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IL-33 is an inducer of proinflammatory and T-helper type 2 (Th2) cytokines, which have an important role in atopic
dermatitis (AD) and allergic asthma. ST2 is a specific receptor for IL-33 and is expressed on Th2 cells, eosinophils
and mast cells. A murine model of AD was used to characterize the role of ST2 in allergen-induced skin
inflammation and allergic asthma. ST2� /� and wild-type (WT) mice were epicutaneously sensitized with
ovalbumin (OVA) and staphylococcal enterotoxin B, and intranasally challenged with OVA. ST2� /� mice
exhibited increased production of IFNg and increased number of CD8þ T cells in the sensitized skin and in the
airways compared with WT mice. The number of eosinophils was decreased, and Th2 cytokines were
downregulated in the airways of epicutaneously sensitized ST2� /� mice compared with WT controls. However,
dermal eosinophil numbers were as in WT, and the levels of Th2 cytokines were even elevated in the sensitized
skin of ST2� /� mice. ST2� /� mice had elevated numbers of neutrophils and macrophages and increased
levels of proinflammatory cytokines in the sensitized skin. The role of ST2 differs between different target tissues:
ST2 is dispensable for the development of Th2 response in the sensitized skin, whereas it is a main inducer of Th2
cytokines in asthmatic airways.
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INTRODUCTION
The first clinical manifestation of atopy is generally considered
atopic dermatitis (AD) that starts the atopic march. Atopic
march is characterized by the progression of AD to asthma and
allergic rhinitis later in life. Indeed, 450% of young children
with severe AD will develop asthma and approximately 75%
will develop allergic rhinitis (Kulig et al., 1999). Environmental
and genetic evidence suggests that a defect in epithelial barrier
integrity may contribute to the onset of AD and progression of
atopic march. Recent genome-wide association studies have
shown that variations in genes encoding epithelial cell-derived
cytokines, including IL-33 and IL-33-specific receptor ST2 have
a strong association with asthma (Moffatt et al., 2010; Ober and
Yao, 2011) and allergic diseases (Shimizu et al., 2005).

The epidermis is a primary defense and sensor to the external
environment. Skin-barrier defect promotes easy entry to the
pathogens, allergens, and other molecules (toxins, irritants, and
pollutants) (Boguniewicz and Leung, 2011; Carmi-Levy et al.,

2011). In AD skin, keratinocytes respond to environmental
triggers and are able to produce a unique profile of proin-
flammatory and pro-T-helper type 2 (Th2) cytokines, including
IL-33 (Smith, 2009) and TSLP (Kinoshita et al., 2009), and
promote the Th2 inflammation. In the more chronic phase, Th1
type cytokines dominate over Th2 cytokines. Impaired skin
barrier can also increase the susceptibility to the bacterial col-
onization of Staphylococcus aureus (Michie and Davis, 1996).
Bacterial superantigens can further stimulate T-cell receptors
and augment skin inflammation. Epidermal-barrier dysfunction
and the increased antigen uptake through the skin can finally
lead to the systemic sensitization, which may further promote
respiratory allergy when the same antigen is inhaled. We have
earlier demonstrated that repeated intradermal allergen expo-
sure without external adjuvant-induced airway hyperreactivity
to inhaled methacholine, local Th2-dominated lung inflam-
mation, and systemic IgE response in mice (Lehto et al., 2005).

IL-33 is a member of IL-1 family and is mainly produced by
cells of barrier tissues: skin keratinocytes, fibroblasts, endothe-
lial cells, macrophages, airway epithelial cells, and smooth
muscle cells are known to secrete IL-33 (Prefontaine et al.,
2009, 2010). Secreted IL-33 activates surrounding ST2-
expressing cells, such as Th2 cells (Xu et al., 1998),
eosinophils (Cherry et al., 2008), basophils (Blom et al.,
2010), and mast cells (Allakhverdi et al., 2007), which are
all important cell types in allergic diseases. ST2 is selectively
upregulated and expressed on IL-4, IL-13, and IL-5 producing
Th2 cells, but not on IFNg-producing Th1 cells (Xu et al.,
1998; Lecart et al., 2002). In addition to cytokine function,
IL-33 can act as a nuclear factor and can interact with the
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transcription factor NF-kB, and therefore might also dampen
the inflammatory response (Ali et al., 2011). However,
biological effects of nuclear IL-33 are unclear at present.

