretation
of the approximation formula (2.3).

First note that the kernel function Kn(x, y) given in (2.5) may be rewritten as

Kn(x, y) =


1 −

ρ

n


gn,x (y) (x > 0, y ≥ 0), (2.22)

where gn,x is the density function (2.20).
For all n ≥ ρ, let us consider a sequence of continuous random variables Yn(h), h =

0, 1, 2, . . . , defined on a probability space (Ω ,F ,P) and with values in [0,+∞[. Further,
suppose that the one-step transition distribution function, i.e., the probability distribution of
Yn(h) ∈ A for a fixed Borel set A, is given by

µn,x (A) :=

∫
A

gn,x (y)dy (x > 0), (2.23)

provided that Yn(h − 1) = x .
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Next, choose a sequence (ϵn)n≥1 such that ϵn > 0, limn→+∞ ϵn = 0 and limn→+∞
1

nϵn
= σ 2,

and define the process Xn := {Xn(t); t ≥ 0} as
Xn(0) = Yn(0),
Xn(t) = Yn(k(n)), t > 0,

(2.24)

where we have set k(n) :=


t
ϵn


, (k(n))n≥1 which is, in this way, a sequence of positive integers

such that limn→+∞
k(n)

n = σ 2t .
Referring to a concrete case, we are thinking of a particle which executes a random walk

in the following way: if the particle is in the state x ∈ [0,+∞[ at time hϵn (h = 0, 1, 2, . . .),
then it remains at x during the interval [hϵn, (h + 1)ϵn[, and, at time (h + 1)ϵn , “jumps”, so the
probability that it goes to any Borel set A is µn,x (A).

If a probability distribution on [0,+∞[ for the initial position Yn(0) of the particle is fixed,
then the sequence of continuous random variables Yn(h), h = 0, 1, 2, . . . , may be regarded as a
discrete parameter Markov process Yn = {Yn(h)}h≥0 with continuous state space [0,+∞[.

Moreover, taking into account (2.22) and (2.23), we may rewrite (2.4) as

Qn f (x) =


1 −

ρ

n

 ∫ +∞

0
f (y)gn,x (y)dy =


1 −

ρ

n

 ∫ +∞

0
f (y)µn,x (dy)

=


1 −

ρ

n


E[ f (Yn(h))|Yn(h − 1) = x].

In other words, the Markov process Yn “corresponds” to the operator Qn which may be rightly
called the one-step transition operator (for more details concerning the connection between
Markov processes and semigroups, the reader may refer, for instance, to [13, Ch. 4]).

As a consequence, the process Xn defined in (2.24) “corresponds” to the iterate Qk(n)
n of the

operator Qn , i.e., Qk(n)
n is the transition operator after k(n) steps: indeed, one gets

Qk(n)
n f (x) =


1 −

ρ

n

k(n)
E[ f (Yn(k(n)))|Yn(0) = x]

=


1 −

ρ

n

k(n)
E[ f (Xn(t))|Xn(0) = x]. (2.25)

Now let ∆ϵn Yn(h) = Yn(h +1)−Yn(h) (h = 0, 1, 2 . . .) be the increment in the process Yn over
a time interval of length ϵn . Referring to Remark 2.4, all the (possible) conditional moments of
∆ϵn Yn(h) can be written as

E[(∆ϵn Yn(h))
k
|Yn(h) = x] = E[(Y x

n − x)k]

for any k ≥ 1 and x > 0, which soon yields, in particular and in view of (2.13) and (2.14),

lim
ϵn→0+

E

∆ϵn Yn(h)|Yn(h) = x


ϵn

= r x,

lim
ϵn→0+

E

(∆ϵn Yn(h))2|Yn(h) = x


ϵn

= σ 2x2,

lim
ϵn→0+

E

(∆ϵn Yn(h))k |Yn(h) = x


ϵn

= 0, k ≥ 3.

(2.26)

From (2.25) and [13, Theorem 2.6], it follows that formula (2.3) implies the existence of a
Markov process X = {X (t); t ≥ 0}, defined on the probability space (Ω ,F ,P) and with state
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space [0,+∞[, “corresponding” to the semigroup (Sm(t))t≥0 and such that for any t ≥ 0 the
random variable Xn(t) converges in distribution to the random variable X (t) as n → +∞ or,
equivalently,

lim
n→+∞

E[ f (Xn(t))|Xn(0) = x] = E[ f (X (t))|X (0) = x], (2.27)

for any f ∈ E0
m, x ≥ 0 and t > 0.

