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ABSTRACT The linear cable theory has been applied to a modular structure consisting of n repeating units each
composed of two subunits with different values of resistance and capacitance. For n going to infinity, i.e., for infinite
cables, we have derived analytically the Laplace transform of the solution by making use of a difference method and we
have inverted it by means of a numerical procedure. The results have been compared with those obtained by the direct
application of the cable equation to a simplified nonmodular model with "equivalent" electrical parameters. The
implication of our work in the analysis of the time and space course of the potential of real fibers has been discussed. In
particular, we have shown that the simplified ("equivalent") model is a very good representation of the segmented
model for the nodal regions of myelinated fibers in a steady state situation and in every condition for muscle fibers. An
approximate solution for the steady potential of myelinated fibers has been derived for both nodal and internodal
regions. The applications of our work to other cases dealing with repeating structures, such as earthworm giant fibers,
have been discussed and our results have been compared with other attempts to solve similar problems.

INTRODUCTION

The linear cable theory, since its first application to the
electrotonic conduction of the axon, has been extended to
other situations, such as those dealing with dendrites of
complex geometries, spherical cells and branching struc-
tures (Jack et al., 1975; Leibovic, 1972). Of particular
interest is the generalization of the theory to neural
processes of nonconstant width (Strain and Brockman,
1975). Many other works deal with the electrical proper-
ties of spherical syncytia (Eisenberg et al., 1979) and with
the problem of the radial spread of excitation and electrical
properties of the T-system in muscular cells (Adrian et al.,
1969; Adrian and Peachey, 1973; Jack et al., 1975;
Mathias et al., 1977).

In this paper, we extend the cable theory to a system
composed of two different subunits, which can be represen-
tative of myelinated axons or muscle fibers, for which a
simple cable representation is not an adequate model. A
first attempt at studying a more simplified system in a
steady state situation can be found in Taylor (1963); a
different way of solving a similar problem is given in Brink
and Barr (1977).

By making use of the theory of finite difference
equations, used in connection with the linear cable equa-
tions, we have given an analytical treatment to the general
problem.

Apart from the theoretical interest in giving a more
realistic picture of the time and space behavior of the
potential in structures made of repeating units, some
experimental implications of our work will be considered in
the discussion.
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GLOSSARY

Parameters of the Myelinated Fiber
12 (nodal length), 1 . 10-4 cm (Tasaki, 1955)
d myelinated internal fiber diameter
D myelinated external fiber diameter
d' (d + D)/2

Rmij (myelinated sheath resistance), 100,000 ficm2 (Tasaki, 1955)
Rm2 (axonal membrane resistance), 20 flcm2 (Tasaki, 1955)
Raj, (intracellular resistivity), Ra.2 = 140 Qcm = Ra (Schwarz et al.,

1979)
Cm., (myelinated sheath capacity), 5 10-6 mF/cm2 (Tasaki,

1955)
Cm2 (axonal membrane capacity), 5- 10-3 mF/cm2 (Tasaki,

1955)
rmI (myelinated sheath resistivity per unit length fiber), Rm.1/1d'

(Q1cm)
rm2 (axonal membrane resistivity per unit length fiber), Rm2/ird

(Q1cm)
r,.l (intracellular resistivity per unit length fiber), r.2 = 4R./rd2

(Q1/cm)
Cm,] (myelinated sheath capacity per unit length fiber), 7rd'Cmi

(mF/cm)
Cmn2 (axonal membrane capacity per unit length fiber), rdCm.2

(mF/cm).

MODEL

We shall discuss a model of a segmented cable composed of
n identical units, each made of two subunits with different
cable properties and length (Fig. 1). We assume an ohmic
core conductance, negligible radial voltage gradients, and
no external resistance. The time course of the potential in
the jth subunit of the kth unit is represented by the
well-known linear partial differential equation (Jack et al.,
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subunit 1 subunit 2 subunit I subunit 2

FIGURE 1 Representation of a segmented cable consisting of n units,
each one composed of two subunits; Xi, TI, and 11 are, respectively, the
space, the time constant, and the length of subunit 1; X2, T2, and 12 are the
corresponding parameters of subunit 2.

