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Abstract 

Let X be a connected, finite dimensional, locally compact polyhedron. Let f : U + X be 
a compactly fixed map defined on an open, connected subset U of X, and let H be any 
normal subgroup of r,(X). We seek information about NH(f), the local H-Nielsen number 
of f. It is a lower bound for min{ 1 Fix g 1: g =f}, where the homotopies must be admissible. 

Let NH(f; f, 13 denote the well-known sum &t ,,,, i(Q)[cr], where i(N;) is the local 
fixed point index of an H-Nielsen class, [a] is the Reidemeister orbit associated with that 
class and W is a set of representatives of the Reidemeister orbits. Then NH(f) is the 
number of terms of NH(f; f, r) with nonzero coefficient. We call NJf_; f, i) a Nielsen- 
Reidemeister chain, and we prove that for certain subsets of U, NJf; f, r> splits into the 
sum of the Nielsen-Reidemeister chains for the subsets. 

We define the local generalized H-Lefschetz number LH(f; f7 7) in terms of a globally 
defined trace. We prove that, for X a connected, triangulable n-manifold with n > 3, 
LH(f;f, r> = NH(f; f, i). Thus, LH(f; f; L) can provide a means to compute NH(f). Also, 
for H = 1, a generalization of the converse of the Lefschetz fixed point theorem holds. 
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1. Introduction 

The generalized Lefschetz number is a globally defined trace that provides 

information about the Nielsen number of a map. (See [3,9].) In [4], Fade11 and 

Husseini introduce local Nielsen theory and use covering spaces to study it. We 

combine these topics by defining a local setting for which a local generalized 

H-Lefschetz number can be defined. We prove that, under certain hypotheses, the 

local generalized H-Lefschetz number provides information about local H-Nielsen 

theory. 

Let X be a connected, finite dimensional, locally compact polyhedron. Let 

f : U + X be a map defined on an open, connected subset U of X. The fixed point 

set of f is Fix f = {x E U: f(x) =x], and we consider only maps f with Fix f 

compact. Local Nielsen fixed point theory involves the estimation of min f, the 

minimum number of fixed points of any map homotopic to f via an admissible 

homotopy. The local Nielsen number of f is a lower bound for min f. For H a 

normal subgroup of n-,(X>, the local H-Nielsen number of f is often easier to 

calculate than the local Nielsen number of f. (See [9,12].) The local H-Nielsen 

number of f is a lower bound for the local Nielsen number of f and therefore 

provides less information. Local H-Nielsen theory is defined for any H a r,(X). 
This is different from the usual H-Nielsen theory (with U =X> for which H must 

be invariant under f#. 

As described above, our initial data is U LX with f : U +X a compactly fixed 

map and H a TV. In Section 2, we obtain information about the local H-Niel- 

sen number of f from these initial data by constructing a local setting as follows. 

We begin by choosing a compact subset K of U with Fix f~ int K and such that 

the H-Nielsen equivalences in K are the same as those in U. The regular covering 

space for X, 8, is determined by H. A regular covering space for K, k, is chosen 

for which there exist lifts of f 1 K and of the inclusion to the covering spaces. This 

collection of covering spaces and lifts is called a local setting. 

Once a local setting is constructed, the Nielsen-Reidemeister chain for f is 

defined. It is the formal sum of distinct Reidemeister orbits with each coefficient 

equal to the index of the associated local H-Nielsen class (determined by coinci- 

dence classes of the lifts). This familiar sum is denoted by NH(f; f, 71, and the 

number of terms with nonzero coefficients is the local H-Nielsen number of f. We 

show that NH(f; f, Z) is essentially independent of the choices made in the local 

setting. We then consider the splitting of NH(f; f, I) when K is replaced by a 

finite number of disjoint compact connected subsets of U. Here we require Fix f 

to be contained in the union of the interiors of the subsets. 

In Section 3, we define the local generalized H-Lefschetz number of f, denoted 

by LH(f; f, t), to be the alternating sum of a trace-like function that is defined on 

simplicial chains. It provides a method for studying fixed points using a globally 

defined trace. To define LH(f; f, i), we assign X, X, K, and l? compatible 

triangulations so that K is a subcomplex of X and the projection maps are 
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simplicial maps that preserve orientation. By subdividing K and k and taking 

simplicial approximations to f and the lifts, we are able to discuss the algebra 

needed to define LH(f; f; C). We prove that LH(f; f, Z) is essentially independent 

of the choices made in its definition, and we prove an additivity property. 

We are then able to connect our two main objects of study, the Nielsen-Rei- 

demeister chain and the local H-Lefschetz number. We prove that, if X is a 

connected, triangulable n-manifold with n > 3, then we have LH(f; f; r) = 

NJf; f’, r>. Thus if L,( f; f, 1 - r can be written in reduced form with each Reide- 

meister orbit occurring once (not always an easy task), the local H-Nielsen number 

of f can be calculated in terms of global trace. This result also implies that, for 

H = 1, L,(f; f, 1 . - I 1s related to the local obstruction defined in [4]. This local 

obstruction is the obstruction to min f being zero. This relationship provides a 

generalized version of the converse of the Lefschetz fixed point theorem. Examples 

of the computation of LJf; f, i) are contained in [8]. 

Many of the results presented here are parts of the authors’ dissertations, [5] 

and [71. In 151, Fares first requires that J? ~8. With that restriction, not all sets of 

initial data {U, X, f, H) have lifts of f and of the inclusion. Thus a local setting 

need not exist and the local H-Lefschetz number is not always defined. In [7], Hart 

chooses k not necessarily contained in X, which forces consideration of coinci- 

dence points of lifts rather than fixed points. But with these changes the local 

generalized H-Lefschetz number can be defined for all sets of initial data. 

The authors would like to thank their thesis advisors, E. Fade11 and S. Husseini, 

for guidance and encouragement. They would also like to thank the referee for 

helpful comments about the exposition of this paper. 

2. Local H-Nielsen fixed point theory and covering spaces 

2.1. Preliminaries 

Let X be a connected, finite dimensional, locally compact polyhedron. For U 

an open, connected subset of X, we define &CJ = 0 n X - U. Let f : U +X be a 

map with Fix f = Ix E U: f(x) =x1, the set of fixed points of f. We consider only 

maps for which Fix f is compact, and we say f is compactly fixed. 

Let x0 E U be a base point for X, and let H be a normal subgroup of 

r,(X, x,). Let x be any point in U. As in 1121, we define a normal subgroup H, of 

r,(X, x) corresponding to H. Let h be a path from x0 to x. Then A induces an 

isomorphism from ri(X, x0> to r,(X, x1. For every loop class [al E r,(X, x,1, u 

is sent to A-’ * u * h E r,(X, x>. Let H, be the image of H under this isomor- 

phism. Then H, is a normal subgroup of r,(X, x). Note that H, is the same for 

any choice of path A. 