The conditions (2.26) guarantee that X is a continuous path Markov process, i.e., an Itô
diffusion with drift coefficient a(x) := r x and diffusion coefficient b(x) := σ x (see [16, Ch. 15,
Section 1]).

The diffusion X can also be constructed as the unique (in law) solution of the stochastic
differential equation

d X (t) = r X (t)dt + σ X (t)dW (t), X (0) = x (t > 0, x > 0),

where {W (t); t ≥ 0} is a one-dimensional Brownian motion, whose sample paths are explicitly
given (see [26, pp. 62–63]) by

X (t) = x · e(r−
σ2
2 )t+σW (t), t > 0.

This means that for any f ∈ E0
m, t > 0 and x > 0, one has

E[ f (X (t))|X (0) = x] =
1

√
2π t

∫
R

f


x · e(r−

σ2
2 )t+σ y


e

−y2

2t dy.

Combining formulas (2.3), (2.25) and (2.27), we obtain the integral representation (2.3) of the
semigroup (Sm(t))t≥0 appearing in [7].

3. The rate of convergence

The main aim of the present section is to provide an estimate of the rate of convergence of the
iterates of the operators Qn towards the strongly continuous semigroup (Sm(t))t≥0 generated by
the differential operator (L , D(Lm)) defined according to (2.1).

In other words, starting from the representation formula (2.3), we are able to give an estimate
of the magnitude of ‖(Qk(n)

n − Sm(t)) f ‖m when f belongs to a suitable “large” subspace of E0
m .

As far as our methods of investigation allow, we shall conclude that the speed of convergence
in (2.3) is rather slow; however, our result must be compared with analogous ones stated in
different frameworks (see, e.g., [9,10,14,15,21]) and all looking for some kind of quantitative
version of the classical Trotter approximation theory.

Let us start with the following density result which, beyond our specific purposes, has perhaps
interest on its own.

Proposition 3.1. If m ≥ 2, the space

U := { f ∈ C4([0,+∞[)|‖ f i
‖∞ < +∞ for i = 1, . . . , 4} (3.1)

is dense in (E0
m, ‖ · ‖m).

Proof. First of all note that U ⊂ E0
m : indeed, if f ∈ U , then

f (x) = f (0)+

∫ x

0
f ′(t)dt (x ≥ 0),
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which soon entails

| f (x)|

1 + xm ≤
| f (0)|
1 + xm +

x‖ f ′
‖∞

1 + xm (x ≥ 0),

and therefore lim
x→+∞

f (x)
1+xm = 0, i.e., f ∈ E0

m , as announced. Now let us set

T := { f ∈ C4([0,+∞[)| there exists a neighborhood V of +∞ such that f|V ≡ 0},

and denote by C0([0,+∞[) the Banach space of all real-valued continuous functions on [0,+∞[

vanishing at +∞, endowed with the sup-norm ‖ · ‖∞.
Obviously, T is a subalgebra of C0([0,+∞[) which strongly separates the points of [0,+∞[

and, consequently, it is dense in (C0([0,+∞[), ‖ · ‖∞) by virtue of Stone’s generalization of the
Weierstrass theorem (see, e.g., [6, Theorem 4.4.4, p. 241]).

On the other hand, T is easily checked to be invariant under the isometry

f ∈ (C0([0,+∞[), ‖ · ‖∞) → f · (1 + em) ∈ (Em
0 , ‖ · ‖m),

and this allows us to conclude that T is dense in (Em
0 , ‖ · ‖m), too.

But then the same happens a fortiori for U , since clearly T ⊂ U , and the proof is now
complete. �

Remark 3.2. As a consequence, the space V := span ({e0, e1, . . . , em−1} ∪ U) is dense in
E0

m (m ≥ 2).

We are now in a position to state our main result of this section.

Theorem 3.3. Let us assume m > 4. Then for any f ∈ U , t > 0 and any sequence of positive
integers such that k(n)

n → σ 2t as n → +∞, one has

‖(Qk(n)
n − Sm(t)) f ‖m = O


1
n


as n → +∞,

i.e., there exists a constant C = C( f, t, σ, r) such that

‖(Qk(n)
n − Sm(t)) f ‖m ≤

C

n
for n large enough. (3.2)

Proof. The proof is rather technical and follows basically the same lines as the proof of a
similar result for the classical Bernstein operators, stated in [15]: here, some non-trivial additional
difficulties arise, due to the more sophisticated form of the operators under consideration.

