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Abstract

The problem of fitting B-spline curves to planar point clouds is studied in this paper. A novel method is proposed to deal with the most
challenging case where multiple intersecting curves or curves with self-intersection are necessary for shape representation. A method based on
Delauney Triangulation of data points is developed to identify connected components which is also capable of removing outliers. A skeleton
representation is utilized to represent the topological structure which is further used to create a weighted graph for deciding the merging of curve
segments. Different to existing approaches which utilize local shape information near intersections, our method considers shape characteristics of
curve segments in a larger scope and is thus capable of giving more satisfactory results. By fitting each group of data points with a B-spline curve,
we solve the problems of curve structure reconstruction from point clouds, as well as the vectorization of simple line drawing images by drawing
lines reconstruction.
© 2015 Society of CAD/CAM Engineers. Production and hosting by Elsevier. All rights reserved. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

2D shapes represented by unorganized data points are
frequently encountered in numerous applications, where data
points are obtained using scanning devices or extracted from
digital images. Unorganized data points (point clouds) are
however not a suitable representation for geometric processing.
Therefore, converting point clouds into parametric representa-
tions such as polylines or B-spline curves is highly demanded
in many applications.

In this paper, we study the problem of computing a set of
disjoint parametric curves with possible intersections from a
point cloud. This problem of curve extraction has numerous
applications in reverse engineering, where B-spline parametric
curves/surfaces are required. Extracting shapes from data
points as spline curves also enjoys important applications in
digital image processing if the content of an image is a 2D
shape composed of curves, such as line drawing images,
blueprints and hand written characters. Converting digital
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images of line drawings into B-spline curves is also a special
instance of image vectorization.

A reasonable scheme to this problem is computing mean-
ingful groups of data points together with polyline curves. The
latter can be refined by a curve fitting approach. The key point
however is to identify combination of curve segments joining
at intersections to form continuous curves passing through
each other. The main difficulties include (1) the intersection
region often contains much noise and thus may give disturbing
information for recovery of intersecting curves and (2)
tangential lines of joining curves near intersection regions
are not sufficient for determining curve joinings. Refer to
Fig. 1(a) for an intersection part of a noisy point cloud; Fig. 1
(b) shows three joining curve segments and estimated tangent
lines. We see that it is hard to give correct merging of curves
using only tangent lines.

In this paper, we propose a framework for fitting B-spline
curves to a point cloud, where the curves may intersect with
each other and curves with self-intersection are also allowed.
The proposed approach consists of two phases. The first phase
divides the point cloud into a set of groups of data points
where each group of data points represents a curve shape.
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This step recovers the topology information of data points. The
second step reconstructs a B-spline curve fitting to each group
of data points. This step is a geometry recovery step. The main
contributions of this paper include

® A unified framework for handling noise, outliers and curve
components of a point cloud.

® A graph based method to identify pairs of curve segments
which can be merged into a single curve.

2. Related work
2.1. Curve reconstruction

Curve reconstruction from point clouds with or without
noise is a well studied problem. Various aspects of curve
reconstruction have been addressed including robustness to
noise, handling of outliers and feature preservation. Numerous
techniques have been employed such as Voronoi diagram,
spectral analysis, image processing and optimal transport.
Optimal transport is used to reconstruct 2D shapes with
polyline structures which performs well for data points with
shape features and large noise [1]. A large body of methods
makes use of voronoi diagram to deal with curve reconstruc-
tion from a set of sampling data points. The advantage of this
class of methods is that their accuracy can be proved if an
appropriate sampling density is satisfied [2]. Amenta et al.
proposed the crust method which utilized the f skeleton and
voronoi diagram [3,4]. Wang et al. proposed a curve recon-
struction method based on circular neighboring projection and
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normal-based smoothing [5]. However, these methods do not
give a segmentation of data points. The reconstruction result is
a structure of curves instead of independent curves.

