
brought to you by COREView metadata, citation and similar papers at core.ac.uk

r Connector 

Current Biology 19, R602–R614, July 28, 2009 ª2009 Elsevier Ltd All rights reserved DOI 10.1016/j.cub.2009.05.046

ReviewImpacts of Climate Change
on Marine Organisms and Ecosystems

provided by Elsevier - Publishe
Andrew S. Brierley1,* and Michael J. Kingsford2

Human activities are releasing gigatonnes of carbon to the
Earth’s atmosphere annually. Direct consequences of
cumulative post-industrial emissions include increasing
global temperature, perturbed regional weather patterns,
rising sea levels, acidifying oceans, changed nutrient loads
and altered ocean circulation. These and other physical
consequences are affecting marine biological processes
from genes to ecosystems, over scales from rock pools
to ocean basins, impacting ecosystem services and
threatening human food security. The rates of physical
change are unprecedented in some cases. Biological
change is likely to be commensurately quick, although
the resistance and resilience of organisms and ecosys-
tems is highly variable. Biological changes founded in
physiological response manifest as species range-
changes, invasions and extinctions, and ecosystem
regime shifts. Given the essential roles that oceans play
in planetary function and provision of human sustenance,
the grand challenge is to intervene before more tipping
points are passed and marine ecosystems follow less-
buffered terrestrial systems further down a spiral of
decline. Although ocean bioengineering may alleviate
change, this is not without risk. The principal brake to
climate change remains reduced CO2 emissions that
marine scientists and custodians of the marine environ-
ment can lobby for and contribute to. This review
describes present-day climate change, setting it in context
with historical change, considers consequences of climate
change for marine biological processes now and in to the
future, and discusses contributions that marine systems
could play in mitigating the impacts of global climate
change.

Introduction
When Earth formed about 4.5 billion years ago there were no
oceans. Since then, as surface water has accumulated, the
filling ocean basins have been the reaction chamber for the
development of life on Earth and have played a fundamental
role in the ongoing evolution of the planet’s climate. No cred-
ible discussion of physical climatic processes on Earth can
be conducted without consideration of the seas and oceans,
and it is becoming increasingly apparent that — rather than
just being passive occupants that are impacted by physical
change — life forms in the ocean make active and climate-
influencing contributions to planetary function. For example,
marine organisms have important roles in the cycling of
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carbon (the ‘biological pump’), nitrogen and other key
elements, turbulent mixing and the production of cloud
condensation nuclei [1–5]: there are numerous interactions
between climate, physical oceanographic processes and
marine biology that should not be ignored.

There is broad consensus that contemporary global
climate change is reality, and that much of the ongoing
change is a direct result of human activity [6,7]. In particular,
burning fossil fuels, making cement and changing land use
have driven atmospheric carbon dioxide concentrations
(CO2[atm]) up from a pre-industrial value of about 280 parts
per million (ppm) to 385 ppm in 2008 [8] (Figure 1). Annual
increases are now exceeding 2 ppm, an emission trend
that exceeds the worst case scenario of the Intergovern-
mental Panel on Climate Change (IPCC) [9]. There is a direct
link between global temperature and CO2[atm] [6]. The
increased heating in the lower atmosphere/Earth’s surface
(radiative forcing) resulting from the ‘greenhouse’ effect
caused by increasing atmospheric CO2, methane and other
gasses (at a value of about 3 W m-2 [10]) is unprecedented
in at least the last 22,000 years [11] and has already had
direct physical consequences for the marine environment
and organisms living there. These include increases in
mean global sea surface temperature, by 0.13�C per decade
since 1979 [10], and ocean interior temperature, by >0.1�C
since 1961 [10], increasing wind velocity and storm
frequency, changes in ocean circulation, vertical structure
and nutrient loads [10], as well as rising sea level — by
more than 15 cm in the last century [12] (Figure 1) and pres-
ently by a mean of about 3.3 mm per year. Because the
oceanic and atmospheric gas concentrations tend towards
equilibrium, increasing CO2[atm] drives more CO2 in to the
ocean, where it dissolves forming carbonic acid (H2CO3)
and thus increases ocean acidity: ocean pH has dropped
by 0.1 (a 30% increase in hydrogen+ ion concentration) in
the last 200 years [13] (Figure 1).

Because rates of physical change are unprecedented in
many instances, the impacts on marine organisms and
ecosystems are likely also to be unprecedented. It has
been suggested that a CO2[atm] of 450 ppm is a critical
threshold beyond which catastrophic and irreversible
change might occur [7] — this would bring a global mean
temperature rise of 2�C above pre-industrial values. At
present rates, this threshold will be passed by 2040, but
climate-related systems are notoriously non-linear [14]. By
2040, some particularly sensitive marine ecosystems such
as coral reefs and ice-covered polar seas could already
have been lost, and other unexpected consequences may
arise [15].

In this review, we first describe some key interactions
between the physical marine and climate systems and marine
life. Second, we consider briefly climate variability over
geological time: it is important to understand the scale of
historic change to appreciate the enormity of present and
predicted change. Third, we touch upon physical-driven
changes over the wide range of temporal, spatial and biolog-
ical-organizational scales that pervade marine biology. A
major challenge for marine scientists, fisheries and
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ecosystem managers — and indeed for us in this review — is
to reconcile impacts significant at the cellular to ecosystem
scale, from rock pools to ocean basins, and over time scales
relevant to organism lifecycles, establishment of annual
fishery quotas, the tenure of a government administration,
a career, a lifespan or a grandchild’s lifespan and beyond.
Assimilating these into a coherent whole, yet maintaining
finer-scale local relevance [16], is a lot to ask but is consistent
with the move towards the holistic ecosystem approach [17]
to fisheries management. Fourth, to illustrate key principles,
we describe climate-related changes in selected marine
ecosystems. Finally, we contemplate the challenge of dealing
with the confounding effects of multiple impacts (climate
change, fishing pressure, pollution), and discuss how we
might respond to and mitigate against the effects of climate
change. As one referee of this review pointed out, it is telling
that the ‘physical’ sections of the review describe what will
happen, whereas the ‘biological’ sections largely speculate
on what might happen: this is generally indicative of the
present state of knowledge. The oceans presently provide
about 16% of human animal-protein food [18] and contribute
about 63% in financial terms to global ecosystem services
[19]: understanding interactions and feedbacks between
climate and marine systems is a vital step towards predicting
and dealing with the consequences of change for the coupled
biosphere-geosphere-humanosphere.