Because of its length, we split the proof into different steps.
Let us fix, once and for all, f ∈ U and t > 0 and set k(n) := [nσ 2t] (n ≥ 1): as the reader will

quickly realize, this last choice will simplify some facts, without any loss of generality herein.
For any n ≥ ρ such that nσ 2t ≥ 2, as a first step, we decompose the expression as follows:

‖(Q[nσ 2t]
n − Sm(t)) f ‖m ≤

Q[nσ 2t]
n − Sm


[nσ 2t]

nσ 2


f


m

+

Sm


[nσ 2t]

nσ 2


− Sm(t)


f


m

:= I1 + I2, (3.3)

and I1 and I2 have to be estimated separately.
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For I2 it is fairly easy to proceed: in fact, since f ∈ U , we have easily f ∈ Dm(L) and, by a
standard semigroup argument, we get

I2 =


∫ t

[nσ2t]
nσ2

Sm(s)L f ds


m

≤

∫ t

[nσ2t]
nσ2

‖Sm(s)‖ · ‖L f ‖mds

≤


t −

[nσ 2t]

nσ 2


sup

[nσ2t]
nσ2 ≤s≤t

‖Sm(s)‖ · ‖L f ‖m

≤
1

nσ 2 ‖Sm(t)‖ · ‖L f ‖m

=
1

nσ 2 e(m−1)(mσ2
2 +r)t

· ‖L f ‖m, (3.4)

where we have applied formula (2.8), yielding the monotonicity of ‖Sm(t)‖ with respect to t .
Now let’s pass to considering I1; first observe that, by Proposition 2.2 and the representation

formula (2.3), each Sm(t) commutes with Qn ; this circumstance, together with Proposition 2.3
and again (2.8), leads to

I1 =

Q[nσ 2t]
n − S[nσ 2t]

m


1

nσ 2


f


m

=


[nσ 2t]−1−

i=0


Q[nσ 2t]−1−i

n Si
m


1

nσ 2


Qn − Sm


1

nσ 2


f


m

≤

[nσ 2t]−1−
i=0

‖Qn‖
[nσ 2t]−1−i

·

Sm


i

nσ 2

 ·

Qn − Sm


1

nσ 2


f


m

=

[nσ 2t]−1−
i=0

a[nσ 2t]−1−i
n,m · e

(m−1)(mσ2
2 +r) i

nσ2 ·

Qn − Sm


1

nσ 2


f


m
, (3.5)

where an,m is explicitly known according to (2.6). Using 1 + t ≤ et (t ∈ R) yields

an,m ≤ e
(m−1)ρ

n +
(m−1)m

2n ,

which entails a uniform (with respect to i) upper bound of the form

a[nσ 2t]−1−i
n,m · e

(m−1)(mσ2
2 +r) i

nσ2 ≤ e
([nσ2t]−1)(m−1)

n (ρ+
m
2 ), i = 0, . . . , [nσ 2t] − 1.

So we may estimate (3.5) and, summing up, we have just proved that

I1 ≤
1
n

·
[nσ 2t]

n
e
([nσ2t]−1)(m−1)

n (ρ+
m
2 ) ·

n2


Qn − Sm


1

nσ 2


f


m

≤
σ 2t

n
· eσ

2t (m−1)(ρ+
m
2 ) ·

n2


Qn − Sm


1

nσ 2


f


m
. (3.6)

It is now obvious that we need a nice upper bound for
n2


Qn − Sm


1

nσ 2


f


m
, too, and it is

to this goal that the remaining part of the proof is mainly addressed.
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As before, first we decompose the expression further as follows:n2


Qn − Sm


1

nσ 2


f


m

≤

n2


Qn f − f −
1

nσ 2 L f


m

+

n2


Sm


1

nσ 2


f − f −

1

nσ 2 L f


m
, (3.7)

and then try to estimate the two terms on the right hand side separately.
As far as the first term is concerned, fix x ≥ 0; then, by Taylor’s formula, one readily finds f (t)− f (x)− (t − x) f ′(x)−

(t − x)2

2
f ′′(x)−

(t − x)3

6
f ′′′(x)