Some recent works discuss recovering multiple curves or
curves with self-intersections from point clouds [6—8]. Ardeshir
proposed a method for grouping and fitting multiple curves to
point clouds with relatively simple shape [9]. Furferi et al.
presented a method for fitting weighted B-spline curves using
PCA analysis [10]. Yan et al. proposed a method for curve
fitting based on the fuzzy C-means clustering method [11]. Zhao
et al. presented a method for fitting non-simple curves using
skeleton extraction and refinement [12]. Our proposed method is
different to these methods in that we make use of a skeleton
representation of point cloud which provides more information
on curve shape and topological relationship of curves.

2.2. Curve fitting

Curve fitting mostly refers to the problem of parametric
curve approximation to noisy data points. Most existing works
assume that the data points come from a single curve without
self-intersections. A fitting process starts with an initial curve
which is updated by minimizing some objective function
measuring fitting quality and curve fairness.

Existing works discuss this problem from various aspects.
A parametric curve is often used for shape reconstruction of a
point cloud. Levin proposed the moving least squares method
(LMS) for curve fitting [13]. Lee discussed the deficiencies of
direct application of MLS in curve fitting and proposed some
improvements by introducing the Minimal Spanning Tree
(MST) in a pre-processing phase [14]. Some works on curve
fitting focus on the fitting speed of minimizing squared

Fig. 1. (a) There is large noise at intersection regions of crossing curves. (b) Tangent vectors of meeting curves are insufficient to decide their role as curve parts of

large curves.

-

Fig. 2. A Delauney triangulation based method for finding curve components and removing outliers. The data points lie in a bounding box of size 650 by 450. (a)
Data points. (b) Delauney triangulation of data points. (c) Mesh after removing long edges ¢ where length(e) > 23. (d) The a-shape of data points. (e) Image
generated by filling remaining triangles after deleting outliers. An skeleton is also shown which is obtained by applying image thinning algorithm and removing
spurious tails. Note two vertices in the skeleton which are very close to each other will be merged into a single vertex.
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orthogonal distance. This category of methods includes PDM
(point distance minimization) method, TDM (tangent distance
minimization) method and SDM (Squared distance minimiza-
tion) method [15,16]. These methods are inherently traditional
optimization methods and a good initialization is needed.
These methods cannot be applied directly for fitting multiple
curves to a point cloud of complex shape.

2.3. 2D skeletonization

Skeleton extraction is closely related to curve reconstruction
which is an important process in many applications such as
hand-written character recognition and digital map recognition
[17,18]. Image thinning algorithms are widely used for skeleton
extraction of 2D shapes, which recursively remove boundary
pixels to give an image with one-pixel width [19]. The
remaining pixels can be easily converted into polygonal curves
by connecting incident pixels. Medial axis, one of the most
dominant skeleton representation of shapes, is defined by the set
of points which has equal distances to multiple points on the 2D
shape [20-22]. Since medial axis is sensitive to noise, a lot of
works study robust generation of clean medial axis. There are
also skeleton extraction methods making use of Delaunay
triangulations of some sampling points of the shape [23].

A topology driven approach is presented for recovering lines in
a clean line image for image vectorization which deals with
possible combinations of curve segments meeting at a cross
region [24]. In hand-written trajectory tracking, the key problem
is how to deal with the segmentation concerning the intersection
of trajectories. An approach of stroke extraction based on a
selective searching technique is presented in [25] where angle
information around the intersection region is used and distortions
near intersections are ignored. Different to existing methods on
skeleton segmentation, our method considers shape goodness of
overall curves and thus is able to give more pleasing results.

3. Structure extraction of point clouds

Given a point cloud S = {s;}, we process it to extract a set of
polygonal curves {L;}. The proposed algorithm consists of the
following steps:

(1) decompose S into disjoint groups S;. Outliers are removed at
the same time. Each group is represented by a triangulation
T (Section 3.1),

(2) compute a skeleton representation K of T (Section 3.2),

(3) extract a set of curve segment {Z;} excluding intersection
regions (Section 3.2),

(4) pairing curve segments meeting at intersections and get a
set of polylines {L;} (Section 3.3).