Oceans, Life and Planetary-Scale Processes
Life and water are inextricably linked. Life on Earth began in
water. The 1.3 billion cubic kilometers of sea water now on
Earth cover 71% of the planet’s surface and make up about
300 times more habitable volume than the terrestrial habitats
[20]. The oceans contribute about 46% to global annual
primary production, house a biomass of at least 2.6 billion
tonnes and contain 36 of the 38 known metazoan animal
phyla [21–23]. Compared to land, seawater is a stable habitat
[24]. Most marine locations experience narrower ranges of
daily and annual temperature variation than their terrestrial
equivalents. Oceans do, however, exhibit physical variability
over a range of vertical, horizontal and temporal scales.
This variability influences nutrient availability, physiology,
production, larval dispersal, species migration, biodiversity
and biogeography. There are four distinct biomes in the
world ocean (Polar, Westerlies, Trades and Coastal
Boundary Zone) [25] and numerous ecosystems ranging
from highly productive mangrove forests and estuaries in
the intertidal, to food-impoverished abyssal depths: all of
these are vulnerable to changing climate [26].

But the oceans are not just a mosaic of habitats that
support life [27]. They are huge reservoirs for nutrients and
gasses, including CO2, and ocean currents redistribute
heat around the planet, impacting atmospheric circulation,
regional weather patterns and rainfall distribution. Changes
in ocean circulation bring fundamental physical changes,
with major accompanying biological ramifications. When
continental drift separated Antarctica from South America,
for example, about 30 million years ago, the Drake Passage
opened and the Antarctic Circumpolar Current developed,
leading to the effective isolation of the Southern Ocean.
The waters south of the Antarctic Circumpolar Current
became decoupled from warmer waters to the north, and
temperatures around Antarctica fell rapidly. The Polar
Frontal Zone associated with the Antarctic Circumpolar
Current formed a biogeographic barrier between thermal
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Figure 1. Indices of physical climate change relevant to marine
systems, and two examples of biological change.

(A) CO2[atm] from Law Dome ice cores (grey line [8]) and Mauna Loa
direct observations (black line [www.esrl.noaa.gov/gmd/ccgg/
trends/]). (B) Annual and smoothed combined global land and marine
surface temperature anomaly (http://www.cru.uea.ac.uk/cru/info/
warming/). (C) Ocean surface pH calculated from CO2[atm]. (D) Relative
global sea level [148]. (E) Summer sea ice extent in the Arctic (black
line; September, combined UK Hadley Center and US NSIDC chart
and satellite data) and Antarctic (grey line; February, US NSIDC satellite
data only). (F) Winter index of the North Atlantic Oscillation (www.cgd.
ucar.edu/cas/jhurrell/indices.html). (G) Mean coccolithophore mass
[62], and (H) catch per unit effort for Pacific cod (grey line) and pink
shrimp (Pandalus borealis, black line) in Pavlof Bay, Alaska, showing
the 1976/7 regime shift [93] (see also Figure 4).

http://www.esrl.noaa.gov/gmd/ccgg/trends
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http://www.cgd.ucar.edu/cas/jhurrell/indices.html
http://www.cgd.ucar.edu/cas/jhurrell/indices.html


Current Biology Vol 19 No 14
R604
T
a
b

le
1
.

T
im

e
s
c
a
le

s
o

f
c
h

a
n

g
e

a
n

d
a
p

p
ro

x
im

a
te

v
a
lu

e
s

o
f

c
h

a
n

g
e

p
e
rt

in
e
n

t
to

m
a
ri

n
e

e
n

v
ir

o
n

m
e
n

ts
.

T
im

e
s
c
a
le

G
e
o

lo
g

ic
a
l

O
s
c
ill

a
to

ry
c
h

a
n

g
e

S
e
c
u

la
r

c
h

a
n

g
e

(C
e
n

o
zo

ic
-)

O
rb

it
a
l/

M
ila

n
k
o

v
it

c
h

R
e
c
e
n

t

D
e
c
a
d

a
l

0
to

in
d

u
s
tr

ia
l

re
v
o

lu
ti

o
n

,
1
8
5
0

P
o

s
t-

in
d

u
s
tr

ia
l

to
p

re
s
e
n

t
P

re
s
e
n

t
to

2
1
0
0

2
1
0
0
–4

0
0
0

N
o

.
y
e
a
rs

1
0

6
to

1
0

7
1
0

4
to

1
0

5
1
0
s

c
.

2
k

c
.

1
5
0

c
.

1
0
0

c
.

2
k

T
e
m

p
.
a
t

e
n

d
,

� C
c
f.

1
8
5
0

‘I
c
e
h

o
u

s
e
’

to

‘g
re

e
n

h
o

u
s
e
’

G
la

c
ia

l-
in

te
rg

la
c
ia

l;

-8
to

+
5

[1
4
9
]

+
/-

2

(d
e
tr

e
n

d
e
d

)
[4

0
]

S
ta

b
le

b
e
tw

e
e
n

-1
.2

to

+
0
.4

[3
2
]

+
0
.7

5
[6

]
+

2
.5

to
+

5
.5

[1
3
6
]

+
1
0

[1
5
0
]

C
O

2
[a

tm
]
p

p
m

1
5
0

to
3
5
0
0

[3
6
]

1
7
2

to
3
0
0

[1
4
9
]

+
/-

1
(d

e
tr

e
n

d
e
d

)

[4
0
]

S
ta

b
le

b
e
tw

e
e
n

w
2
7
4

a
n

d
2
8
2

[1
4
9
]

3
8
5

(i
n

2
0
0
8
)

[4
2
]

4
5
0

to
1
0
0
0

[1
3
6
]

1
7
0
0

to
>

2
0
0
0

[1
5
0
]

p
H

7
.3

to
8
.3

[3
6
]

V
a
ri

e
s

b
y

0
.1

6
[1

3
]

S
ta

b
le

S
ta

b
le

a
ro

u
n

d

8
.2

(+
/-

0
.3

)
[1

3
]

-0
.1

[1
3
]

-0
.3

to
-0

.5
[1

3
]

-0
.7

7
[5

7
]

S
e
a

ic
e

c
o

v
e
ra

g
e
,

%

0
to

m
id

la
ti

tu
d

e
[3

1
]

H
ig

h
la

ti
tu

d
e

to
m

id
la

ti
tu

d
e

R
e
g

io
n

a
lly

v
a
ri

a
b

le
[1

1
8
,1

5
1
]

S
ta

b
le

,
c
.