 ≤
(t − x)4

24
‖ f ′v

‖∞,

for every t ≥ 0, and consequentlyQn f (x)− Mn,0(x) f (x)− Mn,1(x) f ′(x)− Mn,2(x)
f ′′(x)

2
− Mn,3(x)

f ′′′(x)

6


≤ Mn,4(x)

‖ f ′v
‖∞

24
,

where the moments Mn,i (x) are given by (2.15).
Hence, in view of (2.15) and (2.16), it is not a difficult task to show that

n2

1 + xm

Qn f (x)− f (x)−
1

nσ 2 L f (x)


≤

n2

1 + xm

ρ2

n2 x f ′(x)−


ρ + ρ2

n2 −
ρ2

+ ρ3

n3 −
ρ3

n4


x2 f ′′(x)

2


+ n2dn,3

x3

1 + xm

‖ f ′′′
‖∞

6
+ n2dn,4

x4

1 + xm

‖ f ′v
‖∞

24
, (3.8)

and here the term on the right hand side is bounded from above by a constant M = M( f, σ, r).
Indeed, f ∈ U and, by (2.18), the sequences (n2dn,3)n≥ρ and (n2dn,4)n≥ρ are bounded, the same

being true for x i

1+xm (i = 3, 4), because m > 4 by assumption.
Since x was arbitrarily chosen, taking the supremum with respect to x in (3.8) leads to the

following final estimate:n2


Qn f − f −
1

nσ 2 L f


m

≤ M. (3.9)

Lastly, when dealing with the second term on the right hand side in (3.7), by virtue of a general
result of semigroup theory (see, e.g., [27, proof of Lemma 2.8, p. 7]), we already know that

‖Sm(t) f − f − t L f ‖m ≤
t2

2
‖Sm(t)‖ · ‖L2 f ‖m for every t ≥ 0, (3.10)

since f ∈ Dm(L2) as well.
For t :=

1
nσ 2 , by (2.8) we soon deducen2


Sm


1

nσ 2


f − f −

1

nσ 2 L f


m

≤
1

2σ 4 e
(m−1)(mσ2

2 +r) 1
nσ2 · ‖L2 f ‖m

≤
1

2σ 4 e(m−1)(ρ+
m
2 ) · ‖L2 f ‖m . (3.11)
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In conclusion, combining (3.3), (3.4), (3.6), (3.7), (3.9) and (3.11) completes the job and we
finally obtain

‖(Q[nσ 2t]
n − Sm(t)) f ‖m ≤

C

n

:=
1
n

[
σ 2t · eσ

2t (m−1)(ρ+
m
2 )


M +

1

2σ 4
e(m−1)(ρ+

m
2 ) · ‖L2 f ‖m


+ d f 1σ 2e(m−1)(mσ2

2 +r)t
· ‖L f ‖m

]
, (3.12)

as desired. �

Remark 3.4. As a careful inspection of the proof shows, the assumptions m > 4 and f ∈ U play
an essential role. Indeed, they both guarantee f ∈ Dm(L2), which is crucial in our approach,
specifically in estimate (3.10).

Remark 3.5. We point out that the terms ‖L f ‖m and ‖L2 f ‖m appearing in (3.12) may be
estimated in turn. In fact, a straightforward computation allows us to write

‖L f ‖m ≤
σ 2

2


2

m − 2

2/m

·
m − 2

m
‖ f ′′

‖∞ + r‖ f ′
‖∞ + r‖ f ‖m,

‖L2 f ‖m ≤

4−
i=1

Ni‖ f i
‖∞ + r‖L f ‖m,

(3.13)

where Ni = Ni (σ, r) (i = 1, 2, 3, 4).
In addition, the second estimate could be arranged in a better way, applying Landau’s

inequality to the derivatives (see, e.g., [22, p. 138]).
Since this does not meaningfully improve (3.12), we skip any further consideration in this

respect.

In the next corollary we see how the class of functions for which (3.2) holds true may be
considerably expanded.

Corollary 3.6. As in Remark 3.2, let us set V = span ({e0, e1, . . . , em−1} ∪ U). Then, under the
assumption that m > 4, the estimate (3.2) still holds true for any f ∈ V .

Proof. Indeed, for a selected p = 0, . . . ,m − 1, by a direct computation (apply (2.6), (2.9) and
expand in Taylor series the relevant exponential (2.7)) one finds

lim
n→+∞

n2
Qn − Sm


1

nσ 2


ep


m

=

 (p − 1)p(1 − 2p)

12
−
(p + 1)ρ2

2

 · ‖ep‖m,

and therefore n2
Qn − Sm


1

nσ 2


ep


m

is bounded from above by a constant, say K , for all
n ≥ ρ.