Local H-Nielsen theory involves partitioning the fixed points of f into equiva- 

lence classes. (See [9,12].) Two fixed points, x and y, are in the same equivalence 
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class if and only if there exists a path w in U from x to y for which the loop 

(foW)*W-r is in a loop class in H,. The equivalence classes of fixed points are 

local H-Nielsen classes for f. Each class is assigned an integer called the local 

index of the class. (See [6].) 

A class of fixed points of f with nonzero index is called essential, because it 

cannot be removed by a deformation of f without introducing new fixed points. A 

homotopy h : U x I +X is admissible if U fE ,Fix h, is a compact subset of U. 

There is the expected one-to-one correspondence between the essential classes of 

f and the essential classes of g, whenever g -f via an admissible homotopy. The 

local H-Nielsen number of f, denoted by N,(f), is the number of essential local 

H-Nielsen classes. Thus NH(f) is invariant under admissible homotopy. We have 

N,(f) G min{ IFix g I: g =f}, where the homotopies must be admissible. 

A subset K of U is an (f, U)-subset of X if it is a compact, connected subset of 

U with Fix f~ int K. For K an (f, U)-subset of X, two fixed points x, y E K are 

in the same local (K; H)-Nielsen class for f if and only if there exists a path w in 

K from x to y for which the loop (f 0 o)* w-l is in a loop class in H,. The local 

(K; H)-Nielsen number of f, denoted by NCKQH,(f), is the number of local 

(K; H)-Nielsen classes with index different from zero. 

References for Nielsen fixed point theory (when U =X1 are [l,lO,lll. Local 

Nielsen fixed point theory is introduced in [4]. 

2.2. (H, f)-admissible covering spaces for an (f, U)-subset of X 

Let X be a regular covering space for X with ii, the group of covering 

transformations for the covering projection Gx : 8-X. Let i : K 9X be the 

inclusion map. 

Definition 2.2.1 ((H, f )-admissible cover for K). Let f : U + X be compactly fixed, 

with H a n-,(X>. Let K be an (f, U)-subset of X, and let k be the regular 

covering space for X for which ii, = r,(X)/H. A regular covering space k of K 
with covering projection $K is (H, f )-admissible if there exist maps i and f- for 

which $x f’= ffiK and 3xr = ifiK. 

The maps f’and t are said to be lifts of f and i, respectively. 

Remarks. (1) Let J = eK#(rl(k)). The group of covering transformations for jK is 

rTTK = r,(K)/J. Note that k is (H, f )-admissible if and only if i,(J) and f#(J) are 

contained in H. 
(2) Let Z? be the universal covering space of K with covering projection fiK. 

Then J = 1, and k is an (H, f )-admissible cover for every normal subgroup H of 

a,(X) and every f : U +X for which Fix f c int K. Thus the set of (H, f )-admis- 

sible covers for a given f and a given H is always nonempty. This is an 

improvement over the local settings defined in [5], where there is not always a lift 

of f. 
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(3) Let d be the universal covering space for X. Then H = 1. Let k be any 

(l,f)-admissible cover for K. For any normal subgroup B of rr,(X), Z? is also a 

(B, f)-admissible covering space for K. 

Base points and choices of lifts. As before, Z? and X denote the universal covers of 

K and X, respectively. Let k be an (H, f)-admissible cover, and choose a base 

point x,, in K. Let _?a and P, be base points for Z? and Z?, respectively, with 

&(?a) =x,, and $K(io) =x,,. Let i: Z? + 2 and i: k + 8 be lifts of the inclusion 

i : K -X with i(i,) = f(i,> E 8. 
Let j: Z?-+ k be the covering projection satisfying j(a,) =?a. Then fiK =jKj. 

Choose lifts f^: k + d and f: k +X of f such that {(i,,) =f<Z-,). Then {(a,> = 

f7(iO), and f^= f;‘. Similarly, i = u. 

These choices of lifts determine the following commutative diagrams. 

Covering groups and induced homomorphisms. Let 7i,, ii,, 7i, and 75., be the 
,. 

covering groups for pK,_jjK, fix and fix, respectively. Then +K = 7jK/jjK#(~r(k)), 

and &x = 7j,J$xJrTTI(X)). Here H =fix#(rl(X)). 

Each lift of f to K may be written uniquely as af for some LY E +,. Analogous 

statements are true for f^, i, and 1^. The map f^ induces a homomorphism 
n 

$J : GK + fYx given by {((aF> = &a)fl$) for all (T E 7i, and all E E Z?. Similarly, f 

induces a homomorphism 6: ii K + 7jx given by f(rj) = &r)f(F) for all T E +K 

and all y’ E d. The map j induces a homomorphism $ : 7i, + 7YK given by j(c$) = 
,. 

$(a)j(j) for all u E +, and all 5 E K. The map j is a lift of the identity map on 

K. Thus 4 is the same as the canonical quotient map from 7jK to +K. 

The lifts i and i of the inclusion i : K -X induce homomorphisms i: 7i, + ?i, 

and c: ii, + +,, respectively. These homomorphisms are determined, as expected, 

by the following formulae. For all u E 7i, and y^ E&, i((~y”) = [(a)i(y^). For all 

T E gK and jl E Z?, i(Tj) = [(T)i(j;). It can be shown that f = &!J and [= $4. 

2.3. Reidemeister orbits and coincidence classes 

The Reidemeister action. The Reidemeister action of ii, on +x is given by the 

following group action. For any 7 E ii, and any (Y E ii,, 

7Yr=.?&)(Y&r’). 
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Let [(Y] denote the orbit of cr under the Reidemeister action, and let R(& c) 
denote the set of Reidemeister orbits. 

In the usual Nielsen theory (with U =X), the Nielsen number is determined by 
considering Fix af for each cy E Sx. We do not require g to be a subset of X, so 
we must consider sets of coincidences rather than sets of fixed points. Let 

Coin( af, ‘) = ( ZEZ: &) =Q)}. 

The following proposition is proven for H = 1 and k = J? in [4]. The proof for 
H any normal subgroup of r,(X, x,) and k any (H, f)-admissible covering space 
is similar. 

Proposition 2.3.1. Let k be an (H, f )-admissible covering space for K. For (Y E +,, 
the set fi:,(Coin(af, i)) either is a local (K; H)-Nielsen class for f or is the empty set. 
Let p be in ii,. Zf Coin(cYf, i) # @ and Coin(pf, i) # @, we have 

j,(Coin(cYf, i)) =fi,(Coin(pf, i)) 

if and only if (Y and /3 are in the same Reidemeister orbit. 

2.4. Nielsen-Reidemeister chains 

Definition 2.4.1 (Set of Reidemeister representatives). Let R($, s’> be the set of 
Reidemeister orbits. A set of Reidemeister representatives is a subset of +x 
containing exactly one element of each orbit in R(& $>. 