The functional role of ST2–IL-33 interaction in allergic diseases,
such as AD and asthma, is poorly known. In the present study,
we explored the role of ST2 in the development of allergen-
induced skin inflammation and allergic asthma after epicutaneous
sensitization in ST2� /� mice. Our results demonstrate that ST2
critically regulates allergen-induced skin and airway inflamma-
tion. However, the role of ST2 differs between target tissues.

RESULTS
The number of neutrophils, macrophages, and CD8þ cells is
increased in the OVA/SEB-sensitized skin of ST2� /� mice

IL-33 and ST2 are upregulated in the skin of patients with AD
after external triggering factors, such as allergens, irritants, and

scratching (Savinko et al., 2012). We used ST2� /� mice to
investigate the role of ST2 in the murine model of AD.
Histological examination revealed increased number of
inflammatory cells in the sensitized skin of ST2� /� mice
(Figure 1a–f). Neutrophils were significantly increased in the
skin of ST2� /� mice, whereas eosinophils and mast cells
were similarly upregulated in wild-type (WT) and ST2� /�
mice (Figure 1e). Immunohistological staining of T cells in the
sensitized skin revealed increased number of CD3þ

(Figure 1f, Supplementary Figure S1a–d online) and CD8þ

cells (Figure 1f, Supplementary Figure S1e–h online), as well
as F4/80þ macrophages (Figure 1f, Supplementary Figure S1i–h
online), in the skin of ST2� /� mice compared with WT
mice. CD4þ cells were slightly upregulated in the skin of
ovalbumin (OVA)/staphylococcal enterotoxin B (SEB)-treated
ST2� /� mice compared with WT, but did not reach the
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Figure 1. Total inflammatory cells and neutrophils are increased in the ovalbumin (OVA)/staphylococcal enterotoxin B (SEB)-sensitized skin of ST2� /� mice.

Representative histological figures of (a) phosphate-buffered saline(PBS)-sensitized wild-type (WT), (b) PBS-sensitized ST2� /� , (c) OVA/SEB-sensitized WT,

and (d) OVA/SEB-sensitized ST2� /� mice. Bar¼200mm. (e) Total inflammatory cells, eosinophils, neutrophils, and mast cells were counted from skin samples of

WT and ST2� /� mice after epicutaneous sensitization with PBS and OVA/SEB. (f) CD3þ , CD4þ , and CD8þ cells were counted from the epidermis and F4/80þ

cells from the dermis of sensitized WT and ST2� /� mice. HPF, high-power field. *Po0.05; **Po0.01; ***Po0.001.
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statistical difference (Figure 1f). Upregulation of CD3þ and
CD8þ cells were only seen in epidermis, whereas dermis
showed no difference in the OVA/SEB-sensitized WT and
ST2� /� mice.

Proinflammatory cytokines and Th1 cytokine IFNc are increased
in the OVA/SEB-sensitized skin of ST2� /� mice