Arguing as in the proof of Theorem 3.3, after substituting ep in place of f in (3.3), (3.4) and

(3.6), we immediately get
Q[nσ 2t]

n − Sm(t)


ep


m

≤ C/n; here
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C = σ 2t · eσ
2t (m−1)(ρ+

m
2 ) · K +

1

σ 2 e(m−1)(mσ2
2 +r)t

· ‖Lep‖m,

where, in turn, ep ∈ Dm(L) and ‖Lep‖m = (p − 1)


pσ 2

2 + r

·


p

m−p

p/m
·
(m−p)

m .
The result is now fully established. �

4. Asymptotic behaviour

This section supplies additional information about the operators Qn , namely about the
asymptotic behaviour of Qn f (x) and, more generally, of the iterates Qk

n f (x) as x → +∞.
In this way we are able to pursue some results which are an improvement on those described

in [7, Section 3], merely as regards the asymptotic behaviour of the semigroup (Sm(t))t≥0 as
t → +∞.

Let us start with the following result, which must be compared with Theorem 3.1 of [7].

Theorem 4.1. If f ∈ E0
m (m ≥ 2) has the asymptote y = ax + b as x → +∞, then each Qn f

has the asymptote y =


1 −

ρ2

n2


ax +


1 −

ρ
n


b as x → +∞. Consequently, for every integer

k ≥ 2, the iterate Qk
n f has the asymptote y =


1 −

ρ2

n2

k
ax +


1 −

ρ
n

k b as x → +∞.

Proof. A change of variable in (2.4) is needed here, in order to map Qn f into a form easier to
handle in this framework: namely, the reader will find no difficulty in showing that for all n ≥ ρ

and x ≥ 0,

Qn f (x) =


1 −

ρ

n

 1
Γ (n)

·

∫
+∞

0
e−ssn−1 f


(nσ 2

+ r)x

n2σ 2 s


ds,

and, clearly,

Qn f (x)

1 + x
=


1 −

ρ

n

 1
Γ (n)

·

∫
+∞

0
e−ssn−1

f

(nσ 2

+r)x
n2σ 2 s


1 +

(nσ 2+r)x
n2σ 2 s

·
1 +

(nσ 2
+r)x

n2σ 2 s

1 + x
ds. (4.1)

By assumption, the function y →
f (y)
1+y is continuous on [0,+∞[ and tends to |a| as y → +∞,

and therefore it is bounded on [0,+∞[ by a constant M > 0; furthermore for any x ≥ 0 we
plainly have

1 +
(nσ 2

+r)x
n2σ 2 s

1 + x
≤ max


1,
(nσ 2

+ r)x

n2σ 2 s


for all s ≥ 0,

so the modulus of the integrand in (4.1) is bounded from above by ψ , where ψ(s) := e−ssn−1
·

M ·max


1, (nσ
2
+r)x

n2σ 2 s

(s ≥ 0). Since ψ ∈ L1([0,+∞[), we may apply Lebesgue’s dominated

convergence, leading to

lim
x→+∞

Qn f (x)

1 + x
=


1 −

ρ

n

 1
Γ (n)

·

∫
+∞

0
e−ssn−1a

(nσ 2
+ r)s

n2σ 2 ds

=


1 −

ρ

n

nσ 2
+ r

n2σ 2


Γ (n + 1)

Γ (n)
a

=


1 −

ρ2

n2


a,
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or, equivalently, to

lim
x→+∞

Qn f (x)

1 + x
=


1 −

ρ2

n2


a.

On the other hand, for any x ≥ 0,

Qn f (x)−


1 −

ρ2

n2


ax

=


1 −

ρ

n

 [ 1
Γ (n)

·

∫
+∞

0
e−ssn−1


f


(nσ 2

+ r)x

n2σ 2 s


− a

(nσ 2
+ r)x

n2σ 2 s


ds

+
1

Γ (n)
·

∫
+∞

0
e−ssn−1a

(nσ 2
+ r)x

n2σ 2 sds −


1 +

ρ

n


ax

]
=


1 −

ρ

n

 1
Γ (n)

·

∫
+∞

0
e−ssn−1


f


(nσ 2

+ r)x

n2σ 2 s


− a

(nσ 2
+ r)x

n2σ 2 s


ds. (4.2)