1975)

= Tm, + VkJ (1)

for 0 S Xkj S ;1,, where j = 1 indicates the first subunit and
j = 2 indicates the second one. We indicate with Ij the
length of the jth subunit, with rm,j the membrane resis-
tance per unit length of the fiber, with raj the intracellular
resistance to axial flow of current along the fiber, and with
Cm,j the membrane capacity per unit length of the fiber.
Xi = r/rmi,jrajl Tm,j = rmj Cm1j are the jth space and time
constants, respectively.

A first set of boundary conditions is due to the
continuity of the potential between subunits

Vk, (11 ,t) = Vk2 (0, t), (2)

Vk,2 (12 ,t) = Vk+l l (0+, t). (3)

Taking into account

(CVk,l/OXk,l) = -ra,II (4)

(d9Vk,2/9Xk,2) = -ra,2I, (5)

For the equivalent cable, the time course of the potential
will be (Jack et al., 1975)

V(x, t) = (Vo/2) [exp (-X) erfc (X/2 V7-

+ exp (X) erfc (X/2 CT + CT)] (I 1)

for a constant step of potential in x = 0 as boundary
condition, or

V(x, t) = (ra IX/4) [exp (-X) erfc (X/2 CT- CT)
-exp (X) erfc (X/2 CT + CT)] (12)

for a constant current in x = 0. Here X = x/X, T = t/m9
and V0 and Io are the amplitudes of the voltage and the
current steps, respectively.

In fact, because of the distributed properties of the
parameters along the cable length, the use of the equivalent
model does not give the same results of the segmented one,
as should be the case for a discrete elements circuit. One of
the aims of the present work, which we will develop in the
following pages, is to evaluate the error introduced by the
use of Eqs. 11 or 12 with respect to the true solutions of the
segmented model.

ANALYTICAL METHOD

Taking into account the boundary condition V(x,O) = 0,
one obtains from Eq. 1:

i, a X2 " Tm Vk,j S + Vk.j, (13)

where Vkj(x, s) is the Laplace transform of Vkj(x, t) with
respect to t. The general solution of Eq. 13 in the k,j
subunit is

where I is the internal current, function of x and t. For the
continuity of I, one has

ra,2 (aOVk,1/Oxk,1), = ra,l (dVk,21/9Xk,2)0+. (6)

Analogously,

ral (0 Vk,2/Xk,2),12 ra,2 (9 Vk+,I/OXk+l,,)0+. (7)

A way to reduce the segmented model to a uniform one
should be that of using the classical cable equations with
equivalent parameters (rm, ra, cm) calculated according to
the elementary laws of circuitry. One has

rm = [(1I + 12) rm,, rm,21/(l,rm,2 + 12rm,,);

ra = (l,ra,l + 12ra,2)/(li + 12);

Cm (lIlCm,l + 12Cm,2)/(11 + 12);

and

X = N1fr>r, Tm = rm Cm,

(8)

Vk,j (x, s) = Akj (s) exp [xkj O1(s)/Xi]
+ Bk,j (s) exp [-Xk, .jk/ (s)/XAJ, (14)

where Oj(s) = NTm, S + 1 and AkJ(s) and Bkj(s) are

functions of s to be determined by means of the boundary
conditions. From Eqs. 2 and 14, one has

Ak,I (s) exp [l, k1(s)/Xl] + Bk,I (s) exp [-11,1 (s)/X,]
= Ak,2 (s) + Bk,2 (s)- (15)

Analogously, from Eqs. 3 and 14 one has

Ak,2 (s) exp [1202 (s)/X2] + Bk,2 (s) exp [-1242 (s)/X2]
= Ak+l,l (s) + Bk+l,l (s). (16)

(9) From Eqs. 6 and 14 one has

(10) ra2ik1 (s) {Ak,I (s) exp [14,O (s)/X,] - Bk,I (s) exp [-11,0, (s)/X,]}XI

- ra.,12 (s) [Ak2 (S) - Bk,2 (S)]- (17)
X2
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Analogously, from Eqs. 7 and 14,

r.102 (S) {Ak,2 (s) exp [12 02 (s)/X2] - Bk,2 (s) exp [-124)2 (s)/X2)}
X2

= ra2 41 (s) [Ak+l, (s) Bk+lI (S)]- (18)
XI

Let us now introduce the following notations:

(19)Ak,i(s) = Uk(S);

Bk,I(S) = Vk(S);

Ak,2(s) = hk(S);

we find

Vk, I (X, S) = V(O s) I (s) {[r(s) - 4, (s)] exp [Xk,l 4) (s)/XA]

+ [(l(s) - q(s)] exp [-Xk,l )1 (s)/Xld]/[r(s) - q(s)];

Vk,2 (X, S) = V (0, S) [- (s) {f(s) [r(s) - 4l (s)]
+ A(s)[1(s) - q(s)]} exp [Xk,2 0)2 (s)/X2]
+ {E(s)[t,(s) - q(s)] + 6(s)[r(s) -,(s)]}

* exp [-Xk,242 (s) /X\21 / [r(s) - q(s)]

(20) for a step of potential and a similar expression for a step of
current.

(21) In a steady state situation, Eq. 1 becomes

= gk(S). (22)

D' (s) = exp [-lI X1 (s)/X];

G' (s) = D' (s)ra2 4¾ (s)/XI;

T(s) = ra2 )/X1,;

P' (s) = exp [-124)2 (s)/X2];

S' (s) = H(s) P'(s).

With the above notations Eqs. 15-18 become

D(s) Uk (S) + D' (s) Vk (S) - hk (s) - gk (s) = 0; (23)

-Uk+I (s) - Vk*+ (s) + P(s)hk (s) + P'(S)gk (s) = 0; (24)

G (s) Uk (S) - G' (s) Vk (S) - H (s) hk (s)

+ H(s)gk(s) = 0; (25)

-T(s)Uk+I(s) + T(s)vk+I(s) + S(s)hk(s)

- S' (s)gk (s) = 0. (26)

In the case of cables of finite length, Eqs. 23 and 25 provide
2n conditions and Eqs. 24 and 26 provide 2(n - 1)
conditions to determine the 4n unknown functions Ak,j(s)
and Bk j(s). The last two conditions are given by the value
of the potential or its derivative at xl,l = 0 and at the end of
the cable.

Solutions of the 2n linear system can be performed by
any classical method such as that of pivot. Such methods
require much computer time because they have to be
repeated for as many values of s as are needed for the
accuracy of the inversion procedure. An explicit solution
greatly reduces the computation time, but it is cumber-
some to calculate when n increases.

The values of Uk(S), Vk(5), hk(S), and gk(s), when n 0,

are given in the Appendix both for a constant step of
potential (Eqs. A12, A13, A1, and A2) and a constant step
of current (Eqs. A14, Al5, A1, and A2). Substituting
these values in Eq. 14, by taking into account Eqs. 19-22,

CiX2 = Vkj, (la)

and is subject to the same limit conditions of Eqs. 2-5. To
solve Eq. 1 a, we can repeat the same procedure given above
for the transient case, taking Tm,j = 0. In this case, of
course, we will find the true solution instead of its Laplace
transform. We will find

Duk + D'Vk - hk - gk = 0;

-Uk+1 - Vk+1 + Phk + P'gk = 0;

Guk - G Vk - Hhk + Hgk = 0;

-TUk+I + TVk+ I + Shk - S'gk = 0;

(23a)

(24a)

(25a)

(26a)

where D, D', and so on are now constant functions and are

determined according to what was already said. For infi-
nite cables, we will use the same method given above for
the transient case.

Although the segmented model is, in principle, always
preferable to its simplified version, it is important to
explore to what extent the results of the two models are

different. In the case of small differences, in fact, the
equivalent model should be preferred because it is much
easier to handle than the segmented one. It admits the
explicit solution given by Eqs. 11 and 12 and it can easily
be used to fit experimental curves to the theoretical ones to
determine the electrical parameters of the fibers. Instead,
for the segmented model, we have obtained explicitly only
the Laplace transforms of the solutions, which have to be
inverted by a numerical procedure, as we will show in the
next section.