7
%

E
a
rt

h
’s

s
u

rf
a
c
e

[1
5
2
,

1
5
3
]

A
n

ta
rc

ti
c

s
ta

b
le

to
-2

5
%

A
rc

ti
c

-2
0
%

[1
1
2
,

1
5
2
]

-4
0
%

c
f.

1
9
9
9

[1
1
1
]

-9
0
%

[1
5
0
]

S
e
a

le
v
e
l,

m
-1

3
0

to
0

[1
5
4
]

S
ta

b
le

S
ta

b
le

+
0
.2

[1
2
]

+
0
.5

to
+

1
.4

[1
2
]

+
1
0
0

A
M

O
c
ir

c
u

la
ti

o
n

D
ir

e
c
ti

o
n

re
v
e
rs

a
ls

-4
0
%

to
+

4
0
%

[3
7
]

V
a
ri

a
b

le
[1

5
5
]

V
a
ri

a
b

le
V

a
ri

a
b

le
1
8
.7

+
/-

5
.6

S
v

[2
9
]

-5
0
%

[1
5
5
]

3
S

v
to

c
o

lla
p

s
e

[1
0
0
,1

5
0
]

S
u

b
o

x
ic

v
o

lu
m

e
H

ig
h

ly
v
a
ri

a
b

le
V

a
ri

a
b

le
S

ta
b

le
S

ta
b

le
E

x
p

a
n

d
in

g
[5

6
]

+
5
0
%

[6
6
]

+
3
0
0
%

[1
5
0
]

S
p

e
c
ie

s
e
v
e
n

ts
R

a
n

g
e

c
h

a
n

g
e
s

&

e
x
ti

n
c
ti

o
n

s

R
a
n

g
e

c
h

a
n

g
e
s

R
e
g

im
e

s
h

if
ts

S
ta

b
le

R
a
n

g
e

c
h

a
n

g
e
s

R
a
n

g
e

c
h

a
n

g
e
s

&

e
x
ti

n
c
ti

o
n

s
[1

5
6
]

M
a
s
s

e
x
ti

n
c
ti

o
n

s

regimes, and many Southern Ocean species evolved subse-
quently in isolation [28]. Seawater that is cooled around
Antarctica is a major driver of today’s global thermohaline
circulation. Contemporary climate change has the potential
to perturb ocean circulation on a time-scale far shorter
than that of continental drift: a reduction in the North Atlantic
Current [29] could have major implications for northern Eu-
rope and beyond during this century. The cooling that this
might bring — reduced North Atlantic Current flow would
deliver less heat northwards — runs counter to the ‘global
warming’ paradigm, and emphasizes the importance of
regional considerations verses global generalization.

Timescales of Temperature Change
Earth’s climate has changed [30], and will likely continue to
change [31], over multiple time scales (Table 1). Temperature
change is apparent in the existing instrument record, and
numerous proxies enable past temperature variations to be
reconstructed [32]. Temperature is hugely influential on
physiological processes [33] and fluid physics: biochemical
reaction rates can double with a 10�C rise, and the density
of water has a peculiar non-linear dependency on tempera-
ture that results in cold seawater sinking but ice floating.
Although global mean sea-surface temperatures are rising
at only about half the rate as that for land, 0.13�C per decade
compared to 0.27�C per decade since 1979 [10], increasing
temperature is the most pervasive of present-day impacts
on marine systems [34].

The geological record is punctuated by numerous abrupt
changes in temperature. These discontinuities— forexample,
the Paleocene-Eocene Thermal Maximum 56 million years
ago when global temperatures rose by 6�C in 20,000 years —
define boundaries between epochs of more consistency
lasting tens of millions of years. During the Paleocene-Eocene
Thermal Maximum 1500 to 2000 gigatonnes of carbon were
released to the atmosphere in just 1,000 years; however,
that rate is less than that at which carbon is being released
now through anthropogenic activity [13]. Temperatures fell
after the Paleocene-Eocene Thermal Maximum perhaps
because of prolific growth of marine Azolla ferns [35], which
reduced atmospheric carbon dioxide concentrations dramat-
ically from 3500 ppm to 650 ppm [36], switching Earth from
‘greenhouse’ to ‘icehouse’. This switch illustrates well the
power of marine biological influences on global climate.

Variations in solar activity and Earth’s orbit bring cyclical
changes in temperature over tens to hundreds of thousands
of years (Milankovitch cycles [37]). Feedback mechanisms
involving greenhouse gasses, ocean circulation and ice
extent, which in turn influences albedo — the fraction of
incoming solar radiation reflected back to space — interact
with Milankovitch cyclicity to provoke the Quaternary cycles
of glaciation (c. 10�C change with c. 100,000 year periodicity)
that have persisted for the past 2.5 million years [31]. The last
glaciation ended 12,000 years ago and Earth is presently in a
warm period. Climatic changes have also occurred at higher
frequencies (stadials/interstadials), but these changes are
not necessarily global. In the north Atlantic region, for
example, Dansgaard-Oeschger and Bond events [38] occur
roughly every 1500 years, and include the beginning of the
Younger Dryas and the Little Ice Age. Fluctuating ocean
circulation and associated greenhouse gas variations are
implicated in these climate oscillations [39].

More frequent still are multi-decadal climatic oscillations
and decadal-scale cycles including the El Niño Southern



Special Issue
R605
Figure 2. Spatial variability in surface
warming.

In this example map showing surface warm-
ing, the temperature anomaly (�C) is colour-
coded for September 2008 compared to the
1951 to 1980 mean. Grey pixels indicate
missing data. Data are from http://data.giss.
nasa.gov/gistemp/maps/.

Oscillation and the North Atlantic Oscil-
lation. These cycles are driven by large-
scale atmospheric changes, but have
oceanic impacts because winds drive
horizontal ocean currents and
upwelling which, in turn, impact on
heat distribution. Because the modern
era of direct scientific observation
extends over multiple ten-year cycles,
there is a growing body of work on
the consequences of these cycles for
marine biological processes around
the world. For example, fluctuations in abundances of
pelagic fish in the Pacific that are characterized by change
in dominance between sardine and anchovy coincide with
El Niño periodicity [40], and in the North Sea the abundance
of some jellyfish is strongly correlated with an index of the
North Atlantic Oscillation [41].