Arguing as before, let us observe that the function y → | f (y) − ay|, being continuous on
[0,+∞[ and converging to |b| as y → +∞, is bounded. Now again, by virtue of Lebesgue’s
theorem, we soon get

lim
x→+∞


Qn f (x)−


1 −

ρ2

n2


ax


= lim

x→+∞


1 −

ρ

n

 1
Γ (n)

·

∫
+∞

0
e−ssn−1bds

=


1 −

ρ

n


b,

which concludes the proof of the first part of the statement. The second part (concerning the
iterate Qk

n f ) is straightforward and needs no further comment. �

Remark 4.2. Let φ(x) := (x − K )+(x ≥ 0, K > 0). Then (see [7, Section 6]) φ is a positive,
increasing and convex function in E0

m (m ≥ 2), having y = x − K as asymptote as x → +∞.
According to the previous theorem (with a = 1 and b = −K ), Qnφ has the asymptote

y =


1 −

ρ2

n2


x −


1 −

ρ
n


K (x → +∞) and, more generally, for any integer u ≥ 1, the iterate

Qu
nφ has the asymptote

y =


1 −

ρ2

n2

u

x −


1 −

ρ

n

u
K . (4.3)

Moreover, from e1 − K e0 ≤ φ ≤ e1, by virtue of (2.6) we soon deduce

au
n,1e1 − K au

n,0e0 ≤ Qu
nφ ≤ au

n,1e1,

whence
1 −

ρ2

n2

u

e1 − K


1 −
ρ

n

u
e0

+

≤ Qu
nφ ≤


1 −

ρ2

n2

u

e1, (4.4)

because φ ≥ 0 anyway.
It is worthwhile noticing that if u = k(n) and k(n)

n → σ 2t as n → +∞, passing to the limit
as n → +∞ in (4.3) and (4.4), we get (ii) and (iii) of Corollary 6.1 in [7], i.e., each Sm(t) f has
the asymptote y = x − K e−r t as x → +∞ and

(e1 − K e−r t e0)
+

≤ Sm(t)φ ≤ e1 for all t ≥ 0.
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The next proposition resembles Proposition 6.1 of [7], dealing with the iterates Qu
nφ instead

of the limiting semigroup (Sm(t))t≥0.
Recall that, in general, Qn f (0) =


1 −

ρ
n


f (0), so Qnφ(0) = 0.

Here, as in [7, Proposition 6.1], we set h(p) := (p − 1)p p/1−p (p > 1).

Proposition 4.3. If the positive constant K appearing in φ fulfills K ≥ h(p) for some p ∈

]1,+∞[, then

0 ≤ Qu
nφ ≤ au

n,pep (n ≥ ρ), (4.5)

for any integer u ≥ 1, where an,p is defined according to (2.6) even for p > m. It follows that
d

dx Qu
nφ(x)|x=0 = 0. If K ≥ 1, (4.5) remains true for all p > 1.

Proof. The proof runs in the same way as in [7, Proposition 6.1]. However, we impose no
upper bound for p, since Qnep may be naturally computed even if p > m (see the discussion
after (2.8)). �

Remark 4.4. The situation described so far has an interesting geometric interpretation.
If t ≥ 0 is fixed and (k(n))n≥1 is an arbitrary sequence of positive integers satisfying

k(n)
n → σ 2t as n → +∞, after putting

qk(n)
n (x) :=


1 −

ρ2

n2

k(n)

x −


1 −

ρ

n

k(n)
K (x ≥ 0, n ≥ ρ),

st (x) := x − K e−r t (x ≥ 0),

(4.6)

we readily see that lim
n→+∞

qk(n)
n (x) = st (x) for all x ≥ 0, i.e., not surprisingly, as n → +∞

the asymptote of the iterate Qk(n)
n φ tends to the asymptote of Sm(t)φ, in agreement with the

representation formula (2.3) of the semigroup itself.
The above situation may be portrayed as in the following Fig. 1, where we have taken into

account that Qk(n)
n φ(0) = Sm(t)φ(0) = 0 with derivatives equal to 0 (see [7, Corollary 6.1 and

Proposition 6.1]).
In Section 3 we have shown that the rate of convergence in (2.3) is of order 1/n for m > 4

and for regular functions in V .
In terms of the classical semigroup theory (see, e.g., [12,27]), this means that the strong

solution of the Black–Scholes problem
ut (x, t) =

1
2
σ 2x2uxx (x, t)+ r xux (x, t)− ru(x, t) (x ≥ 0, t > 0),

u(x, 0) = f (x) (x ≥ 0, f ∈ V ⊂ Dm(L)),
(4.7)

which, as is well-known, is given by

u(x, t) := Sm(t) f (x) (x, t ≥ 0),

may be written down in terms of iterates of the Gamma-type operators Qn with order of
approximation 1/n (in ‖ · ‖m).