If Coin(af, i) is nonempty, let N&;Hj denote the local (K; H)-Nielsen class 
that is equal to j,(Coin(cuf, 3). 

In Definition 2.4.2, we introduce notation for a formal sum that is a well-known 
part of Nielsen fixed point theory. 

Definition 2.4.2 (The (H, K, f; i)-NR chain for f ). Let W be a set of Reidemeister 
representatives. The (H, K, f-, ?)-NR (Nielsen-Reidemeister) chain for f is 

Here i(N(>;,,) is the local index of the (K; H&Nielsen class NPKiHj, and [(YI is the 
Reidemeister orbit containing IY. 

Note that NcKIHj( f; f, > - i is an element of Z(R($, {)), the free Abelian group 
generated by R(4, 5). The local (K; H)-Nielsen number of f, NcKiHj( f ), is equal 
to the number of terms in NcKGHj( f; f, i) with coefficient different from zero. The 
local Lefschetz number of f, A( f >, is independent of K and H and is the sum of 
the coefficients in NcK;& f; f: S). (See [6].) 
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Next we consider the effect on an NR chain of replacing f with rf for some 

y E +kX. Note that rf induces the homomorphism r& .)y-’ : fiK + ex. For any 

cYE+?,, let [cz]f and [a&f be the orbits of (Y under the Reidemeister actions 

induced by f and -yf, respectively. Note that if W is a set of Reidemeister 

representatives for R($, s’>, then Wy - ’ is a set of Reidemeister representatives 

for R(y&-)y-‘, g). 

Proposition 2.4.3. Let W be a set of Reidemeister representatives for R($, {). For 
(Y E rTTx, we have NCKiHj( f; f-, i) equal to NCKiHj( f; yf, I) in the following sense. For 
any cy E W, the coefficient of [LY]~ in NCKiHj( f; f’, i) equals the coefficient of 

[ay-ll,f in NCKiH)(f; yf, il. A similar statement is true when i is replaced by yi. 

The proposition follows when we note that 

yKiHj(f; rf, i) = C i( @,(Coin(~y.f, i)))[el,i 
f?‘swy-’ 

= c i(~;If,)[W’I+ 
CYEW 

Independence from the choice of (H, f )-admissible cover for K. Given a normal 

subgroup H of n-,(X), the covering space d is determined up to homeomorphism. 

We prove that once the choices of H and K are made, the resulting local 

(K; H)-Nielsen fixed point theory is independent of the choice of (H, f )-admissi- 

ble cover for K. To do this, we compare an (H, f )-admissible cover k with the 

universal cover k. 

The geometric approach. Recall that j: I? -I? is a covering map with f”= fi, i = G 

and & = fiK j. 

Proposition 2.44. For all (Y E ex, 

fi,(Coin(cuf, i)) =$,(Coin(afl i)). 

Proof. It suffices to prove that Coin(cuf, i) = j(Coin(cyf: ?)). 

Let F E Coin(af, i), and let y^ be any point in j-l(?). Then 

&(E) =&(9) =J(i) 

=I($) =G(f) 

=;(j). 

Therefore j-l(Coin(af, i)) c Coin(af, E). 

Let 2 E Coin(af: i). Then 

&(i) =afi2) =q;> 

=Q(i). 

Therefore j(2) E Coin(cYf, i) and j(Coin(,f: ?)) = Coin(af, i). q 
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Coin(af;T) 3 Z * * UZ 

\ J 

. 2 E Fixf 

Fig. 1. Fibers. 

For x E Fix f and 2 in jil(x), all points in j- ‘(2) are in the same coincidence 

class. For u E ii, and for all p E $-‘(a), we have the diagram given in Fig. 1. The 

previous proposition implies that no information is gained or lost if an (H, f)-ad- 

missible cover R is replaced by the universal cover Z?. Thus any (H, f)-admissible 

cover for K may be used to compute the local (K; HI-Nielsen number of f. 

The algebraic approach. For (T E 7i,, T E eK and (Y E ii,, the Reidemeister 

actions are given by 

(T’(Y =&+&a-r) and r.~y =~(r)a&r~‘). 

Let 5 be the coset of J=jK,(r,(k)) in eK that contains 

U’(Y =$((a)a&(a-1). 

U. Note that 

Thus if (T, p E eK with 5 = ji E 6,, we have u. CY = p . CY. Thus R(&, 6) = R(& $1. 
By Proposition 2.4.4, the index of the local H-Nielsen class for f associated with a 

given LY E 77, for the setting involving k is the same as the index of the local 

H-Nielsen class for f associated with (Y for the setting involving I?. Thus 

For K any (f, U)-subset of X and H any normal subgroup of a,(X), the local 

(K; H&Nielsen theory for f is independent of the choice of cover I? for K, 

provided k is (H, f)-admissible. This repeats the result from the geometric 

approach. 

Different choices of (f, U)-subsets K can produce different local (K; H)-Niel- 

sen numbers NcKiHj(f). But in Section 2.5 we prove that, for K sufficiently large, 

any (f, U)-subset M of X containing K has NcM;Hj(f) = N~K;&‘>. We will call 

such a sufficiently large subset K a stable subset of X. 
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2.5. The stability of NR-chains 

We consider (f, U)-subsets K of X that are large enough to contain all the 

information about local Nielsen classes that U contains. That is, we consider K for 

which NcKiH$ f > = NJ f >. W e call such an (f, U)-subset stable and prove that 

every (f, U)-subset is contained in a stable (f, U)-subset. Recall that N,,( f > is a 

lower bound for the size of the fixed point set of any g : U + X homotopic to f via 

an admissible homotopy on U. 

Definition 2.51 (Stable subset of X). An (f, U)-subset K of X is stable if, for all 

6 E +,, N&H, is equal to a local H-Nielsen class for f on U. This forces 

NcK;Hj( f > = i;,<f ). 

A sufficient condition for an (f, U)-subset K to be stable is that the homomor- 

phism induced by the inclusion of U -K into X take r,(U - K) into H. 

Proposition 2.52. For every (f, U I-subset K of X, there exists S, a stable (f, l/)-sub- 
set of X, with K&S. 

Proof. Let n be the number of local H-Nielsen classes for f on U. Let m be the 

number of local (K; H)-Nielsen classes. We have 0 < n < m < 00. Note that each 

local (K; H)-Nielsen class is contained in exactly one local H-Nielsen class (for f 
on U) and intersects no other local H-Nielsen class. If 12 = m, we are done. If 

II <m, then there is at least one local H-Nielsen class that is the union of more 

than one distinct local (K; H)-Nielsen classes. Choose m - n paths A in U, each 

with [(f 0 A> * A - ‘I E H and h(t) n Fix f = Id for all t E (0, 11, that connect the 

appropriate local (K; H)-Nielsen classes and group them into local H-Nielsen 

classes. 