Given these multiple timescales of change, it can be diffi-
cult to distinguish a signal of secular change from the noise
of background variability. However, recent change is so
great that it stands out like the blade of a hockey stick [32].
CO2[atm] is now probably higher and rising faster than at
any time in the past 20 million years [32,42] and global
average temperatures are 0.76�C higher than in the second
half of the 1800s [6] (Table 1). This unprecedented change
has led to suggestions that the Earth is entering a new era,
the Anthropocene. Boundaries between eras are often
marked by mass extinctions: if present-day change remains
unchecked, the impact on marine systems could be as great
as at the boundaries between previous geological epochs,
and extinctions are likely here [43]. Temperature influences
physiological rates and physical boundaries of tolerance
[44]. Although mobile marine species can shift distribution
in response to changes [45,46], for sedentary organisms
and many endemic species with narrow ranges of thermal
tolerance (stenotherms), such as corals, the rate of local
change may be more rapid than biological/evolutionary
response times [47]. Unless annual carbon emissions fall
below 5 gigatonnes [6], the 21st century will likely be charac-
terized by fundamental and deleterious changes to marine
organisms and ecosystems [43].

Spatial Scales of Temperature Change
Although global mean temperature is rising, and other phys-
ical factors are changing (Figure 1), the scale of impact is not
and will not be distributed evenly geographically [7] (Figure 2).
Temperatures throughout the Arctic Ocean have risen since
the 1950s, by more than 4�C in some places, whereas around
Antarctica some locations have warmed while others have
cooled (sea surface temperatures in the Weddell Sea have
decreased by 2�C but have warmed by 2�C at South Georgia
[48]). The East Australia Current has increased its southward

penetration by about 360 km over the last 60 years, and
average temperatures in affected regions have increased
by more than 2�C in that time [49]. These regional variations
will be of major importance to local inhabitants.

The ocean depths are perhaps the most thermally-stable
of Earth’s habitats, and organisms there are likely to be
among the last to be impacted directly by direct warming,
but temperatures are rising and, as a result of thermal inertia,
temperatures will continue to rise for many decades even if
carbon emissions were to cease immediately [50]. In the
Drake Passage, warming of 0.6�C has been observed to
700 m over the past 30 years, whereas surface waters have
cooled by 2.1�C over the same time [51]. There is historic
evidence for decoupling between surface and deep-water
temperature changes, with deep-water extinctions occurring
at the end of the Paleocene whilst processes in the near-
surface plankton remained apparently unaffected [52]. Inter-
tidal habitats are potentially subject to the greatest impact
[53] and, in locations where peaks of increased daytime
temperatures coincide with exposure at low spring tide,
die-offs are to be expected despite the high stress-tolerance
of some intertidal organisms. Reducing biodiversity in rock
pools, as elsewhere, may impact ecosystem function [54],
but colonization dynamics at the scale of rock pools, and
variable resistance, may increase community stability for
some species [55]: there will be winners and losers in the
face of change, and those are often difficult to predict.

Other Key Physical Changes
Widespread changes in sea level, ocean pH and the extent
of oxygen-deficient dead-zones (Table 2) are underway
[12,13,56]. In many instances these and other factors will
impact together [43], creating negative synergistic effects to
which organisms and ecosystems may have little resistance.

Acidification
There is a direct relationship between CO2[atm] and ocean pH
[13,57] (Figure 1): as CO2[atm] increases, pH drops. This
poses a great threat to many marine organisms and ecosys-
tems. Over the past 200 years, the oceans have absorbed
approximately half of the anthropogenically-generated

http://data.giss.nasa.gov/gistemp/maps/
http://data.giss.nasa.gov/gistemp/maps/
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Table 2. Key direct climate-related threats to major marine ecosystems up to the year 2025, and some consequences. Based on [26] and references

therein.

Ecosystem Threat Consequence

Coastal

Salt marshes/Mangroves Sea level rise Landward progression or habitat loss; altered productivity

Rising temperature and CO2[atm] Changing growth rates; photosynthetic change; increasing C3 cf. C4 species

Increasing storm frequency Physical damage; choking or flooding channels; salinity changes

Estuaries Sea level rise Landward progression/basin modification

Increasing storm frequency Fluctuating freshwater inflow brings fluctuating nutrient and sediment input

Rising temperature Increased desiccation stress at low tide

Mitigation: flooded for barrages Ecosystem loss

Rocky substrates

Rocky intertidal Sea level rise Altered zonation; compression on vertical engineered defenses

Rising temperature Increased thermal stress/desiccation at low tide; latitudinal species

abundance/distribution changes

Increasing storm frequency Increasing effective exposure; shifts from grazers to filter feeders; shifts

in direction of trophic control

Kelp forests Rising temperature Physiological impacts on growth and photosynthesis; latitudinal shifts

in distribution

Increasing storm frequency Upper and near-shore limits affected negatively

Coral reefs Rising temperature Bleaching; distribution range contraction; overgrowth by algae

Increasing acidity Reducing calcification and skeletal structure compromise

Rising sea level Drowning reefs; habitat loss; human abandonment of flooding atolls may

reduce fishing pressure

Increasing storm frequency Physical damage and runoff/silting increase

Altered circulation and connectivity Larval transport disrupted and nutrient availability altered

Soft substrates

Sandy shores Increasing storm frequency Changing beach structure, loss of habitat, and perturbed interspecies

competition

Rising temperature Changing productivity; species range changes

Rising sea level Loss of habitat; changing sand transport

Seagrass meadows Rising temperature Metabolic stress; range changes

Increasing storm frequency Increased nutrient loading; decreased water clarity; increasing

runoff/sedimentation

Rising CO2[atm] Increased growth rates; increased competitive advantage cf. algae;

increased productivity

Sea level rise Loss of habitat

Shelf sea benthos Rising temperature Species distributional shifts

Decreasing [O2] Expanding anoxic dead zones

Vast systems

Pelagic Rising temperature Changing species distributions; timing of peak production; regime shifts;

reduced fish production

Rising CO2[atm] Increased primary production

Increasing acidity Altered planktic calcification

Altered circulation/upwelling/stratification Nutrient limitation and increasing bottom-up control on food chains

Increasing storm frequency Increased nutrient availability and production

Decreasing [O2] Expanding anoxic dead zones

Polar and ice-edge Rising temperature Sea ice (habitat) loss; increasing primary production and associated trophic

responses; physiological impacts leading to species range

changes/extinctions;

Ice reduction Habitat loss; increasing Diel vertical migration (DVM)/CO2 drawdown

Increasing acidity Detrimental carbonate conditions for plankton, and foodweb consequences

Deep sea Rising temperature and changing nutrient

availability

Changes in carbon flux from surface impact deep sea community

composition

Increasing acidity Reducing carbonate availability

Decreasing [O2] Expanding anoxic dead zones
CO2[atm] [13] and at present a further approximately 1 million
tonnes of CO2 diffuse in to the world ocean per hour. The rate
of decreasing pH, 0.1 units in the last 200 years and an ex-
pected drop of 0.3 to 0.5 units by 2100, is more than 100
times as rapid as at any time over the past hundreds of
millennia [13].