Since φ ∉ Dm(L) (even if φ ∈ E0
m), the function v(x, t) := Sm(t)φ(x) (x, t ≥ 0) is a mild

solution of (4.7) and, anyway, neither Theorem 3.3 nor Corollary 3.6 may be applied in this case.
We point out that choosing φ as the initial datum in (4.7) is quite standard in the Black–Scholes

model and has some interest in many concrete cases (see, for instance, [18,30]); therefore it is our
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Fig. 1. The asymptotes qk(n)
n (x) and st (x) of Qk(n)

n φ and Sm (t)φ, respectively, at a fixed time t .

intention to supply some information concerning the rate of approximation in (2.3) for f = φ,
too, exactly as already done for functions in V .

We think that an estimate of the magnitude of ‖qk(n)
n −st‖m would suit nicely in this direction,

since, according to the definition (4.6), the two terms qk(n)
n and st present well the features of

Qk(n)
n φ(x) and Sm(t)φ(x) at least for x large enough.

What we find out perfectly matches (3.2), as proved in the next proposition, where, for
simplicity and without loss of generality, we may and do assume k(n) := [nσ 2t] (t > 0, n ≥ 1).

Proposition 4.5. If m ≥ 2, then for all t > 0 one has

‖q[nσ 2t]
n − st‖m = O


1
n


as n → +∞,

i.e., there exists a constant C = C(t, σ, r) such that

‖q[nσ 2t]
n − st‖m ≤

C

n
(4.8)

for every n ≥ sup

ρ, 2

σ 2t


.

Proof. Fix t > 0; then for all n ≥ sup

ρ, 2

σ 2t


we simply have

‖q[nσ 2t]
n − st‖m ≤ ‖e1‖m ·

1 −


1 −

ρ2

n2

[nσ 2t]
+ K‖e0‖m ·

e−r t
−


1 −

ρ

n

[nσ 2t]


≤ [nσ 2t]
ρ2

n2 + K ·




e
−r t

[nσ2t]

[nσ 2t]

−


1 −

ρ

n

[nσ 2t]


≤
ρr t

n
+ K [nσ 2t] ·

e −r t
[nσ2t] − 1 +

ρ

n

 , (4.9)

where we have used the obvious inequality |an
− bn

| ≤ n|a − b|, 0 ≤ a, b < 1.
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Moreover, applying e−t
− 1 + t ≤

t2

2 (t > 0) and nσ 2 t ≥ 2 (which is true by assumption)
implies

[nσ 2t] ·

e −r t
[nσ2t] − 1 +

ρ

n

 ≤ [nσ 2t] ·

e −r t
[nσ2t] − 1 +

r t

[nσ 2t]

+ [nσ 2t] ·

 r t

[nσ 2t]
−

r t

nσ 2t


≤ [nσ 2t]

1
2

·
r2t2

[nσ 2t]2 + [nσ 2t]r t ·
1

[nσ 2t]nσ 2t

=
1
2

·
r2t2

[nσ 2t]
+
ρ

n
≤

1
2

·
r2t2

nσ 2t − 1
+
ρ

n
≤
ρr t2

nt
+
ρ

n
=
ρ(r t + 1)

n
.

Substituting into (4.9) yields

‖q[nσ 2t]
n − st‖m ≤

ρr t

n
+ K

ρ(r t + 1)
n

,

whence we have (4.8) with C := ρ (r(1 + K )t + K ). �

Remark 4.6. We point out that, if f ∈ E0
m (m ≥ 2) has the asymptote y = ax + b as x → +∞,

then after rewriting qk(n)
n (x) and st (x) appearing in (4.6) in an obvious way according

to Theorem 4.1 and to Theorem 3.1 of [7], the estimate (4.8) remains basically the same
up to a slight change in the expression for the constant C , which becomes equal to
ρ (r(|a| + |b|)t + |b|).