Let S be the union of K and these m - n paths. Then S is connected and 

compact with Fix f G int S and S 2 U. The local (S; H)-Nielsen classes are exactly 

the local H-Nielsen classes for f on U. Thus S is a stable (f, U)-subset of X. 0 

For K a stable subset of X and for (Y E +,, let N; denote the local H-Nielsen 

class previously known as Nc;;Hj. The (H, K, f, t)-NR chain is independent of K 
as long as K is a stable (f, U)-subset of X. We use the notation NJ f; f, L) for 

the (H, f, 7)-NR chain when K is stable. 

Proposition 2.53. In our study of local Nielsen fixed point theory, it suffices to 
consider only those stable (f, U)-subsets K for which K = intK. Note that if X is an 
n-manifold, we haue K = intK if and only if K is an n-submanifold of X. 

Proof. Given K an (f, U)-subset of X, we prove that there exists an (f, U)-subset 

P of X with K c P and P = int. Thus we prove that we may restrict our study to 

those stable subsets K of X with K = int. 
We have K - into 3K. Thus Fix f L int. 
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For each x E K, let E, = d(x, X - U). Let W, be an open ball containing x: of 
radius ~,/2. Choose a finite subcover from this open cover of K, and let W be the 
union of the open sets in the subcover. Let P = w. Then P is a compact, 
connected subset of U with Fix f~ int P. Thus P is a stable (f, U)-subset of X 
with P= int. q 

Definition 2.54 (LocaZ setting for f). Let f : U +X be a map with Fix f compact. 
A local setting LS(f) for f consists of {X, K, f, 8, l?, f, i3 as in Definition 2.2.1 
with K = int a stable (f, U)-subset of X and d an (H, f)-admissible covering 
space for K. 

In [51, a local setting is defined with the requirement that k be a component of 
5$‘(K) ck. Here, as in [7], we require only that k be an (H, f)-admissible 
covering space for K. The advantage of this generalization is that for any f and 
any normal subgroup H, a local setting as in Definition 2.5.4 exists. When Z? is 
required to be a component of fi;l(K), there might not be lifts of f and of i to k. 
Then covering spaces cannot be used to study the local H-Nielsen theory of f. 
Thus our definition of a local setting provides an important improvement over that 
of [5]. 

Cases in which we must consider k g X include the following. 
(1) Assume H is a proper, nontrivial, normal subgroup of ri(X). Let K be 

such that i#r,(K) = H. Then we have i#r,(K) =fix++rll(&. Then if d must be a 
component of 3; l(K), we have k homeomorphic to K. Thus if r,(K) is not 
invariant under f# there will be no lift of f and no local setting. 

This situation occurs for the torus X = T’. Let {a, b} be the usual generators of 
,rr,(T2), and let H = (a). Let K be an annulus that winds once around a loop in 
the loop class a. Choose F2 to be S’ x [w with r,(F2> = (6). For f: K + T2 such 
that f,(u) = b, there is no lift of f to k. 

(2) Let K be contractible in X and X be simply connected. If H = 1 and 
f,(r,(K)) # 1, there is no lift of f. See [81 for an example of this involving K a 
solid torus that is contractible in a lens space X. 

2.6. The splitting of the (H, K, J i)-NR chains 

Let C be a connected, compact subset of K with Fix f n 3C = @. The function 
f : K-+X restricts to fc : C +X. The local (K; HI-Nielsen theory of f is related 
to the local (C; H&Nielsen theory of fc. Note that we do not require C to contain 
all fixed points of f. Choose a point c E C as a base point for X, for K and for C. 
Let j, : C c) K and ic : C L) X be inclusion maps. Let k be an (H, f)-admissible 
cover for K. Let C be any (D, j,)-admissible covering space for C with D a 
normal subgroup of r,(K) such that rTT1( K)/D = cov(&). Choose as a base point 
for 6 a point E in the fiber above c. Let Jc. be a lift of j, and let JJc’> be the base 
point for k. 
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Let fiG : C + C be the covering projection. Let r, = ijc and f; =$c. The maps 
Zc and fc are lifts of the inclusion i, and of fc, respectively. Thus the space C is 
an (H, f,)-admissible cover for C. 

The following diagrams commute. 

t \ 

fC ic 

Let +c = cov(>o). The maps Zc, fe and fc induce homomorphisms c, : +_= + 

rx, fj,:+,++, and +c:+,+ijX, respectively. Note that cc = ,$%ji, and & = 

&i,. 
We now compare local (K; H)-Nielsen classes for f with local (C; H&Nielsen 

classes for fe. Note that Jc . * e -+ I? and F: k + _?? are not necessarily inclusion 
maps and that & : 7jc + fix and g: SK + 6x are not necessarily monomorphisms. 

Proposition 2.6.1. Let 2, be a set of representatives of the right cosets of im 5j, in 
+,. For 6 E fix and u E +K, let CT* 6 = &(a)~?&a-~). Then 

N($;H,n c= (J Iq;sH). 
UEP, 

Remark. There may be U, T E SC representing different cosets such that NC;;&) = 
NC&. Thus the union is not necessarily a union of distinct local (C; H)-Nielsen 
classes. We explore this more after the proof of the proposition. 

Proof of Proposition 2.6.1. We prove that 

N/&n Cc u Nz;sH). 
a=& 

Let x EN&) I? C. Then there exists 2 E Coin(Gf, I’> c 2 such that &(_?> =x. 
Let ic E$;~(x) c C. There exists p E +, such that Jc(Zc) = CL,?. We have 

&q =&_&L)s-rqq =&(/_+-‘5’(/_F’)r(/_Lq, 

and hence 

&-4&qP-1)f;(.Q =G&). 

Therefore x E N(“,;L,. 
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For some 8 E +‘c and some (T E Zc, p = ijc(f?>(T. We have 

.%.+G(~i)fi = F(e)(~(~)6~(~-‘))~~(e-l)~. 
. . 

By Proposition 2.3.1, x E N&g) = N$$, with u E &. 

Next we prove that for all (T E eK we have 

NC‘&&, &N&H,. 

Let y E NE;%). Then y E C, and there exists 9 E Coin($~)G&a-l)f, Zc) L C 

such that fi,Jy) =y. We have 

J,(F) E Coin(~((a)GJ(rr~‘)f, i) LE. 

Thus 

Next we consider how to express NtKiH) n C as a union of distinct classes for 

any 6 E ii,. Let 7, rrE7YK, with (+& the isotropy subgroup for 6 under the 

Reidemeister action of I?, on SX. It can be shown that, for Coin((a . 8)fc7, lc) and 

Coin((r . S>fG, rc) both nonempty, 

N&& = NC;.;) .=. (TE (im &)T(G~)~. 