Rates of oceanic CO2 absorption vary regionally as a func-
tion of wind strength and temperature. Colder waters can
accommodate more dissolved CO2 than warm waters and
are, therefore, more prone to acidification [58]. The Southern
Ocean might, however, already be saturated with CO2 [59],
which is worrying because it alone has absorbed about 7%
of anthropogenic CO2[atm], and reduced capacity for future
absorption means more CO2 will remain in the atmosphere,
provoking more warming. Ocean warming may partly coun-
teract the acidification process, but the scale of impact will
be insufficient to provide long-term reprieve from increased
CO2[atm] [47].

One of the main impacts of ocean acidification on marine
life arises because of interactions between acidity and
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carbonate availability. A taxonomically diverse array of
marine organisms, including tiny coccolithophores (a type
of phytoplankton), pelagic and benthic mollusks, fist-sized
starfish and urchins, as well as massive corals, require
calcium carbonate for their skeletons, and others have key
carbonate rich structures (e.g. fish otoliths). All of these are
likely to suffer as increasing acidity reduces carbonate avail-
ability, and impacts at the species level may cascade
through to widespread community change [60].

At present, shallow waters are generally saturated with
carbonate ions, but dissolution increases with depth [61].
The lysocline — the depth at which dissolution begins —
will shallow as oceans become more acidic, reducing the
depth range that offers suitable habitat for calcifying organ-
isms. Even for shallow waters, a CO2[atm] greater than c.
490 ppm will compromise the capabilities of corals to make
strong skeletons and loss of coral reefs will ensue [47]. The
direction of change in calcification that acidification will bring
is, however, questionable [47]: studies of the coccolitho-
phore Emiliania huxleyi suggest both thickening and wasting
of calcareous shells [62,63], and excretion of precipitated
carbonates by teleost fish is predicted to rise with ambient
CO2 [3]. There is, thus, an urgent requirement for improved
understanding of the effects of acidification from the cellular
to ecosystem level.

Reducing Dissolved Oxygen Concentration
Low oxygen concentrations render compartments of the
world ocean inhospitable to multicellular life [64]. Oxygen
solubility in seawater is a function of temperature, and O2

availability in the world ocean has been declining since the
1950s [65] as the ocean has warmed. Over a range from
0 to 15�C, dissolved oxygen concentration in seawater is
related approximately linearly to temperature, and will
decline by about 6% per one degree rise. Ongoing warming
together with rising CO2[atm] will see an expansion of low
oxygen zones, perhaps by more than 50% of their present
volume by the end of the century [56,66]. These expansions
will affect some of the world’s most productive regions in
terms of fisheries, so there could be economic as well as
ecological consequences. Fish schooling behaviour is
known to respond to varying oxycline depth [67], and krill
swarms may be oxygen-limited [68]. Changes in group
behaviour forced by reducing oxygen availability may impact
predators that target aggregated pelagic prey [69]. Further-
more, coastal eutrophication resulting from increased
riverine run-off of fertilizers and increases in sea level will
bring further accumulations of particulate organic matter
and increased microbial activity that consumes dissolved
oxygen [56]. Mobile organisms are able to avoid low oxygen
concentrations, but sedentary organisms have little choice
but to tolerate low oxygen concentrations or die. Those
that are able to tolerate hypoxic conditions might, paradox-
ically, benefit from reduced predation if predators are them-
selves excluded [70].

Sea Level Rise
Global temperature influences water and ice volumes and,
hence, sea level [12]. Sea level influences the inundation
and establishment of coastal habitats and ecosystems
[27,71]. The rate of sea level rise during the 20th century
was proportional to the warming above pre-industrial
temperatures [12], and extrapolation suggests further rises
of between 0.5 and 1.4 m above 1990 levels by 2100. Sea
level changes impact habitat space, drive speciation, influ-
ence biodiversity [27] and alter local nutrient flux. Whilst
rising sea levels could mean the end of some island nations,
they could bring some respite to coral reefs as abandonment
by humans of some atolls may lead to reduced fishing pres-
sure. Elsewhere rising waters may force organisms towards
steep, artificial sea defenses, with implications for intertidal
sediment-dwelling organisms, zoned rocky-shore ecosys-
tems and nursery habitats [72,73].

Impacts of Climate Change — from Genes to Ecosystems
Appraisal of the vulnerability of marine organisms and
ecosystems to climate change needs to consider potential
impacts across all levels of biological organization. These
include gene expression, cellular and whole-organism phys-
iology, skeletal structure, behaviour of individuals, popula-
tion dynamics, community- and ecosystem-structure, and
trophic interactions. In line with ecological niche theory,
the ranges of tolerance of species simultaneously reflect
physiology, environmental factors, interspecific competition
and dispersal. Sensitivities to climate change may vary
between levels of organization, and responses to the moving
baselines of global stressors may be independent between
levels or critically linked. Uneven sensitivities to climate
change of competing species may disrupt competitive inter-
actions, and complex indirect responses may become mani-
fest at community levels [74].

Responses to climate change will depend on the rate and
duration of the change, as well as the tolerance of the level
of organization [33]. Rare, extreme events will play a different
role in evolutionary dynamics than slow, secular change.
‘Pulse’ events have limited duration [75], and could include
sporadic warming brought in to habitually cool regions by
transient penetrating filaments of warm water [49]. Such
pulses might be precursors to ‘press’ events that are more
persistent and long-lasting, such as widespread warming.
‘Resistant’ systems are able to avoid displacement in the
face of change: from a physiological point of view, they may
be able to tolerate a broad range of temperatures and salin-
ities, or from an ecological point of view resistant species
may be habitat generalists. ‘Resilient’ systems, by contrast,
are able to revert to the pre-disturbance state once a stress
has passed [76]. Biodiversity influences ecosystem function
[77], and ecosystems with a higher degree of functional
redundancy — where pivotal roles are fulfilled by more than
one species — are expected to be more resilient. However,
in the case of ongoing secular climate change, resilience
would have to be very great indeed given the temperature
rise to which Earth is already committed (at least 2.4�C) and
the likely persistence of that rise even following the (unlikely)
immediate cessation of CO2 emissions [50].