Actually, we could have proved (4.8) in this general framework and then applied it to the case
f := φ; due to the importance of the function φ(x) = (x − K )+, often occurring in the theory of
option pricing, and in connection with the spirit of the present paper, we have preferred to focus
our attention right away upon this special case, for which, as already said, the result concerning
the rate of convergence fails to hold.

Remark 4.7. It would be interesting to have a closer look into the asymptotic behaviour both of
Qn f (x) and of Sm(t) f (x) as x → +∞, starting from some assumptions concerning the growth
rate at +∞ of f .

At the same time, the limit of the overiterates of Qn f , i.e., the limit of Qk(n)
n f as n → +∞

under the assumption that k(n)/n → +∞, perhaps deserves to be considered and studied.
All the foregoing aspects, however, leading further afield, will be addressed in a forthcoming

paper.

References

[1] J. Adell, J. de la Cal, Using stochastic processes for studying Bernstein-type operators, Rend. Circ. Mat. Palermo
33 (Suppl. II) (2005) 17–33.

[2] J. Adell, J. de la Cal, On a Bernstein-type operator associated with the inverse Polya–Eggenberger distribution,
Rend. Circ. Mat. Palermo 33 (Suppl. II) (2005) 143–154.

[3] F. Altomare, R. Amiar, Approximation by positive operators of the C0-semigroups associated with one-dimensional
diffusion equations, Part II, Numer. Funct. Anal. Optim. 26 (2005) 17–33.

[4] F. Altomare, R. Amiar, Corrigendum to: approximation by positive operators of the C0-semigroups associated with
one-dimensional diffusion equations, Part II, Numer. Funct. Anal. Optim. 26 (2005) 17–33;
F. Altomare, R. Amiar, Corrigendum to: Approximation by positive operators of the C0-semigroups associated with
one-dimensional diffusion equations, Part II, Numer. Funct. Anal. Optim. 27 (2006) 497–498.

[5] F. Altomare, A. Attalienti, Degenerate evolution equations in weighted continuous function spaces, Markov
processes and the Black–Scholes equation, Part II, Results Math. 42 (2002) 212–228.



182 A. Attalienti et al. / Journal of Approximation Theory 163 (2011) 163–182

[6] F. Altomare, M. Campiti, Korovkin-type Approximation Theory and its Applications, W. de Gruyter, Berlin, New
York, 1994.

[7] A. Attalienti, I. Rasa, Shape-preserving properties and asymptotic behaviour of the semigroup generated by the
Black–Scholes operator, Czechoslovak Math. J. 58 (133) (2008) 457–467.

[8] P. Billingsley, Probability and Measure, 2nd ed., John Wiley & Sons, New York, 1986.
[9] M. Campiti, C. Tacelli, Rate of convergence in Trotter’s approximation theorem, Constr. Approx. 28 (3) (2008)

333–341;
M. Campiti, C. Tacelli, Erratum to: Rate of convergence in Trotter’s approximation theorem, Constr. Approx. 31
(3) (2010) 459–462.

[10] M. Campiti, C. Tacelli, Approximation processes for resolvent operators, Calcolo 45 (2008) 235–245.
[11] J. de la Cal, F. Luquin, A note on limiting properties of some Bernstein-type operators, J. Approx. Theory 68 (1992)

322–329.
[12] K. Engel, R. Nagel, One-parameter Semigroups for Linear Evolution Equations, Springer-Verlag, Berlin, 2000.
[13] S.N. Ethier, T.G. Kurtz, Markov Processes. Characterization and Convergence, J. Wiley & Sons, New York, 1986.
[14] H. Gonska, M. Heilmann, I. Rasa, Convergence of iterates of genuine and ultraspherical Durrmeyer operators to

the limiting semigroup: C2-estimates, J. Approx. Theory 160 (1–2) (2009) 243–255.
[15] H. Gonska, I. Rasa, The limiting semigroup of the Bernstein iterates: degree of convergence, Acta Math. Hungar.

111 (2006) 119–130.
[16] S. Karlin, H.M. Taylor, A Second Course in Stochastic Processes, Academic Press, Inc., New York, 1981.
[17] S. Karlin, Z. Ziegler, Iteration of positive approximation operators, J. Approx. Theory 3 (1970) 310–339.
[18] Y.K. Kwok, Mathematical Models of Financial Derivatives, Springer-Verlag, Berlin, 1998.
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