For any 6 E +,, the set _Zc can be partitioned into subsets of the form -C, f’ 

(im +jc)r(SK& with 7 E&. Let &c(S) 22, be a set containing one element from 

each of the above subsets of _&, and let W be a set of Reidemeister representa- 

tives for R($, r’>. For any S E +X, it can be shown that the set NckiH, n C can be 

expressed as the union of distinct local (C; EDNielsen classes for fc as follows: 

N,“,;,,nC= U Ng&. 
DEd&S) 

The indices of these classes satisfy 

and the union 

wc:= u u 0.s 
6EW(+ESf&) 

is a set of Reidemeister representatives for R($,-, &I. 

Let {Ci)l,...,n be a family of disjoint, compact, connected subsets of K with 

Fix f~ lJ :=iCi and Fix fn Z, = fl for all i. We use a simplified notation so that, 

for example, fi, &i and ;ii denote fcL, &-, and $-,, respectively. In addition, for 

each i let Zi be a set of representatives of the right cosets of im pi in +K. AS 

above, the set -Ci can be partitioned into subsets of the form Xi n (im ?ji)~(GK.K)s 

with r E Zi. Let _$S) c_Zi be a set containing one element from each of these 

subsets of Xi. Let C, * : R(Ji, 6) -+ R($, f) be the function given by C, ,([r]~) = 

[r]f for any y E fix. We extend Ci * linearly to C, * : Z(R($i, 6)) + Z(R($, 5)). 
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By applying the additivity of the local index once again, we have the following 

theorem. 

Theorem 2.6.2. Let {Ci}i=I ,__, n be a family of subsets of K as above. For any 

GEijx, the local index of N:i,;,, splits as follows. 

i( NtKiHj) = c i( Nz,fHj) + . . . + c i( NpCnTHj). 
at-‘Y,(S) c=&“,(s) 

Thus the (H, K, f, i)-NR chain for f also splits. For F. a set of Reidemeister 
representatives for R(&i, 6) and for W a set of Reidemeister representatives for 

R(& 6, 

=C1*(Ncc,;Hj(fl; fi, iI)) + ... +G*(N&$O(fn; kiJ). 

3. The local generalized H-Lefschetz number 

We define the local generalized H-Lefschetz number LH( f; f, i) for a local 

setting of a map f without the restrictions imposed in [51. Let LS(f > be a setting 

for f as in Definition 2.5.4, and let E =$; ‘(K) ~8. 

3.1. The definition of L, (’ l i) 

We identify X with a triangulation of X. For L any simplicial complex that is a 

subdivision of X, a subcomplex K of L is an (f, U)-subcomplex if the underlying 

space of K is an (f, U&subset of X. We do not distinguish between a simplicial 

complex and its underlying space. All simplices are assumed to be oriented. 

We study only those subdivisions L of X for which there is a stable (f, U)-sub- 

complex. Note that the original triangulation of X is independent of f and U, and 

the choice of L depends on f and U. 

Let LS(f) = {L, K, f, L, Z?, f, i) b e a local setting for which K is a stable 

(f, U)-subcomplex of L. The covering spaces f. and k inherit simplicial struc- 

tures from L and K. 
Recall that a homotopy h : U X I -+ X is admissible if U f E, Fix h, is a compact 

subset of U. Similarly, for K an (f, U j-subset of X, a homotopy h : K x Z + X is 

admissible if tJ ,,IFix h, is compact in the interior of K. 
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As in [6], there exists a subdivision L! of L with the following property. Let K’ 

be the subdivision of K that is a subcomplex of L’, and let g : K” + L’ be any 

simplicial approximation to f defined on some subdivision K” of K’. Then 

whenever S’ E aK’ and u is a vertex of the subdivision of s’ induced by K”, we have 

g(u) @ s’. Thus g has no fixed points on aK, and the straight-line homotopy from f 

to g is admissible. 

Let l?’ and I!? be subdivisions of I? and L for which the covering projections 

are simplicial maps that preserve orientation. 

The homotopy J between f and g may be lifted to a homotopy j with & =F 

Let g’ =J;. The map g : I?’ - f: is a simplicial approximation to c Because 

I’: if + 2 covers the inclusion map i: K’ -L’, the map L is a simplicial map. 

Recall that K = 5; r(K). Let C& .; 27) be the group of oriented simplicial chains, 

and let W be the group ring Z[&+K)]. We have 

C,(K’; Z) E z[+J @Jr+/ C,(i(k’); z). 

Therefore $I?> is a subcomplex of 2. 

For any simplicial complex R, let R, be the set of positively oriented q-sim- 

plices of R. Let Bb ckb contain, for each q-simplex s E Ki, exactly one simplex s’ 

satisfying SK($) = S. Then Bk is a L[ii,l-basis for C,(k’; Z), and 1’(Bb) is a 

Z[+,]-basis for C&K’; 77). Note that, because K is compact, the bases are finite 

and have the same number of elements. 

As in [6], for each s E Z?b let SP be the subdivision of s that is a subcomplex of 

I?“. Let H(S) be the set of positively oriented q-simplices in SE,,. Let 

r:C*(K’; Z) +C*(P; Z) 

be the subdivision chain map that is the identity on vertices of J? and sends each 

q-simplex k of l? into C&s+; Z) by the formula 

rq( k) = c r. 
rs@(k) 

For b E Bb and r E B(b) we have 

g(r) = c h,,,s E CJ 2; Z) 
SEPq 

with Ar s E (0, 1, - l} and A, s # 0 for at most one simplex s. 

Let &J~ be the composition 

@,:C,(K’; Z) -%C,(zP; Z) 2 C,(k; Z) 3C,(KI; Z). 

Note that the projection pr, is not a chain map. Thus @, is not a chain map. Let 

M, = [K+z~,~] be the square matrix for @, over Z[+,]. 

Let Bb = {b,, . . . , b,). The Z[GX]-trace of @, is 

tr(M,) = IZm,,i = C C C hr,ci(b)us 
i=l bEB; a~+, r=@(b) 
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Let L(R(& g)> be the free Abelian Z-module generated by the orbits of 

R($, s’>, and let p : Z[7jx] + Z(R($, i)> be the linear function defined as follows. 

For each 8 E eX, p 

Z(R(& 51) given by 

: 13 * [O-‘I. We define TR(@,) as a trace-like function into 

TR(Qq) =Potr(M,) E “(R(6, i)). 

We define LH( f; f; l) to be 

LH(fi f, z) = C<-lYTR(@,). 
4 

Note that p involves a twisting in the sense that we write [O-‘1 where one might 

expect to see [O]. This notation corresponds to the notation in [3]. 

3.2. Properties of LH(fi f: i) 

Proposition 3.2.1. LH( f; f, ‘) L is independent of the choice of basis Bb. 