IL-33, which binds to its specific ST2 receptor, has been
reported to drive the production of Th2 cytokines (Schmitz
et al., 2005; Kurowska-Stolarska et al., 2008). Proin-
flammatory, Th2, and Th1 cytokines have an important role
in the pathogenesis of AD. We found a significant increase in
mRNA expressions of proinflammatory cytokines IL-1b and
IL-6, and Th1 cytokine IFNg, whereas tumor necrosis factor-a
(TNFa) showed no difference (Figure 2a, Supplementary
Figure S2 online). Th2 cytokines (IL-4, IL-13, and IL-5) were
not downregulated and were even slightly upregulated (albeit
IL-13 and IL-4 not statistically significantly) in the sensitized
skin of ST2� /� mice compared with the sensitized skin of
WT mice (Figure 2b, Supplementary Figure S2 online).
Transcription factor for regulatory T cells, Foxp3, was
increased in the sensitized skin of ST2� /� mice as com-
pared with WT skin, although IL-10 remained at the same
level in the sensitized skin of WT and ST2� /� mice
(Supplementary Figure S2 online).

Eosinophils are downregulated and CD8þ cells are upregulated
in the airways of epicutaneously sensitized and intranasally
challenged ST2� /� mice

Next, we explored whether the airway inflammation is
differently regulated in the epicutaneously sensitized
ST2� /� mice in comparison with WT mice. Mice were first
sensitized as in AD model, and after 1 week of the last
sensitization, three intranasal OVA challenges were given.
Histological analysis revealed that WT and ST2� /� mice
had severe inflammation in the lung tissue after OVA
challenge (Figure 3c–f). Further examination of bronchoalveo-
lar lavage fluid (BALF) showed a remarkable downregulation
of eosinophils in ST2� /� mice compared with WT mice.
Neutrophils and macrophages were similarly upregulated in
the BALF of ST2� /� and WT mice (Figure 3a). Airway
hyperreactivity to inhaled methacholine was similar in
OVA-sensitized WT and ST2� /� mice (Supplementary
Figure S3 online).

As T cells are known to mediate inflammatory reactions in
asthmatic airways, we stained CD3þ , CD4þ , and CD8þ cells
in the lung tissue. Immunohistochemical staining showed
increased number of CD3þ and CD8þ cells in the interstitial
area of the lung tissue in ST2� /� mice, whereas the number
of CD4þ cells remained at the same level in the lungs of
ST2� /� and WT mice (Figure 3b, Supplementary Figure S4
online).

Th2 cytokines are dramatically downregulated in the airways of
epicutaneously sensitized and intranasally challenged ST2� /�
mice

As ST2 is known to promote the production of Th2 cytokines,
such as IL-13 and IL-5, and is not expressed on Th1 cells
(Xu et al., 1998; Lecart et al., 2002), we analyzed mRNA
expression of Th2 and Th1 cytokines in the lung tissue of
sensitized ST2� /� and WT mice. All Th2 cytokines,
including IL-4, IL-5, and IL-13, were downregulated in the
lung tissue of ST2� /� mice compared with WT mice
(Figure 4a, Supplementary Figure S5 online). However, Th1
cytokine IFNg (Figure 4a) and proinflammatory cytokine TNFa
mRNA expressions (Figure 4a) were significantly upregulated
in the lung tissue of ST2� /� mice compared with WT mice.
Protein concentrations of IL-5 and IL-13 were also decreased
in the BALF of ST2� /� mice compared with WT mice,
whereas TNFa protein concentration increased in sensitized
ST2� /� mice in comparison with WT mice (Figure 4b)
confirming mRNA findings.

To explore regulatory T cells in the lung tissue, mRNA
expression of the transcription factor for regulatory T cells,
Foxp3, and regulatory cytokine IL-10 were studied. Both
Foxp3 and IL-10 were equally upregulated in the lung tissue
of ST2� /� mice compared with WT mice (Figure 4c,
Supplementary Figure S5 online).

The number of IFNc-producing CD3þ CD8þ T cells is increased
in the BALF of ST2� /� mice

To confirm the increase of CD8þ T cells and the increased
production of IFNg in the lung tissue, the BALF of WT
and ST2� /� mice was analyzed by FACS. Similar to
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Figure 2. Increased mRNA expression of IL-6, IFNc, and IL-5 was found in the

sensitized skin of ST2� /� mice as compared with wild-type (WT) mice.