NUMERICAL METHODS

The inversion of the Laplace transform V(x, s) has been
performed according to the well-known inversion formula

Vk,j (X t) =e z2 J exp (ity) Vk,j (x, z + iy)dy, (27)

where s = z + iy and z is any value for which the Laplace
transform of Vkj(x, t) exists. By calling Re[ Vkj(x, z + iy)]

ANDRIETTI AND BERNARDINI Representation ofthe Cable Equation

Bk,2(s) =

Moreover,

D(s) = exp [l, X, (s)/AX];

G(s) = D(S)ra,2 41 (s)/XA;

H(s) = r.,1 4)2 (s)/X2;
P(s) = exp [12 42 (s)/X2];

S (s) = H(s) P(s);
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and Im[ VkIj(x, z + iy)] the real and the imaginary parts of
Vk,j(x, z + iy), we found, respectively, an even and an odd
function; this is a guarantee that the Fourier transform of
Vk j(x, s) on the right-hand side of Eq. 27 is a real function.
Moreover, one has

Vkj(x, t)2 11 Re [Vkj(x, z + iy)] cos (yt)dy

+ f Im [Vk.j(x, z + iy)] sin (yt)dy}

The two integrals can be approximated by a discrete
Fourier representation. By doing this, we have made use of
an FFT (fast Fourier transform) routine in which
Re[Vkj(x, z + iy)] and Im[ Vkj(x, z + iy)] were evaluated
in 2N points at a distance Ay, depending on the time course
of the phenomenon. We obtained an average accuracy of
more than three digits for N = 8 and of five digits for N =

12. The average time of computation was -7 and 50 s,
respectively, with a FORTRAN double precision routine
on a Univac 1100 elaborator.

Particular care was needed in the calculation of the
complex root arising in the solution of Eq. A9. In fact, to
avoid discontinuities in the evaluation of (l(s), one has to
take into account the number of cycles that the argument
of the square root describes around the origin of the
complex plane.

APPLICATIONS

Voltage and Current Steps
We will apply our model to two particular situations in
which the modular cable structure theory could be of
relevance, i.e., the myelinated axons and the skeletal
muscle fibers.

For myelinated fibers we have considered the internode
as the first subunit (j = 1) and the node as the second one
(j = 2). First, we have chosen, as a boundary condition at
the beginning of the fiber, a step of potential V0. The values
of Uk(S), Vk(S), hk(S), and gk(s) of the segmented model are
given by Eqs. A12, A13, A1, and A2 when one takes into
account the Laplace transform V(0, s) of the potential in
x,, = 0. In this case, V(0, s) = Vo/s. The potential as a
function of time, for both models, is shown in Fig. 2 A. The
values of Vkj(x, t)/ V0 of the segmented model, obtained by
numerical inversion of Eq. 14 for four different points on
the myelinated fiber (continuous line), together with the
potential of the equivalent model given by Eq. 11 (dashed
lines), evaluated at the same points, are plotted on the
ordinate axis. Because of the linear properties of the model,
this ratio is independent of V0. The values of the parame-
ters of the segmented model are calculated according to the
Glossary. Those of the equivalent model are calculated
according to Eqs. 8-10. In our computation, we have taken
d = 0.7D (Tasaki, 1955) to calculate rm,2, ra , Cm,2, and ra,2,
and d' = (d + D)/2 = 0.85D to calculate cm,, and rm,l to try

0/ -

0 0.05 0.10 0.15 0.20
TIME (ms)

w

I)

0

0 0.10 0.20 0.30
TIME (ms)

FIGURE 2 Time course of the potential for the segmented (continuous
lines) and the equivalent (dashed lines) model at different points along the
myelinated fiber; from the top: middle of the first internode, middle of the
first node, middle of the second internode, middle of the second node. (a)
Step of potential; (b) step of current.

to take into account the myelin sheath width. The interno-
dal length is calculated according to Hursh (1939) as 1, =
1OOD. We have taken a value of D of 15 ,um which can be
considered representative of a class of large motor axons.
The asymptotic values of curves of Fig. 2 A should be read
on the intermediate curve of Fig. 3 A in which the steady
state values of the potential are plotted as a function of the
distance along the myelinated fiber, together with the
steady state values of the equivalent cable, for different
values of D.