Proof. It suffices to prove that TR(@,> is independent of the choice of basis Bb. 
Let A, be a Z[ii,l-basis for CJZ?; Z). Then $A,) is a .??[+,I-basis for C&K’; Z). 

If we define TR(@,) in terms of A,, we have 

‘“(@q) = C C C hs,8m1i(a)[el. 
ad, SE&(~) BE+, 

For each a EAT, there exists a unique u E eK and a unique b E Bb such that 

a = ob. The contribution of a to TR(@,> is 

C C hrr,0-‘i(c7+b)[“l- 
reqb) O‘Eir, 

Thus 

The following simple lemma is needed in the proof of the next proposition. 

Lemma 3.2.2. Let p : A- + A and q : l? + B be covering maps. Let f : A * B and 
f: A’ -+ i be maps satisfying fp = 4f: and let g : A’ + B’ be a simplicial approxima- 
tion to f. For h : A X I + B the straight-line homotopy between f and g, we define h 
to be the lift of h that begins at f: Let g be defined to be A,. Then 2 is a simplicial 
approximation to fY 
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Further, let r : C -+ C be a covering map, and let k : B + C and f : 8 --) c be maps 

satisfying kq = rk. If I : B’ --f C’ is a simplicial approximation to k, then & = g is a 
simplicial approximation to kf. 

Proposition 3.2.3. Ln( f; f, i) is independent of the choice of subdivisions K” and L’ 
and of the simplicial approximation g : K” + L’. 

Proof. Let g, : KY + L’, and g, : K;’ + L’, both be simplicial approximations to f. 
Case 1: K; = K;’ and L’, = L’,. 
Let K” = K: and C = L\ for i = 1, 2. Let gi : I?’ + 2 be the lifts of the gi as 

defined in Lemma 3.2.2. We make use of the chain homotopy between Si and gz, 

Q/:C,(K”; Z) +C,+,(k; Z) 

given by 

Dqh,,..., vq> = &-l)q(&?,(v,) Y..., Zi(“i), g’2(Ui) Y...? &(v,)). 
i=O 

Note that 0, satisfies &a>D, = D,a for all u E +, and is a homomorphism of 

degree 1 with 

Q-1$ + a,+lD, = (&)q - (&)4. 

For any chain map h: C,(I?; Z) + C,(L’; Z>, let Q,(h) =rqhqprq. Then 

TR(@,( .)) is linear over Z. Our goal is to prove that 

C(-l)qTR(~q(Dq--laq+aq+,Dq)) =O. 
4 

This would force the local generalized H-Lefschetz numbers induced by the two 

simplicial approximations to be equal. 

Let E;, = pr, 0, _ ia,r, + 3, + , pr, + 1 Dqrq and G, = pr,% + 1 Dqrq - aq + 1 w, + 1 Dqrq. 
To achieve the goal, we prove that C,(- l>qTR(Fq) = 0 and C,(- l)“TR(Gq) = 0. 

Note that F, is a chain map. Let E, = pr,, , Dq7q. Then E is a chain homotopy 

between F and 0. For any CY E tiK and any u E ii,, we have [&a)~] = [a&c-u>]. 

Thus it can be proven that TR(Eq_-laq) = TR(aqEq_l) for all q, and 

~(-l)qTR(Eq--laq+aq+lEq)=O= c( -l)qTR(@q(Fq)). 
4 4 

Next we prove that for any q we have TR(Gq> = 0. Let b E Bi as before, and 

consider the contribution of b to the trace of G,. We have 

G,(b) = c c %&TicS,49 
a~+, SEB; 

with ‘b ui(s) 

Let A 

E Z. We must show that Ob,VjCbj = 0 for all b E Bb and for all u E 7jX. 

q+l be the set of all (q + l)-simplices of ,? that are not in K’ and have a 

face in K’. Recall that pr,, 1 is not a chain map. In fact, prqaq+l(t) Z aq+Iprq+I(t) 

if and only if t ELI,,,. If Ob,ViCbj # 0, then for some r E B(b) the simplex D,(r) is 
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in A,+1 and must share a face with K(-(b). This can never happen, because the 

definitions of g, and g, force D to have the following property. Let S be a 

q-simplex of k” with fiK(9) = s E X”, and let c E X’ with s E a(c). Then 

fi,D,(s’) and c have no vertices in common. Thus TR(G,> = 0 for all 9, and Case 1 

is proven. 

Case 2: L’, = L’, and KY #Kg. 

Let L! = L’, = L;, and let K’ be the subcomplex of L’ that is a subdivision of K. 

Then KY is a subdivision of K’ for i = 1, 2. Let Ei be a subdivision of L! that has 

KY as a subcomplex for i = 1, 2. 

Step 1. We assume in this step that L’; is a subdivision of L!;. 

This assumption implies that K;’ is a subdivision of KY. Let pK : Ki + L’; be a 

simplicial approximation to the inclusion map. We define cK to be the lift that is a 

simplicial approximation to Z as in Lemma 3.2.2. 

We compare Qq(g,PK) with Q&g,>. Note that 

is the same homomorphism as 

Thus Qq(glGK) equals Qq(g2), and the two simplicial approximations to f induce 

the same local generalized H-Lefschetz number. 

We have g,p, : K;’ + L’ and g, : Ki + L’ simplicial approximations to f. As in 

Case 1, g,p, and g, induce the same local generalized H-Lefschetz number. Case 

2 is proven when L’; is assumed to be a subdivision of L’;. 

Step 2. If L’b is not a subdivision of L!;, let L!j be a subdivision of both L!; and 

L’;. Then there is a subcomplex Kj’ of L’j that is a subdivision of both KY and K;‘, 

and there is a simplicial approximation to f given by g, : K;’ + L’. The work just 

completed proves that for i = 1, 2, gi and g, induce the same local generalized 

H-Lefschetz number. Case 2 is completed. 

Case 3: L’, # L$. 

For i = 1, 2, let Kj be the subcomplex of L: that has KY as a subdivision. If s is 

a simplex, let S be the closure of the underlying space of s. 

Step 1. We assume that KZ is a subdivision of L’,. This implies that K; is a 

subdivision of K;. Without loss of generality, we may assume that K;’ is a 

subdivision of KY. (If K;’ is not a subdivision of KY, we use the logic of Step 2 in 

Case 2.) 

Let p:KK,“+K; be a simplicial approximation to the identity map on K, and 

let fi be the lift of p as in Lemma 3.2.2. Note that g, : K;’ -L’, and g,p : K;’ --f L’, 

are both simplicial approximations to f. As in Case 2, they induce the same local 

generalized H-Lefschetz number. Also, g, : K;’ --f Lr2 and rgip : K;’ + L; are both 

simplicial approximations to f. As in Case 1, they induce the same local general- 

ized H-Lefschetz number. By a tedious calculation, it can be shown that TR(@,) is 

the same for g,p and rg, p. Thus Step 1 of Case 3 is proven. 
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Step 2. If L$ is not a subdivision of L’,, we let L$ be a common subdivision and 

use the logic of Step 2 in Case 2. q 

Let y E 77.,. Then yf induces both the homomorphism y&+)y-’ : 6, + fTx and 

a Reidemeister action of SK on 6,. For any 0 E ex, let [e&f and [elf denote the 

Reidemeister orbits of f3 induced by yf and f; respectively. 