(a) mRNA expression of proinflammatory cytokine IL-6 and mRNA expression

of Th1 cytokine IFNg were investigated in the skin of WT and ST2� /� mice

after epicutaneous sensitization with phosphate-buffered saline (PBS) and

ovalbumin (OVA)/staphylococcal enterotoxin B (SEB). (b) mRNA expression of

T-helper type 2 (Th2) cytokines, IL-4 and IL-5, was measured from the

sensitized skin. *Po0.05; ***Po0.001.
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Figure 3. Eosinophils are downregulated and CD8þ cells are upregulated in the airways of epicutaneously sensitized and intranasally challenged ST2� /�
mice. (a) Eosinophils, neutrophils, and macrophages were counted from the bronchoalveolar lavage fluid (BALF). (b) CD3þ , CD4þ , and CD8þ cells were stained

in the lung. Lung histology was investigated from (c) phosphate-buffered saline (PBS)-sensitized wild-type (WT), (d) PBS-sensitized ST2� /� , (e) OVA/SEB-

sensitized WT, and (f) OVA/SEB-sensitized ST2� /� mice. HPF, high-power field. Bar¼200mm (c–f). *Po0.05; **Po0.01; ***Po0.001.
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immunohistochemistry data and mRNA expression data,
ST2� /� mice had more CD3þCD8þ T cells (Figure 5a),
which produced IFNg (Figure 5b, Supplementary Figure S6
online).

ST2 deficiency does not affect allergen-specific antibody
production after epicutaneous sensitization

To investigate the systemic response, we also measured
OVA-specific IgE and OVA-specific IgG2a antibodies in the
serum of epicutaneously sensitized ST2� /� and WT mice.
OVA-specific IgE and IgG2a antibody concentrations were
similarly increased in the serum of epicutaneously sensitized
ST2� /� and WT mice (Supplementary Figure S7a online).
Moreover, OVA-specific IgE levels were slightly downregu-
lated in ST2� /� mice as compared with WT after epicuta-
neous sensitization followed by intranasal OVA challenge.
However, the difference was not statistically significant
(Supplementary Figure S7b online). Ova-specific IgG2a levels
were at the same levels in WT and ST2� /� mice after
intranasal challenge.

DISCUSSION
Allergen exposure through the epidermis can initiate systemic
allergy and predispose individuals to AD, allergic rhinitis, and
asthma. The possibility that epidermal-barrier dysfunction can
initiate systemic sensitization and increase the risk of asthma
and other allergic diseases is supported by experimental data
with the progression from AD to allergic asthma in mouse

models (Spergel et al., 1998; Akei et al., 2006). Epithelial-
derived cytokines are hypothesized to have a key role in the
initiation of atopic skin inflammation. Keratinocyte and
fibroblast-derived cytokine, IL-33, is known to activate
dendritic cells and directly drive the polarization of naive T
cells towards Th2 phenotype (Rank et al., 2009). In addition,
IL-33 can act on Th2 cells to increase the secretion of Th2
cytokines, such as IL-5 and IL-13 (Schmitz et al., 2005;
Kurowska-Stolarska et al., 2008). Genetic polymorphism
within the ST2 gene region is reported to have a strong
association with AD (Shimizu et al., 2005). However, no
previous studies are available about the functional role of ST2
in AD. Therefore, in this study we examined the role of ST2 in
the development of AD and asthma using ST2� /� mice and
a murine model of AD. These results demonstrate that ST2
may be more relevant for inducing Th2 responses in the lung
tissue as compared with the skin.