As a second case, we have considered the injection of a
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FIGURE 3 Effect of the diameter of the myelinated fiber on the steady
state potential for a voltage step (a) and for a current step (b). (a) From
the top: D = 30, 15, and 5 ,um, segmented (continuous lines) and
equivalent (dashed lines) model; the circles represent the approximate
solution given by Eqs. 30-31. (b) The curves 1, 2, and 3 (continuous lines)
correspond to D = 30, 15, and 5 jAm for the segmented model; 1', 2', and 3'
(dashed lines) are the corresponding curves of the equivalent model. To
maintain the values of the ordinates in the same range, the stimulating
current has been multiplied for 0.3 for curves 1-1' and for 2 for 3-3'.

constant step of current Io at xI,j = 0. Under this condition,
the values of Uk(S), Vk(S), hk(S), and gk(s) are given by Eqs.
A 14, A 15, A1, and A2, taking into account the fact that

(a V =-ra,
I o/2,

so that

V'(0, s) =-ra,, Io/2s.

The results for both the segmented and the equivalent

model evaluated at the same points of Fig. 2 A are shown in
Fig. 2 B for the transient situation and D = 15,um. Because
of the linear properties of the potential with respect to I0,
the values of the ordinate axis are now in arbitrary units.
The corresponding steady state situations should be read
on the (2-2') cureves of Fig. 3 B.
We see that the discrepancy between the two models

decreases along the fiber length. The effect of the diameter
of the fiber on the steady potential is represented in Fig.
3 B. Note that when normalized to the same potential at x
= 0, the curves of Fig. 3 B reduce to those of Fig. 3 A.

In our analysis of the spread of the electrotonic potential
in myelinated axons we did not take into account some
recent models that also consider some leakage of current
between the axonal and the Schwann cell membrane
(Barret and Barret, 1982). Also, if such models may
explain the existence of a slow component in the passive
electrotonic response, their incorporation in our work
would increase the complexity of the mathematical treat-
ment without greatly affecting the results concerning the
difference between the segmented and the equivalent
model.

Another possible candidate for our analysis is the muscle
fiber, considered as a segmented cable in which the two
different subunits are the intertubular (j = 1) and the
tubular (j = 2) region. There are many ways to represent
the effect of the tubular mesh of the T-system (Adrian et
al., 1969; Adrian and Peachey, 1973; Jack et al., 1975;
Mathias et al., 1977). In any case, a parallel resistance and
capacitance pathway may be sufficient to describe the
superficial spread of potential (Jack et al., 1975, pp.
105-107). In fact, by the use of a model describing the
radial spread of potential in the T-system (Adrian et al.,
1969; Mathias et al., 1977), it is possible to obtain values of
Rm,2 and Cm,2, giving the resistance and capacitance of the
T-system per unit area of fiber surface. By using the data
of Adrian et al. (1969), we have found that the difference
between the equivalent and the segmented model is <1%
for a step of current. The reason for this lies in the
shortness of the tubular and intertubular regions. In fact,
according to Peachey (1965), we have taken 1, = 0.25 x
10'3 cm and 12 = 0.25 x 10' cm. The results should be
different when an access resistance at the opening of the
tubular mouth is considered, but this resistance is so low
(Adrian and Peachey, 1973) that its possible effect may be
neglected with respect to many other possible sources of
error as we have checked by numerical computation.

Action Potential Propagation in Narcotized
Fibers

An action potential generated at x = 0 spreads electrotoni-
cally along the narcotized fiber. In this case V(0, s) will be
given by the Laplace transform of the action potential
calculated by a numerical procedure similar to that seen
above. The potential as a function of time is shown in Fig. 4

ANDRIETTI AND BERNARDINI Representation of the Cable Equation
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.,:0 }1.0 2.0 3.0
TIME (ms)

FIGURE 4 Propagated action potential in a narcotized fiber in the middle of the first and second node for the segmented and the equivalent

model (arrow). For the values of parameters, see the text.

for both the segmented and the equivalent model at the
first and second nodes, for the same parameter values of
Fig. 2 A. The action potential in x = 0 is calculated
according to the data of Chiu et al. (1979). We see that the
attenuation factor for the potential between two adjacent
nodes is -0.5.