Proposition 3.2.4 (Independence from the lifts f-and f). For any y E ii,, we have 

LH( f; f, f) = LH( f; yf, r> in the sense that, for any 8 E fix, the coefficient of [@If 
in LH( f; f, 7) equals the coefficient of [By-l],f in LH( f; yf-, i). A similar result 
holds when i is replaced by yi. 

Proof. Let @,’ be the composition 

Note that 

Proposition 3.2.5 (Independence from k). L,( f; f; I) is independent of the choice 
of (H, f )-admissible covering space K up to the choices of lifts as in Proposition 

3.2.2. 

Proof. It suffices to prove that an (H, f l-admissible covering space K and the 

universal cover k? for K give rise to the same local generalized H-Lefschetz 

number. 

We choose &? as in Lemma 3.2.2, and we choose a lift g of 2 to k such that 

&! = g^. Similarly, we choose r and then i such that Zj = i. Let L?i and @,, be bases 

for C,(K’; Z> over Z[+,] and Z[7jK], respectively, with C,(j)(Bb) =,B&. Note that 

there is a one-to-one correspondence between l$ and fib. Let Fq and 6q be 

compositions as in Section 3.1. Then bq = &*C,< j). It follows that Gq and 6q have 

the same matrix over Z[+,J. Thus TR(6,) = TR(6,>, and the local generalized 

H-Lefschetz numbers are the same for the-two covering spaces. q 

Proposition 3.2.6 (Independence from K). For a fixed triangulation 
LH( f; f, i) is independent of the choice of stable (f, U )-subcomplex K of 
we always choose K so that K = intK). 

L ofX, 
L (where 
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Proof. Let K, and K, be stable (f, U)-subcomplexes of L. Then P = K, UK, is 

also a stable (f, U)-subcomplex of L. Let p be an (H, f)-admissible covering 

space for P with q : P + P the covering map. Choose f and f- defined on P as 

usual, let d, be a component of qpl(K1). 
Let M be the simplicial complex (P - K,) U 3K,. For s a simplex, let S be the 

closure of the underlying space of S. By Lemma 3.1 of [6], there is a subdivision L’ 
of L and there are corresponding subdivisions M’ and P’ so that, for all s EM’, 

f(i) n (Ustar( =@. 
“ES 

Let g : P” + L’ be any simplicial approximation to f defined on a subdivision P” 
of P’. Let M” be the obvious subcomplex of P”. For s E M’ and t E @(s), we have 

g(t) + +s. 
Let 2 : p + f, be the lift of g as determined in Lemma 3.2.2, and let 

ii = g ( ki:;. Let Bbl be a L[+,,]-basis for C&k;; Z). We extend Bbi to a Z[+,l-ba- 

sis for C,(p; Z) to be denoted by B&. For b E Bb,, - Bb,, the contribution of b to 

TR(@Jg’)) is zero. Therefore 

T”(@#>) = c c c 4,wi&-‘l = ~R(@q(&)). 
hGBb, rs@‘(b) usirX 

The same argument holds for K,. Thus K, and K, give rise to the same local 

generalized H-Lefschetz number. 0 

Proposition 3.2.7 (Independence from L). LH( f; f, 6) is independent of the choice 
of L, where we consider only those L that have an ( f, U)-subcomplex. 

Proof. The proof follows from Propositions 3.2.6 and 3.2.3. 0 

Proposition 3.2.8 (Homotopy invariance). Let h : U x I + X be an admissible homo- 
topy. Then L,(h,; h,, i) = L,(h,; h,, i) where h, and h, are homotopic via a lift of 
h to an appropriate covering space. 

Proof. 

Case 1: Assume there is a subdivision L of X with a subcomplex K that is a stable 

(h,, U)-subcomplex of L for all t E I. 
Let k be any (H, ha)-admissible covering space for K, and choose lifts A, and 

i. By lifting h I K X I to a map h : k X I +T=? beginning at it,, we see that, for any 

t E I, k is an (H, h,)-admissible covering space for K. 
Using the method of Proposition 4.4 in [6], we find a suitable subdivision 

0 = t, < t, < . . . < t, = 1 of I so that for each i = 0,. . . , n - 1 there is a vertex 

map p, : K ” + L’ satisfying the following. Fix p, n aK = @, and for all vertices 

v E K”, h(star(v) x [ti, ti+l]) G star(p,(v)). Then pi is a simplicial approximation to 

h, for all ti<r<ti+l, and by Proposition 3.2.3, L,(h,,; h,,, i) = L,(h,,+,; if,+,, i) 
for i = 0,. . . , n - 1. Case 1 is proven. 
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Case 2: Assume there is no L with a subcomplex that for all t E I is stable. 
There is a subdivision N of X with a compact subcomplex M such that 

U I E ,Fix h, L int M and M c U. The subcomplex A4 is an (h,, U)-subcomplex of 

N for all t, but it need not be stable for any t. Because M is both an (h,, U)-sub- 

complex and an (h,, U)-subcomplex of N, there is a subdivision L of N with Ki 

stable (hi, Uksubcomplexes of L for i = 0, 1. Let K= K, UK, uhf’, where 44’ is 

the subdivision of M that is a subcomplex of L. Then K is a stable (hi, U)-sub- 

complexof L for i=O, 1, and U,,,Fix h,cint K. 

There is an open subset W of X with Kc W G U and for which K is a stable 

(h, I W, W)-subcomplex of L for all t E I. As in Case 1, we have 

L,(h, ( W; ho ( W, I) = L,(h, ( W, k, ( W, I). Because K is a stable (h,, U)-sub- 

complex, the local generalized H-Lefschetz numbers for h, on U and on W are 

equal. The same is true for h,. 0 

Proposition 3.2.9 (The additivity property for Ln( f; f, L>>. Let f : U + X as usual 
with H Q r,(X). For WI and W, open, disjoint subsets of U with Fix f c W, U W,, 
we define f, to be f I v. f or i = 1, 2. There exist local settings for f, fI and f2 for 
which 

Ln(f; f, q =L,(f,; f=lY 4) +Ln(fz; fk &). 

Proof. Let LS( f > = {L, K, f, L, K, f, Z). For i = 1, 2, we define fi := f I IT.. 

Case 1: Assume that for i = 1, 2 there exist Kj c K with the K,-stable (f,, WI-sub- 
complexes of L so that Fix f c int K, U int K,. 