Temperature is the most pervasive climate-related influ-
ence on biological function [78]. Gene expression may vary
within a species throughout its distributional range as a func-
tion of temperature [79], but the variation may not follow
simple latitudinal clines; thus, predicting responses to
climate change may be difficult. Genetic selection under
environmental forcing can lead to rapid shifts in allele
frequencies in populations of short-lived organisms [80].
For instance, muscle development can vary with tempera-
ture [81], and temperature change may thus have adverse
implications for mobile organisms because muscle develop-
ment impacts movement capability and reduced speed may
lead to changing predator–prey interactions [69]. Sub-lethal
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temperature changes can impair physical function, and
mortality can result from quite minor warming because
organisms become unable to perform basic but imperative
tasks [82]. Likewise, growth is temperature-dependent and,
in the initial phases of warming, changing temperature may
lead to changing community size structure and biomass
[83]. Warming will not, however, necessarily increase growth
rates [84]. The timing of reproduction, reproductive output
and the condition of juveniles and larvae are also subject to
variability [85]. Juveniles of marine organisms can be partic-
ularly susceptible to changes in temperature, salinity and pH,
and larvae may succumb to elevated temperatures that their
adult stages are able to survive [86]. The hatching times of
eggs may affect the survival chances of larvae if larval
appearance does not coincide with food availability.
Changes in the timings of plankton blooms [87], including
temperature-driven phenological changes [88], may lead to
breaks in food chains [89,90], and wholesale departures of
prey species in the face of warming may impact remaining
predators, including commercially important fish species
[91]. Some of these species will themselves shift ranges as
a consequence of warming, but this will not necessarily
lead to community decline: fish species richness in the North
Sea increased over the last two decades of the 20th century
as the region warmed [92]. That change was in line with
expectations that species richness decreases generally
with increasing latitude and the fact that local warming is in
some respects effectively equivalent to latitude reduction.

A consequence of altering demographic characteristics,
mortality rates and even allele frequencies — all of which
may be consequences of climate change— is that the growth,
size, resistance and resilience of whole populations may be
altered. If population sizes change, interactions among
species may also be perturbed, and ultimately ‘regime shifts’
may occur, with ecosystems undergoing rapid and perhaps
irreversible transition from one phase to another [93]. For
instance, bleaching and storm-induced structural damage
to coral reefs and coral death can lead to proliferation of mac-
roalgae. Algal domination may persist as an ‘alternative
stable state’ if rates of algal grazing are low: in the Caribbean,
death from disease of the sea urchin Diadema antillarum, an
important grazer, had major consequences for entire coral
reef ecosystems because the interaction between grazing
pressure and coral cover was driven beyond a critical
threshold at which ecosystem resilience was lost [94]. In the
pelagic ecosystem off the Pacific coast of the USA wholesale
changes across multiple trophic levels, that were evident in
indices of 31 physical and 69 biological parameters, occurred
during regime shifts in 1977 and 1989 [95].

Impacts of Climate Change on Ecosystems:
Selected Case Studies
It is beyond the scope of this review to examine the impacts
of climate change on all marine ecosystems. Others have
accomplished that task with regard to change expected by
2025 [26], and their conclusions are summarized in Table 2.
Instead, by focusing on ecosystems that are most familiar
to us, we hope to illustrate some key concerns.

Open Ocean Environments
The oceans generate about half of Earth’s annual global
primary production in terms of fixed carbon (48.5 Petagrams
(Pg) of 104.9 Pg C [21]), but since 1999 global ocean primary
production has fallen by 0.19 Pg C per year [96]. The majority
of this reduction has occurred in the permanently-stratified
low latitude oceans (roughly 45�N to 45�S) because warm-
ing and strengthened stratification have caused nutrient
limitation. Phytoplankton and seaweeds require nutrients,
including phosphate, silicate and nitrate, as well as trace
elements such as iron [97], and reduced mixing brings fewer
nutrients to the illuminated near-surface zone. In polar
regions, increased wind strength — leading to increased
mixing and nutrient replenishment — and reduced ice extent
could lead to increased open ocean primary production [98],
but these increases (e.g. 0.03 Pg C per year since 2003 in the
Arctic [99]) will probably not counteract the mid-latitude
reductions.

Mixed-layer depth and nutrient availability are also influ-
enced by large-scale ocean circulation. Modeling studies
[100] suggest that surface freshening after warming-induced
melt of the Greenland ice cap would reduce Atlantic meridi-
onal overturning circulation by more than a factor of 5 (from
16 x 106 m3 s-1 to 3 x 106 m3 s-1 over the 500 year model run),
similar to the change associated with Dansgaard-Oeschger
oscillations [101]. Because of the key role Atlantic meridional
overturning circulation has in global thermohaline circula-
tion, this reduction would lead, on average, to a shallowing
of the mixed layer globally, imposing a nutrient restriction
that would cause a 20% reduction in carbon export produc-
tion. In the North Atlantic, phytoplankton biomass might
collapse by half [100] and, because most zooplankton popu-
lations there are subject to bottom-up control (limited
by availability of their phytoplankton food) [90], secondary
production would be much reduced. Fisheries production
would also be expected to decline [102].

Increasing CO2[atm] and temperature may increase phyto-
plankton growth rates, but, at the same time, may lead to
physiological responses that render cells more susceptible
to UV damage [103]. Ongoing change might be expected to
impact primary production, particularly in coastal seas
where river runoff supplements nutrient availability [104]
and where sea level rise might also impact nutrient loading.

In addition to fueling food chains, phytoplankton growth
draws CO2 down from the atmosphere, driving the biological
pump that transports carbon to the ocean interior [1].
This flux will change as temperatures increase because
nutrient reduction leads to smaller sized cells that sink
more slowly [105]. Reduced photosynthetic carbon fixation
may reduce CO2[atm] drawdown [106], with further climate
consequences. Plankton from surface waters fall to the deep
sea as an important source of nutrition for the deep benthos:
temperature induced change of epipelagic plankton assem-
blages could, therefore, affect the deep sea [107].