DISCUSSION AND CONCLUSIONS

In conclusion, our analysis shows that the use of the
equivalent model approximation may lead to significant
errors only in the case of myelinated axons. Moreover, the
difference between the two models decreases with the
diameter of the fiber, as is shown in Fig. 3. By inspection of
Fig. 3 A, we see that the agreement is maximal in the
nodes, where the two curves are practically indistinguish-
able.

An early attempt to solve the problem of the passive
spread of potential in medullated axons has been given in
Taylor (1963), assuming that no sheath leakage is present
in the internodal regions. In this case, one finds

Ikllo = exp(-w'k),

membrane current will be given by (I1/ra)(02VV/Ox2), and so

it will be proportional to the value of the potential, as is
easy to check by looking at Eq. 14 for Tm,j = 0.

By using the equivalent model representation, the value
of Ik/IO will be given by Eq. 28 when one substitutes for w',
w (l, + 12/2)/X. It is easy to see that w w' for Rm,i l

0o, 12 - 0. In Fig. 5 is plotted the value of w vs. ln(Rm,I), the
other parameters being the same as those used for the
middle curve of Fig. 3 A. For the value of Rm,l given in the

L,, te.1, .t

FIGURE 5 Plot of w vs. ln(R,,I), the other parameters being the same as

the middle curve of Fig. 3 a; the horizontal line corresponds to the
constant value of w' for the same set of parameters. The arrows indicate
the difference due to the finite value of 12 (see text).

w

(28)

where Ik is the membrane current in the kth node, Io is the
membrane current in x = 0, and

w = cosh[l + 2Ra,112/(dRm,2)I. (29)

Observe that from cable theory (Jack et al., 1975) the

BIOPHYSICAL JOURNAL VOLUME 46 1984

.5 5 7 . ....S<,.,','.

7 I.

.tI .4

-8.0

''..

620



Glossary (dot), one sees that there is a relevant difference
between the two exponents.

To our knowledge, there are no recent published
experimental recordings of electrotonic potentials in myeli-
nated fibers to be compared with the calculated results. In
an old report of Tasaki and Takeuchi quoted in Cole (1968,
p. 378), one finds that the attenuation factor for a propa-
gated action potential in a narcotized fiber ranges between
0.3 and 0.5. We have seen that our results, with the
parameter values of Fig. 4, fall in the same range of
values.
A particular case of segmented cable is that of the

earthworm giant septate fibers (Brink and Barr, 1977). In
this case, the nexal resistance is confined to a very short
length of fiber, i.e., 12 -i 0. In Fig. 6, we have plotted the
steady state potential calculated with the method given in
Brink and Barr (1977), together with the corresponding
equivalent solutions with equivalent parameters rm = rm,l
and ra = ra,l + r,/12. The values of r, (nexal resistance), ra,i,
and rm,, taken from Brink and Barr (1977), are given in
the legend of the figure. We see the agreement between the
two solutions in the region of septa.

To summarize our results, we want to observe that the
use of the equivalent parameters (Eqs. 8-10) is a kind of
averaging procedure of the values of two subunits with
different properties. Thus, it becomes quite obvious to find
the closer agreement between the segmented and the
equivalent solutions at both ends of each unit, i.e., at the
end of each repeating structure on which the averaging
procedure has been performed. This is the reason why the
segmented solution matches the equivalent solution at the
nodal regions of myelinated fibers and at the nexuses of
giant earthworm fibers, as seen in Figs. 3 A and 6.

These considerations suggest a way to find an approxi-
mate solution of the steady state situation, simply by taking
the solutions of the cable equations of the two subunits

01 02 03 04
SPACE (cm)

FIGURE 6 Plot of the steady potential of median lateral giant fiber
computed through the method given by Brink and Barr (1977) (continu-
ous line) and equivalent representation (dashed line); rm,l = 300 KQicm,
rj = 3,000 Kg/cm, r, = 500 KU.