T cells have a crucial role in mediating inflammatory
reactions in patients with AD. Here we demonstrate that ST2
deficiency does not inhibit the recruitment of T cells in the
sensitized skin. We further show significantly more cytotoxic
CD8þ cells, neutrophils, and macrophages in the sensitized
skin of ST2� /� mice compared with WT mice. Recently, it
was shown that also CD8þ T cells express ST2, and after TCR
activation these cells produce IFNg in response to IL-33
stimulation (Yang et al., 2011). However, our results clearly
show that in the absence of ST2, the number of IFNg-
producing CD8þ T cells increases in vivo. This data also
suggest that in AD skin, ST2 may inhibit in the recruitment of
neutrophils and macrophages, as well as cytotoxic CD8þ

T cells, to the site of inflammation.
Although IL-33 is known to promote the Th2 cytokine

secretion, we did not find downregulation of Th2 cytokines in
the OVA/SEB-sensitized skin of ST2� /� mice; actually, Th2
cytokines were even slightly upregulated. In addition, proin-
flammatory cytokines IL-1b and IL-6, as well as Th1 cytokine
IFNg, were upregulated in the sensitized skin of ST2� /�
mice. These results demonstrate that loss-of-function in ST2
gene does not downregulate Th2 response in the AD skin as
would be expected. On the contrary, in the sensitized skin ST2
acts as a negative regulator of proinflammatory cytokines,
which in turn may result in increased levels of both Th1 and
Th2 cytokines. We did not find any differences in allergen-
specific IgE or IgG2a concentrations in WT and ST2� /�
mice. This is in line with Hoshino et al. (1999) who found that
total IgE and IgG1 were normally observed in ST2� /� mice,
which were sensitized two times with alum-emulsified OVA.
Moreover, they found that ST2� /� mice displayed almost
normal Th2 responses in nematode infection.

Recent genome-wide association studies demonstrate that
variations in genes encoding IL-33 and ST2 have a strong
association with asthma (Moffatt et al., 2010), and higher
expression of IL-33 has been detected in endobronchial
biopsies from human asthmatic subjects compared with
healthy controls (Prefontaine et al., 2009). Furthermore, a
recent study by Kim et al. (2011) demonstrates a novel
pathway for the development of glycolipid antigen-induced
experimental asthma that occurs in the absence of Th2 cells
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and adaptive immunity. This pathway is dependent on NKT
cells, alveolar macrophages and natural helper cells, a newly
described non-T, non-B, innate lymphoid cell type, and ST2
receptor. Other studies with ST2� /� mice and asthma
model have been performed with OVA/alum (adjuvant)
model (Hoshino et al., 1999; Mangan et al., 2007;
Kurowska-Stolarska et al., 2008). Because the results of
ST2� /� mice exposed to the asthma model are
controversial, we used the epicutaneous route of
sensitization to mimic the atopic march. Mice were first
sensitized epicutaneously with OVA/SEB and intranasally
challenged with OVA. In line with previous studies (Lohning
et al., 1998; Coyle et al., 1999; Townsend et al., 2000;
Kurowska-Stolarska et al., 2008), our results show a drastic
downregulation of eosinophils in the BALF of sensitized
ST2� /� mice compared with WT mice. Consistent with
the decreased number of eosinophils in the BALF, also mRNA
expression of classical Th2 cytokines, that is, IL-5, IL-13, and
IL-4, dropped to the phosphate-buffered saline-control level in
ST2� /� mice in OVA-exposed group. Supporting the
finding, it has been demonstrated that the IL-33/ST2
signaling pathway enhances the expression of CCR3, which
is important in facilitating the mobilization of eosinophils from
bone marrow to peripheral blood and the trafficking to the site
of inflammation (Stolarski et al., 2010).

However, Hoshino et al. (1999) demonstrated that absence
of ST2 does not affect the number of eosinophils in the BALF
in OVA/alum-induced asthma model. The different result
might be due to the used methods and different mouse
strains. Hoshino et al. used C57BL/6 mice and we used 129
mice. Furthermore, sensitization protocols were different and
might also affect the inflammatory response; the skin
sensitization is an efficient systemic sensitizer without any
adjuvant, whereas the intraperitoneal model is shorter and
might be therefore milder. Moreover, downregulation of Th2
cytokines in the lung tissue of ST2� /� mice or after
administration of ST2 mAb has been reported in parasitic
nematode infection models (Senn et al., 2000; Townsend
et al., 2000) and in Th2 cell-mediated lung immune responses
(Lohning et al., 1998; Coyle et al., 1999).