Changing open ocean temperatures have brought major
biogeographic shifts in species ranges. In the North Atlantic,
plankton communities have changed distribution by more
than 10 degrees of latitude since the 1960s [45]. Warming
in the Arctic has enabled trans-polar invasion of the Atlantic
by Pacific plankton species [108]. Baleen whales, which are
amongst the largest, widest ranging and longest-lived
marine organisms, might be expected to weather change,
but some are impacted on short time scales because their
short-lived prey — zooplankton at low trophic levels —
responds rapidly to climate change [109,110].

Polar Seas and Sea Ice Systems
Sea ice covers up to 7% of the Earth’s surface and is one of
the planet’s largest and most dynamic biomes [111]. The
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Figure 3. Contrasting climate-related variability in calcification in plankton and corals.

Top left: true colour satellite image of a bloom of the coccolithophore Emiliania huxleyi south of Plymouth, UK on the 30 July 1999 showing the
spatial extent, and hence ecological importance, of the bloom (image from Remote Sensing Data Analysis Service (RSDAS) www.npm.ac.uk/
rsdas/ of the UK Plymouth Marine Laboratory http://www.sanger.ac.uk/Info/Press/2005/050811.shtml). Top right: graph of coccolith volume,
and scanning electron microscope images of typical coccoliths, from cultures at simulated CO2[atm] from 280 to 750 ppm. Reproduced with
permission from [62]. Laboratory experiments are consistent with historic observations (Figure 1G) of mass increasing with increasing CO2[atm].
Bottom left: annual growth bands in a slice of coral (photograph courtesy of Eric Matson, Australian Institute of Marine Science). Bottom right:
variation in calcification (g cm-2 y-1) in massive Porites corals over time. Light blue bands indicate 95% confidence intervals for comparison
between years, and grey bands indicate 95% confidence intervals for the predicted value for any given year. Calcification declines by 14.2%
from 1990–2005 [122] in a direction of change opposite to coccolithophores. Reproduced with permission from [122].
geographic extent, temporal duration and mean thickness of
Arctic sea ice has decreased significantly since the 1960s,
and summer extent is decreasing at 7.4% per decade [10].
2007 saw the least Arctic summer sea ice on record. The total
extent of Antarctic sea ice seems at present to be stable [10],
although there is regional variability between years, but
the possibility of a major circum-Antarctic decline in the
mid-1960s remains [112]. For both hemispheres, sea ice is
predicted to decline throughout the 21st century, and the
Arctic Ocean may be ice-free in summer by 2030. The loss
of Arctic sea ice may be one of the first climate tipping
points [113]. Ice loss leads to a vicious circle of more rapid
warming — and ever more rapid ice loss — because ice
loss reduces albedo: dark ocean surfaces absorb more
heat than reflective ice-covered seas, and warmer seas
grow less ice.

Sea ice is a habitat in its own right, housing rich and
diverse microbial communities within and beneath that
form the base of ice-related water-column ecosystems,
and is a platform for breeding and hunting vertebrates (e.g.
penguins, seals and polar bears). Ice loss thus equates to
habitat loss but, as elsewhere, there will be winners and
losers. Polar bears are suffering because earlier ice melt
reduces the time they can hunt at sea [114] whereas Adelie
penguins can benefit from reduced extent of some ice types
because of associated reductions in journey times from
breeding sites to open-water feeding grounds [115].

Sea ice impacts the underlying water column, reducing light
penetration and influencing stratification. Reducing theextent
of ice may lead to increased primary production [99], particu-
larly in the Arctic because ice loss is most pronounced in
nutrient-rich coastal regions. In turn, this could lead to
increased zooplankton and fisheries production [116].
Because of its impact on light attenuation, sea ice modifies
the vertical migration behaviour of zooplankton beneath
[117]. Initially, ice loss in the Arctic might lead to increased
draw down of CO2[atm] because reduction in shading will
provoke greater vertical migrations by zooplankton, and
zooplankton feeding near the surface and defecating at depth
will export increased primary production to deeper waters.

Impacts of ice loss are not simple to predict because the
timing of ice melt may influence community development

http://www.npm.ac.uk/rsdas/
http://www.npm.ac.uk/rsdas/
http://www.sanger.ac.uk/Info/Press/2005/050811.shtml
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Figure 4. Climate-related changes in tropical
and temperate marine ecosystems.

(A,D,G) Changes from shrimp-dominated (top)
to cod-dominated (bottom) catches in small-
meshed bottom trawls in Pavlof Bay, Alaska,
through the 1976/7 regime shift. Reproduced
with permission from [17] (also see Figure 1H).
(B) Forest of giant kelp (Macrocystis pyrifera)
with a well-developed canopy and associated
fish in 1978 before the 1983 El Niño; from w12 m
at Stillwater Cove, Carmel Bay, California. The
kelp provides structure and foraging opportu-
nities for fish and invertebrates such as
urchins. (C) Forest understory of Pterygo-
phora californica before El Niño. (F) In June
1983, about 3 months after the big El Niño
storms ended; all Macrocystis pyrifera was
removed and P. californica had all its blades
removed and they have just begun to regen-
erate. Northern California is affected by
storms during El Niño while southern Califor-
nia is more affected by low nutrients that kill
kelps (photographs courtesy of M. Foster, Cal-
ifornia State University). (E) Pristine Acropora
reef. (H) Bleached corals in the shallows,
Middle Island Keppels (copyright Great Barrier
Reef Marine Park Authority) showing the
dramatic impact of elevated temperature: sus-
tained high temperatures can result in coral
death and a phase shift to algae dominated
reefs.
[118]. In the Bering Sea, late sea ice retreat leads to an early
phytoplankton bloom in cold water at the ice edge, whereas
following early ice retreat the bloom occurs later in warmer
open water. Zooplankton production in the Bering Sea is
influenced predominantly by water temperature, so when
ice retreats early and the bloom occurs in warmer water
zooplankton abundance is elevated and recruitment of
planktivorous fish benefits. In the southern hemisphere, the
lifecycle of Antarctic krill (Euphausia superba) is coupled
tightly to sea ice, and reduced ice brings reduced krill
recruitment [119]. There is evidence for a steep decline in krill
abundance from the 1970s [120], and this could have had
adverse effects for the suite of higher predators that depend
upon krill for food [121].