Vk,,(x) and Vk,2(x) subject to the same end values of the
equivalent model and to the conditions of Eqs. 2 and 6.
After some calculation, one finds

Vk,l(x) = Ak,I exp {[x - (k - 1)l]/X11
+ Bk,I exp {-[x - (k - 1)l]/XI} (30)

for(k- 1)l<x<(k- 1)1+1,and

Vk,2(x) = Ak,2 exp {[x - (k - ) I- 11I/A2
+ Bk,2 exp {-[x - (k - 1)1 -l-I/X21 (31)

for (k - 1)! + 1 <x < kl, where I = I1+ 12, and

Bk.I = {exp (12/X2) V° [exp (l, /AX) Q2S2 C,

+ exp (,/XA) Ql SI C2 - Q2S2]
- Vk (Q1 SI C2 + Ql SI S2)I/ [2 exp (12/X2)

SI (Q2S2C1 + Q1S1C2)];

AkJ = Vk- Bk,,;

Ak,2 = -{VOkQ2 + V'k[Q2C,exp(-12/X2) - Q,Sexp(-12/X2)
+ 2Q, C2S5 + 2Q2S2CI] }/ [2exp (12/X2)

- (Q2S2CI + Q1S1C2)];
Bk,2 = [I Q2 exp (l2/X2) - Vk (Q2C, - S,)]/

[2(Q2S2CI + QIS1C2)],
where

V'k= exp{-[(k-1) +12]/X};

SI = sinh (/,/XI);
S2 = sinh (12/X2);

C, = cosh (I,/X,);
C2 = cosh (12/X2);

Q = Ir,,j ra, ;

Q2 = Vrrm,2 ra,2-

In the range of values considered in the present paper, the
plot of this equation is not distinguishable from that
obtained from the segmented cable analysis, as can be seen
in Fig. 3 A (circles).

The results are different for the transient case, for
which a sensible difference between the segmented and the
equivalent model also exists in the nodal regions, as can be
seen from Figs. 2 and 4. Instead, when the subunit length
becomes very short, as for muscle fibers, the two represen-
tations match together on the whole cable length. In this
case, the "apparent" resistance and capacity given by Eqs.
8-10, as can be determined, for example, from voltage
clamp experiments, can be used without introducing signif-
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icant errors in the analysis of the superficial spread of
potential in muscular fibers. A consequence of this fact will
be considered in the following paper (Andrietti et al.,
1984).

Some implications of our work may have an experimen-
tal relevance in a re-evaluation of the classical method to
estimate the fiber parameters by fitting experimental
traces of recorded potentials to the cable equation. The
early attempts of Lorente de No (quoted in Taylor, 1963)
used the approximation of infinite myelin sheath resis-
tance, which we have shown to give consistent overevalua-
tions of the space constant 1 w. On the contrary, the use of
the equivalent cable, which is, moreover, much easier to
treat, proves to be a very good approximation of the
original segmented model in the nodal regions.

Finally, we want to remark that our analyses regard the
spread of excitation in infinite cables. As we have said
above, the analysis of finite segmented cables is not very
practicable for the transient situation except for very low
values of n. Instead, for the steady state case, by using a
numerical method to solve Eqs. 23a-26a, we have obtained
for the finite cable results similar to those of the infinite
case, namely that the difference between the (finite)
segmented and the (finite) equivalent model may be
relevant for myelinated fibers, but not for muscular ones.

Letting

M,(E) = -E + q(s);

M2(E) = - T(s)E + w(s);

N,(E) = -E + r(s);

N2(E) = T(s)E + t(s),

Eqs. A3 and A4 become

MI(E)Uk(S) + NI(E)vk(s) = 0;

M2(E)uk(s) + N2(E)vk(s) = 0.

(A5)

(A6)

By executing the operations M2(E) on both members of Eq. A5 and
M,(E) on both members of Eq. A6, and by recalling that EEuk(s) =
Euk+ (s) = Uk+2(5), one has, after simplication

Vk+2(s) + b(s)vk+l(s) + Vk(S) = 0,

where

b(s) = - [r(s) T(s) + w(s) - t(s) + q(s) T(s)] /2 T(s).