We define ki to be a component of fi;l(Ki), and we restrict f and t to 

d : ki +T? and 4,: di --+d. We prove that the local settings LS(fj,) = 

IL, Ki, fi, L> Ki, fi, ZiI f or i = 1, 2 are those for which additivity holds. 

For g the usual simplicial approximation to f, let Si be the restriction of S to 

di, and let K; be fi;l(K;> for each i. It suffices to prove that 

TR(@&?)) = TR(Qq(&)) + TR(@,(k)). 

Let Bi, = Bb n Ej. Then B,, n Bzq = @. Consider b E Bi - (B1, U B,,). The contri- 

bution of b to TR(@,(g>> is 

c c h-‘i(bJa 
r=@(b) Ocir, 

The simplex Z&(b) contains no fixed point of g, because ZjK(b) is a simplex in 

K - (K, u K2). Thus 

TR(@q(k)) = bG5 C C hr,~-li(bJ’I + C c c 4,B~%(b)Pl 
,q rtb(b) 0~6~ b-z, rc@(b) OeirX 

= T”(@J h)) + TR(Qq( 22)). 

Case 2: Assume there are no subcomplexes K, and K, as in Case 1. 

We prove that there exists a local setting that does satisfy the requirement for 

Case 1. Let A be a subdivision of L that is sufficiently fine to have a stable 
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(fj, WI)-subcomplex Ki of A for i = 1, 2. Let K, be the subdivision of K that is a 

subcomplex of A _ If B = KA U K, U K,, then a local setting for f of the form 

{A, B, f, A, B, f, 8 satisfies the requirement of Case 1. 0 

3.3. Equating the local generalized H-Lefschetz number and the (II, x i)-NR chain 

We prove that for X a connected, triangulable n-manifold with n > 3, for 

H a x,(X> and for a compactly fixed map f : U +X as before, the local general- 

ized H-Lefschetz number Ln( f; f, Z> and the NR chain NH( f; f: 8 are the same. 

When these hypotheses are met and H = 1, LH(f; f, 8 equals the local obstruc- 

tion o(f) as defined in [4], and a generalized version of the converse to the 

Lefschetz fixed point theorem holds. 

Theorem 3.3.1. For a compactly fixed map f : U + X with X a connected, triangula- 

ble n-manifold and n 2 3, and for any H a n-,(X), 

Ln(f; f, i) =Nn(f; f, ‘). 

Remark. In the definition of a local setting the (f, 
be stable with K = int. Thus K is automatically 

theorem. 

U)-subcomplex K is chosen to 

an n-submanifold of X in this 

Proof of Theorem 3.3.1. We begin by using a local version of the Hopf simplicial 

approximation theorem. See [l] for the global version (with U = X). The details for 

the local version can be found in the Appendix of [5]. 

By the local version of the Hopf simplicial approximation theorem, we may 

choose g a simplicial approximation to f and subdivisions K” and L’ that satisfy 

the following conditions. 

(1) g : K” + L! with Fix g in the interior of K”. 
(2) ]Fix g] <m. 

(3) Each fixed point of g is contained in the interior of an n-simplex of K”. 
(4) Each simplex of K” contains at most one fixed point of g. 

As before, let Bb be a Z[k,]-basis for C,(k’; Z) consisting of positively 

oriented simplexes. Let Bi be the set of all r E Kf’ such that r E b(b) for some 

bEB;. 

Assertion 1. Ifs E Bi and jK(s) contains no fixed point of g in its interior, then s 
does not contribute to the trace TR(@,). Also, let F(b) equal the set of all r I@ 
for which jtJ r) contains a fixed point of g in its interior. For b E Bi, the contribution 
of b to the trace can be reduced to 
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Proof of Assertion 1. Let s E B(b) - 9(b). We have g(j,(s)> # QK(b), which 
implies that for all LY E +, we have ag’(s) # fZ((b). Thus A,,,-I,,, = 0 for all 
cuEij,, and s contributes nothing to the trace. Assertion 1 follows. 

By Assertion 1, TR(@,> = 0 for 4 < n. Thus LH(f; f, 8 = (- l>“TR(@,). We 
have 

Assertion 2. Zf r E F(b) with b E BL, then the local index of g on the interior of 

&(r) is equal to (-l)nhr,a-‘@), where CY is the unique element of ii, for which 
ag(r) = &-l’(b). 

Proof of Assertion 2. Let x E Fix g. Let rx and b, be the unique simplices for 
which b, E I?; and rx E b(b,) with x in the interior of jTK(rx). Then there is a 
unique (Y, E i;x for which a,g(r,) = +l’(b,). We have x E&(Coin(ag, i)). In 
fact, g’(r,> = h~,,a,lj(b,,LY;l~(b,), and hr,,ol;li(b,j = f 1. Because jK is a simplicial 
lOCal homeomorphism, g($,(r,)) = h~X,CL;li(bXjjjK (6,). Using the index as defined in 
[lo] (the degree of 1 -g>, the local index of the isolated fixed point x equals 

( - l)“A,x.a,‘i(b,)7 and Assertion 2 is proven. 

Let W be a set of Reidemeister representatives for R(&, $). We have 

TR(@,z,) = C ~r~,a;l:(b,)[axl = C C hr,,a-‘i(b,)[a17 

xEFixg a~Wx‘=BW 

where ‘Z(a) = $,(Coin(a&!, I)). Thus TR(@,> = (- l)“C, E &‘V;>[a], and 

LH(f; f, I’> =NJf; f, 3. q 

We would like to detect whether f is homotopic to a map that is fixed point free 
via an admissible homotopy. That is, we would like to know whether min f = 0. 

For H = 1, a local obstruction to f having this property is defined in [4]. Briefly, 
a bundle S’( f > of groups on U is defined in which the fibers are isomorphic to 
Z[ri(X)]. Then the obstruction o(f) is a class in 

H,n(U; S(f)) =li_mH”(U, u-c; 9(f)), 

where the limit is taken over all compact C c U. With 9W) the orientation sheaf 
on U let p(U) denote the twisted +=fundamental homology class of U in 
ZZ,‘(U; Y(U3). A coefficient pairing of 9W) and 9( f > can then be used to give a 
cap product: 

H,“(U; s’(f)) @H,“(U; -5-W)) + “(R(i, g)). 

Theorem 5.12 of [4] states that 

(o(f ),p(U)) = C i(JG)[al. 
rrsw 

This fact combined with Theorem 3.3.1 provides the following corollary. 
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Corollary 3.3.2. For a map f : U -+X as in Theorem 3.3.1 and for H = 1, 

L,(f; f, ‘) = (o(f 1, @J)). 

If X is not simply connected, a generalization of the converse of the Lefschetz fixed 

point theorem holds. We have 

L,(f;f,i)=O c;) min f=O. 
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