3.1. Component recognition

The first step decomposes a point cloud S into separate
subgroups S; of data points. We propose a method which jointly

handle noise, outliers and disjoint curves, based on the Delauney
Triangulation of data points. The set of data points S is firstly
converted into a triangulation 7 using Delauney triangulation.

Our method is inspired by the concept of a-shape. It is known
that a-shape, as a subset of the Delauney triangulation of S, is a
reasonable way to represent the shape of S. The boundary of the
a-shape of S is a set of line segments /" connecting data points.
Edge p;p; € I' if there exists a disk of radius a touching both p;
and p; which does not contain any other data point in S. Such a
neighboring pair of data points p;,p; is called a-repulsive. It is
easy to observe the following fact of a-shape.

® Points p;p; are not
(Property 1).

a-repulsive if  ||p;—p;|l > 2a

Therefore, an edge in = whose length is larger than 2a does not
contribute to the boundary of the a-shape of S. Moreover, the
following property of Delauney triangulation is well-known.

o In a Delauney triangulation of a planar point set, there exists
a connecting edge between p; and p; if p; is the nearest data
point to p; (Property 2).

From property 1 and property 2, we can draw a conclusion
that edge length in 7 provides important information about the
relationship of data points. Removing long edges in 7 is
effective for filtering out outliers in a noisy point cloud as well
as for separating data points into disjoint curve components
where each component contains a single curve or a set of
intersecting curves.

After deleting those edges in 7 whose length is larger than a
value p related to sampling density of point clouds, we get a
triangulation representation which may contain several dis-
connected components. Small isolated pieces are regarded as
outliers and are deleted. Each remaining component will be
represented by a single curve or a set of intersecting curves.
In the following discussions, we denote each component by T

Fig. 3. Removing intersection regions decomposes the data points into
segmental groups; each group of data points is fitted with a B-spline curve.
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and its associating data points S. For further processing, we
generate a back-white image [ for S by filling each triangle in T
with black color. Refer to Fig. 2 for the pipeline of curve
components recognition.

The threshold p is important for accurate separation of data
points. If p is too large, over segmentation might happen; if p is too
small, originally disjoint curves might be recognized as a single

curve. Both cases should be carefully avoided. Clearly, the selection
of p should depend on the sampling density of data points.

3.2. Curve segment reconstruction

The next step deals with each component 7' to achieve
disjoint curves. This task is non-trivial due to the noise near

Fig. 4. Defining cost value for graph edges. (a) Turning angle of two edges in sequence. (b) A complete graph is added for each intersection vertex. The cost value
of an connection edge is defined by a weighted combination of turning angle and curve energy.
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Fig. 5. Some drawing lines are shown together with curvature histograms.

N

Fig. 6. Algorithm for curve extraction. (a) is a subgraph corresponding to a cross region. In (b), one path with minimal energy is found which is denoted by dashed
line. After removing those nodes in the extracted path and dangling edges, we get a remaining graph in (c).

Fig. 7. The pipeline of data points segmentation and curve extraction. (a) A point cloud. The intersection regions are identified using intersection vertices of the
skeleton. (b) A graph is created from the skeleton where intersection vertex of valence n is replaced by a complete graph K. (c) Our curve extraction algorithm
gives the segmentation of the skeleton. (d) The grouping of data points using the skeleton segmentation results. (e) Fitting B-spine curves.
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intersection regions as well as shape ambiguities of point
clouds. For the purpose of intersecting curves reconstruction, a
skeleton representation K of T is computed. This is achieved
by applying an image thinning algorithm to 7 [19]. Due to the
noise in point cloud, the obtained skeleton may contain
spurious tails and crossing necks. A skeleton cleaning step is
applied to remove spurious tails and merge crossing necks to
get a clean and accurate skeleton representation. This skeleton
cleaning problem has been well studied. Refer to [17] for more
details. Refer to Fig. 2(e) for a skeleton obtained by image
thinning operations.

Curve segments represented by data points are easy to
detect, except for data points near intersection regions. We
therefore remove those data points in local regions of inter-
sections temporarily and return an apart set of data points D,.
The size of an intersection region is defined by a circle X(c, r)
where ¢ denotes the circle center, r is circle radius. Each vertex
v whose valence is larger than 2 in K is identified as a center c.
The position of v is roughly where several curves intersect or
self-intersections occur. r is set to 1.2 » where r is the distance
from c to the closet boundary vertex of T.