The general solution of Eq. A7 is (Jordan, 1950, p. 574)

Vk(S) = A(s) $'(s) + B(s) 42(s).

where t, (s) and t2 (s) are the roots of the equation

02(S) + b(s) (s) + 1 = 0,

(A7)

(A8)

(A9)

APPENDIX

For cables of infinite length, a solution to Eqs. 23-26 can be found by
making use of the theory of difference equations. To do this, we first
reduce Eqs. 23-26 to two linear, simultaneous difference equations of the
second order. From Eqs. 23 and 25, one obtains

hk(S) = n(S)Uk(S) + A(S)Vk(S);

gk(S) = E(S)Vk(S) + b(S)Uk(S),

(Al)

(A2)

where

n(s) = [H(s) D(s) + G(s)]/2H(s);

-(s)= [H(s) D'(s) - G'(s)]/2H(s);
E(s) = [G'(s) + H(s)D'(s)]/2H(s);

-(s)= [H(s) D(s) - G(s)]/2H(s).

and A(s) and B(s) are arbitrary constants (with respect to the index k) to
be determined by the limit conditions of the problem. Observe that from
Eq. A9 one has (l (s) I I 42(5) = 1, so that, as long as the roots are distinct,
one of them, say (, (s), will have an absolute value lower than 1, while
42(s) I> 1. Taking into account the boundary condition of infinite cables,

i.e., that the potential and its Laplace transform must vanish at the end of
the cable when k - , we have from Eq. 14

lim {Uk(s) exp [Xk,l 4I(s)/XI] + Vk(s) exp [-Xk,l 0i(s)/X]} = 0
k--

and for the arbitrariness of Xk, in the interval 0 < Xk < 11

lim Uk(S) = 0, lim Vk(S) = 0.
k-- k-X

This means that B(s) = 0, otherwise Vk(S) will be unbounded fork-, as
02(s)1 > 1. So it will be

(A10)

By substituting Eqs. Al and A2 into Eqs. 24 and 26, one has

-Euk(s) + q(S)Uk(S) - ESk(s) + r(S)Vk(S) = 0; (A3)
- T(s)Euk (s) + W (s) Uk (S)

+ T(s)Evk (s) + t (s)vk (s) = 0, (A4)

where Euk(s) - Uk+ ,(s) is the displacement operator, and

q(s) = P(s) n(s) + P'(s) a(s);
r(s) = P(s) Au(s) + P'(s) e(s);

w(s) = S(s) n(s) - S'(s) b(s);

t(s) = S(s) ,u(s) -S'(s) e(s).

From Eq. A5 one has (Jordan, 1950, p. 603)

Uk(S) --A(s) N[ml()] aI(s)
-MI(s) r(s) A() (S)-~,(s) + r(s) k

Determination of A(s) depends on the knowledge of the boundary
condition in x,, = 0. When the value of the potential is given in x,, = 0,
one finds from Eqs. 14, A10, and All

Uk=() V(0,S) (S) [r(s)-41I(s)]/[r(s) -q(s)]; (A12)

Vk (s) = V(, s) t'l(s) [I(s) -q(s)]/[r(s) -q(s)], (A13)
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where V(0, s) is the Laplace transform of the potential in x1,, = 0. The
values of hk(S), gk(s) are given by Eqs. A1, A2, A12, and A 13.

When the derivative of the potential is given in x,, = 0, one obtains
from Eqs. 14, Al0, and Al l

Uk(S) = XI V'(O, s) &'-1(s) [r(s) - 1(s)]/
{X1(s)[r(s) + q(s) - 2 {I(s)]}; (A 14)

Vk(S) = Xl V'(O, s) k -(s) [tl(s) - q(s)]/

{11(s)[r(s) + q(s) - 2 &1(s)]i, (A15)

where V'(0, s) is the Laplace transform of the derivative of the potential
in x,1I = 0.
The values of hk(s), gk(S) are given by Eqs. A1, A2, A 14, and A15. We

see that in any case the functions Uk(S), Vk(S), hk(S), and gk(s) vanish for
k-.

Received for publication 17 May 1983 and in final form 26 January
1984.
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