IL-33 can promote the production of proinflammatory
cytokines via ST2 receptor (Liew et al., 2010). However, we
found that in the absence of ST2 receptor, the expression of
TNFa was significantly upregulated in the lung tissue of
OVA-challenged ST2� /� mice. Instead, IL-6 was expressed
at comparable level to the WT lung tissue, suggesting that
TNFa and IL-6 are differently regulated by ST2 in the lungs
and skin. IFNg expression was increased in both tissues of
OVA-exposed ST2� /� mice, as was the number of CD8þ

cells. FACS examination of the BALF showed that IFNg protein
was mostly produced by CD8þ T cells. These results suggest
that ST2 might act as a negative regulator of IFNg-producing
T cells during allergic inflammation. Finally, a recent data
demonstrate that suppressive CD4þ Foxp3þ regulatory T cells
can express membrane-bound ST2 (Turnquist et al., 2011).
However, in the absence of ST2 receptor, the mRNA levels
of Foxp3 and IL-10 increased in the lung tissue, suggesting
that the regulation of inflammatory response in the lung

tissue is not dependent on ST2-expressing Foxp3þ regulatory
T cells.

In conclusion, when mice have been epicutaneously and
repeatedly exposed to OVA/SEB, ST2� /� mice exhibit
increased numbers of macrophages, neutrophils, cytotoxic
CD8þ T cells, and IFNg in the sensitized skin. However, in
the lung tissue of sensitized ST2� /� mice, eosinophils and
Th2 cytokines are significantly downregulated. These findings
show that the Th2 response in the lung tissue is totally
inhibited in the absence of ST2. On the contrary, in mouse
AD-like skin other pathways than IL-33–ST2 interaction are
critical in the development of Th2 response. However, we
could not link the Th2 cytokine production in the sensitized
skin or lung tissue to a specific cell type, which might help to
explain obtained results.

Importantly, these results suggest that the disruption of
ST2–IL-33 pathway cannot be used to target Th2 responses
in the AD skin, but is very essential in inhibiting Th2 responses
in allergic asthma. These results open new avenues to under-
stand and study in more detail the basic mechanisms in AD
and asthma.

MATERIALS AND METHODS
Mice and sensitization

ST2� /� mice (strain 129-Il1rl1, substrain 129/SvEv) were purchased

from the European Mouse Mutant Archive (Monterotondo, Italy) and

bred in our animal facilities. WT littermates (129/SvEv) were used as

controls.

SEB is a well-known triggering factor of atopic skin inflammation.

We have recently shown that IL-33 and ST2 are upregulated in the

skin of patients with AD after exposure to SEB (Savinko et al., 2012).

Therefore, SEB was used together with OVA allergen to

epicutaneously sensitize the mice skin to mimic natural exposure

into AD skin. All animal experiments were approved by the State

Provincial Office of Southern Finland. Sensitization protocol is

described in Supplementary Materials and Methods online.

Skin and lung histology

Skin and lung biopsies were fixed in 10% buffered formalin and

embedded in paraffin. Skin and lung sections of 4mm were cut and

stained with hematoxylin and eosin. Skin sections were stained with

o-toluidine blue for mast cell counts, and lung sections were stained

with periodic acid-Schiff solution and examined under light micro-

scopy (DM 4000B; Leica, Wetzlar, Germany). Inflammatory cells

were counted in 15 high-power fields.

Immunohistochemistry

Staining of CD3þ , CD4þ , and CD8þ cells was made as earlier

described (Savinko et al., 2005; Lehto et al., 2010) and described in

Supplementary Materials and Methods online.