Each set of data points D; is assigned with a polyline Z;
which is easily obtained by disconnecting K at intersection
vertices. Unfortunately, the shape of Z; is zigzag and does not
express curve shape well. We define a B-spline curve C; whose
control points are positions of the sequential vertices of Z,.
With C; as an initial curve, a curve fitting procedure is applied
to improve its approximation quality as well as shape fairness.
The associating target data points D; are easily found which are
vertices of 7. Z; is then refined by projecting its vertices to C,.
See Fig. 3 for an example.

3.3. Pairing curve segments

Now we need to decide pairing of curves meeting at
intersection regions which actually come from the same curve.
We propose a graph based method to facilitate connection
decision of meeting curves.

3.3.1. Connection graph construction

A graph G is built in the following way. Each polygonal curve
segment Z; has an associated edge /4. in G which is called a
regular edge. Further, in order to encode all cases of curve
segment combination at an intersection region, a complete graph
K, is added into G for an intersection vertex of valence » in K. In
this way, a connection edge exists for each pair of curve segments
joining at the same vertex (refer to Figs. 4(b) and 7(b)).

We then assign a weight to every edge in G to make a
weighted graph. The weight of each connection edge measures
the quality of merging two curve segments Z; and Z;. Two
issues should be considered (1) shape similarity of Z;, and Z;
(2) the turning angle between Z; and Z;. Let p;, i =0, ..., M be
some sampling points on a curve Z; taken by a curvature
adaptive sampling method [26]. Let £(A, B) denote the angle
between two vectors A and B. Shape characteristic is best
evaluated by curvature. A discrete curvature value is defined at

each vertex p; by
k(p) = £p; 1 —PisPi—Pi— )/ IPis1—Pi-1l- (1)

We define curvature histogram of a curve for measuring
shape characteristic using curvature values of some sampling
points on a curve. Suppose the range of curvature values
[Kmin> Kmax] 18 uniformly divided into n pieces. A curvature
histogram is a vector Hy = {ho, h1, ..., hy—1}, hi =N;/(M+1),
where N; is the number of sampling points in associating
curvature slot (Fig. 5).

Table 1
Computational performance of our algorithm. The time numbers are measured
in seconds.

Data  Num. of Ske. seg.  Points grouping Curve fitting  Total
set points time time time time
15(a) 24,346 1.5 0.7 0.7 2.9
15(b) 19,447 1.7 0.6 0.7 3.0
15(c) 11,827 1.9 0.5 0.5 2.9
16(a) 10,637 1.5 0.6 0.5 2.6
16(b) 9436 1.3 0.5 0.4 22
16(c) 5066 0.9 0.3 0.3 1.5

N AR IR

Fig. 8. An example containing large noise. (a) is the data points. (b) is the
correct result using a proper size for deciding intersection region.

Fig. 9. This example demonstrates the affection of 4; and 4, in Eq. (2).
(a) A result using 4; =10, 1, = 1.0. (b) A result using 4; =0.1, 1, =1.0.
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The connection edge of curve segments Z; and Z; is then
assigned a cost value

(u(hfj) =hoy+Ahz(Hy, H)), @

where ay; is the turning angle of curve segments Z; and Z;
(Fig. 4(b)); A, and A, are coefficients for balancing local
turning and shape similarity of curve segments. The weight of
a regular edge is defined by its average curvature

> k(py)

othd =

3.3.2. Skeleton segmentation algorithm

We then extract paths in G for curve reconstruction. This
can be done by finding paths in each subgraph g, in G relating
to an intersection region. g, is obtained by extending from a
connection subgraph to all incident edges until the extension
distance is large enough or other connection edges are met.
Refer to Fig. 6(a) for a subgraph of the example in Fig. 7. An
algorithm (Algorithm 1) is applied to g to find the ‘best’ path
in sequence, making use of the Dijkstra algorithm.