Coral Reefs
Coral reefs are among the most diverse and economically
important ecosystems on Earth. They are threatened by
a variety of climate-related changes, including rising sea
temperatures and levels as well as acidification. Corals
require calcium carbonate (in the form of aragonite) to build
skeletons, but acidification is driving availability down. Calci-
fication of Great Barrier Reef corals has declined by 14.2%
since 1990 [122] (Figure 3). At the present rate of CO2[atm]

increase, carbonate accretion is expected to be further
compromised such that corals will become increasingly
rare beyond 2050 [47]. Corals and, in particular, their symbi-
otic zooxanthellae algae are highly sensitive to increases in
temperature. Above 31�C, zooxanthellae are ejected and
coral bleaching ensues [47] (Figure 4). The intensity and
scale of bleaching has increased since the 1960s, and major
bleaching events in 1998 and 2002 affected entire reef
systems [123]. Waters of the Great Barrier Reef are
expected to warm by between 1 and 3�C over the next
100 years, so the risk of high temperature press events that
could be fatal to corals is increasing.
The ability of scleractinian corals to adapt to change is
unclear, but modern genotypes and phenotypes probably
do not have the capacity to adapt quickly enough to global
climate change to guarantee local persistence [47,124] (but
see [125]). Weakened skeletons, which are prone to storm
damage, mean that coral reef architecture will be compro-
mised and that regime shift to algal domination may become
more likely with an associated loss of key functional groups
[47,126]. As coral reefs are habitats for many animal species,
loss of coral will cause changes in diversity and abundance
of such species [127] and may lead to local extinctions of
reef specialists [85,128]. In addition to bringing adverse
ecosystem effects, losses of fish and invertebrates have
major implications for fisheries, tourism and other human
uses of reefs.

Combined Effects of Climate Change and Other Impacts
Most marine species and ecosystems are presently under
numerous simultaneous threats [34]. In addition to climate
change, these include fishing, elevated UV exposure, pollu-
tion, alien introductions and disease [43]. The resistance of
individual species to single threats may be reduced in the
face of multiple stressors, and perturbed ecosystems suffer
diversity loss that can compromise ecosystem function and
resistance to further change. For instance, drops in pH may
interfere with ion exchange, depressing metabolism and
leading to a narrower window of thermal tolerance [129].
Polar bears are not only struggling in the face of ice loss,
but are also weakened by accumulation of polychlorinated
biphenyls [114]; the Black Sea suffered a regime shift after
prolonged heavy fishing pressure, a jellyfish invasion and
eutrophication [130]; many coral reefs are suffering from
rising temperatures, acidification, disease, fishing and
tourist impact as well as silting and excess nutrients from
river runoff [131]. Analysis of several north Atlantic fish stocks
suggests that declining recruitment is climatically-driven
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[132], and that fishing on its own cannot explain observed
downward trends. The claim that ‘‘climate findings let fish-
ermen off the hook’’ does not, however, tell the whole story
[133], and excessive fishing will certainly not assist ecosys-
tems stressed by climate change. There is growing accep-
tance of the requirement for an ecosystem approach to
marine fisheries and environment management: this
approach should take account of the whole gamut of anthro-
pogenic and natural threats to ecosystems, including climate
change [134].

Responding to Climate Change
Given the geographic variation in change in temperature,
acidity and other factors, and the varying sensitivity of
marine organisms and ecosystems, it is unlikely that any
single strategy will alleviate impacts of climate change every-
where [16]. A series of regionally-tailored response plans
under local governance [135] are required. However, on a
global scale, an immediate reduction in CO2 emissions is
essential to minimize future human-induced climate change.
Emissions to date have already committed the planet to
a warming of 2.4�C above pre-industrial levels, i.e. beyond
the 2�C threshold for ‘dangerous anthropogenic influence’
[50]. If emissions continue, it is not outrageous to expect
CO2[atm] to reach 1000 ppm, with an associated warming of
5.5�C, by the end of this century, which would bring about
the extinction of many species [136]. In the face of such terri-
fying change, even large scale interventions such as estab-
lishment of very large networks of Marine Protected Areas
[137] — zones within which damaging activities such as
fishing are prohibited — are unlikely to be effective.

A direct way to reduce warming is to reduce CO2[atm]. The
Azolla event illustrates how oceanic primary production can
contribute significantly to this goal, and biomanipulation
could perhaps invoke a similar response for the present
age. Fertilization of the ocean with micronutrients, including
iron, stimulates phytoplankton growth. On a large scale, this
could draw substantial quantities of CO2[atm] to the ocean
interior [138], and in theory the biological pump could
sequester this carbon in the deep sea. There are, however,
considerable uncertainties about this approach [139], and
international restrictions are being put in place to limit ocean
fertilization experiments [140]. Whilst direct injection of CO2

to the deep ocean could offer storage for very large quanti-
ties, acidification and other pollution by impurities bring
considerable threats to marine ecosystems: small scale
experimental disposals were cancelled in 2002 because of
environmental concerns [141].

Offshore wind farms and tidal barrages are two of several
options for generating electricity without emitting CO2 [142],
yet ironically both have the potential to affect marine ecosys-
tems adversely, bringing additional indirect climate-related
degradation [143,144]. ‘Spill over’ of species and biomass
from Marine Protected Areas can bring benefits to adjacent
unprotected areas [145]: the extent of benefit is thus greater
than the extent of constraint. Wind farms and barrages need
perhaps to be viewed in this context: sacrificing some care-
fully-chosen areas may bring benefits in terms of emission
reduction that are greater than the localized costs of habitat
loss or environmental degradation. Such tradeoffs are likely
to be emotive, particularly for local populations living along-
side power-generation developments. But tough choices are
going to have to be made, and made soon, if we are to avoid
crossing the critical CO2[atm] 450 ppm threshold. Although
the ocean has so far buffered climate change, absorbing
about 50% of anthropogenically generated CO2, if climate
change continues unchecked the ocean could also be the
source of additional woes. Methane hydrates in the ocean
could become unstable with rising temperature, and large
scale liberation of gaseous methane could send the planet
on a runaway warming trajectory [146].

Improving models are increasing our ability to predict
physical changes in the ocean [147] that will impact marine
and terrestrial biology, but we need to progress beyond
prediction and monitoring of decline and act to halt degrada-
tion. Despite options for intervention, it may already be too
late to avoid major irreversible changes to many marine
ecosystems. As history has shown us, these changes in
the ocean could have major consequences for the planet
as a whole.
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