Cytokine analysis by RT-PCR

RNA isolation was made as earlier described (Savinko et al., 2005)

with slight modifications: Eurozol (EuroClone, Siziano, Italy) was used

instead of Trizol, and RNA content was measured by NanoDrop

ND-1000 Spectrophotometer (NanoDrop Technologies, Wilmington,

DE). cDNA was synthesized from 0.5mg of total RNA in 25ml reaction

mixture with High Capacity cDNA Reverse Transcription Kit (Applied
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Biosystems, Foster City, CA). PCR primers and probes were obtained

from Applied Biosystems, and quantitative real-time PCR was

performed with 7500 Fast Real-Time PCR System and SDS Software

v.1.4.0 (Applied Biosystems). The gene expression between different

samples was normalized with endogenous 18S rRNA, and the target

gene expression was calculated by the comparative CT method

according to the instructions of Applied Biosystems.

Bronchoalveolar lavage fluid

To collect BALFs, the trachea was surgically exposed, cannulated

with a syringe, and flushed with 0.8 ml of phosphate-buffered saline.

Cells in the lavage fluid were counted by hemacytometer, and BALF

cell differentials were determined on slide preparations stained with

May-Grünwald-Giemsa and counted in 15–20 high-power fields

under light microscopy (Leica DM 4000B).

ELISA

Serum levels of OVA-specific antibodies were measured by the

straight ELISA method (Savinko et al., 2005). In brief, plates were

coated with 100mg ml� 1 OVA for OVA-specific IgE, 2mg ml� 1 OVA

for OVA-specific IgG2a. Bound antibodies were detected either with

biotin-conjugated rat anti-mouse IgE (clone R35-118) or with biotin-

conjugated rat anti-mouse IgG2a (clone R11-89) (BD Biosciences,

San Jose, CA). Streptavidin horseradish peroxidase, followed by

substrate, was used to detect the bound antibody levels. Optical

density was measured at 405 nm.

Luminex
For analysis of TNF-a, IL-13, and IL-5 proteins in BALF supernatants,

we used a Bio-Plex Pro Mouse Cytokine Assay (BioRad Laboratories,

Hercules, CA) according to the manufacturer’s protocol. A total of 3%

BSA (Sigma-Aldrich, St Louis, MO) in phosphate-buffered saline was

added at a concentration of 0.5% to samples, controls, and standards

to ensure sufficient protein amounts for the assay. Assay was perfor-

med using Luminex xMAP Technology (Bio-Plex 200 System; BioRad).

FACS analysis

Flow cytometry was performed using a CantoII instrument (Becton

Dickinson, Fraklin Lakes, NJ), and the data were processed with the

FlowJo Software (Tree Star, Ashland, OR). BALFs from epicutaneously

OVA/SEB-sensitized and intranasally OVA-challenged WT and

ST2� /� mice were stimulated with phorbol myristate acetate

(20 ng ml� 1) and ionomycin (1mg ml� 1), including brefeldin A

(Sigma, St Louis, MO) at 37 1C for 4 h. After stimulations, cells were

washed with cold phosphate-buffered saline including 2% fetal

bovine serum. Fragment crystallizable receptors were blocked with

an excess of anti-mouse CD12/32 (eBioscience, San Diego, CA) and

surface stained with phycoerythrin–Cy7-conjugated anti-CD3, FITC-

conjugated TCRb, PeCy5-conjugated anti-CD4, and Alexa700-con-

jugated anti-CD8. Cells were permeabilized with intracellular Fix and

Perm staining kit (Caltag, Burlingame, CA), and stained with phy-

coerythrin-conjugated anti-IFNg.

Statistics

Analysis between groups was examined with nonparametric Mann–

Whitney U-test. Results are expressed as means (±SEM), and

P-values o0.05 were considered to be statistically significant.

Statistical analysis were performed by GraphPadPrism (GraphPad

Software, La Jolla, CA)
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