Algorithm 1. Polyline extraction.

Data: a graph g,

Result: disjoint polylines

find all paths y = {I;} between each pair of end
nodes in g, using Dijkstra shortest path algorithm.

While g, is not empty do
If there are more than 2 end nodes in g; then

|find the path /; which has minimal energy among y;

end

else

|return the final path.

end

store this path and remove edges and nodes of ; from g;;

remove dangling edges from g, and
rename the remaining graph as g;;
end

This procedure is illustrated in Fig. 6. In the second step, we
remove all edges of the extracted path from g; and the
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remaining subgraph is still a connected graph, unless the
extracted path is the final path. Performing the algorithm for all
intersections, we obtain a set of paths extracted from the whole
set of data points. Using previously stored correspondence
relationship of polygonal curves in K and paths in G, we obtain
a set of polygonal curves L; where each polygonal curve
corresponds to a parametric curve to recover.

4. Point grouping and curve fitting

For curve fitting, we also need to segment the set of data
points, in consistent with the skeleton segmentation result.
This is achieved by associating each data point to the nearest
skeleton curve. Ideally, this distance should be measured along
the orthogonal direction to the skeleton curve. In practice, we
perform dilation operations for all skeleton curves simulta-
neously. For each skeleton X;, we apply the dilation algorithm
to give an expanded skeleton image. The visited pixel ¢; by
skeleton i is marked with id i and the distance measurement d;
(the steps of dilation) to X; is also stored in g;. The dilation
procedure stops when the expanding step is big enough to
cover the width of point cloud. If a data point is visited by
multiple skeletons, it is assigned to the skeleton with the
minimal distance.

Once each pixel is correctly assigned to its nearest skeleton
curve, it is simple to group the data points by checking
associating covering pixels. Refer to Fig. 7(c) for the segmen-
tation result of a skeleton, Fig. 7(d) for the segmentation result
of data points. Note that a data point near intersection region
may be assigned to multiple skeleton curves.

Once the cloud point has been classified into a number of
groups, we fit each group of data points with a B-spline curve
using the Squared Distance Minimization (SDM) method. The
curvature based positions of nodes are good candidates for
initial control points of B-spline curves. Refer to Fig. 7(e) for
fitting B-spline curves obtained using SDM.

5. Experiments and discussion
5.1. Computational time

Our approach is implemented with C+ + using Visual
Studio 2012 platform. Our program runs on a desktop

Fig. 10. A data set with crossing regions from [9]. (a) Data points. (b) Result from [9]. (c) Result of our method.
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computer with 3.0 GHz CPU and 2 GB memory. The overall
computing time for each example is about 1-2s, which
includes the computation time for triangulation, skeleton
extraction, segmentation and curve fitting. The number of data
points ranges from 5000 to 25,000. Refer to Table 1 for more
details on computation time of some examples in this paper.

5.2. Examples and comparisons
Curve extraction problems appear in various application
such as reverse engineering, image processing and pattern

recognition, where a point cloud with complicated shape is

a . -
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processed to obtain multiple B-spline curves to represent the
given point cloud.

To demonstrate the effectiveness of our method, we compare
it with three existing methods. Examples in Figs. 10 and 11 are
two data sets taken from [9]. Fig. 10 illustrates that the method
in [9] gives incorrect grouping of point clouds. Fig. 11 shows
one deficiency of the method in [9] that the reconstructed curve
loses some end geometries (the red circle region). Fig. 12(a)
shows that the method in [8] fails to recover an intersection
region. Fig. 12(c) and (d) shows that the result of our method is
more smooth and pleasing than the result of [8]. Fig. 13 gives an
comparison of our method with the method in [5]. Notice that

c

Fig. 11. An example from [9]. (a) Data points. (b) Result from [9]. Red circles indicate the regions where the reconstructed curve fails to cover. (c) is the result of
our method. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

(b) and (d) are results of our method.

Fig. 13. An example of cartoon image from [5]. (a) The original cartoon image. (b) Result from [5]. (c) Fitting B-spline curves obtained with our method.
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the shapes in Fig. 13(b) are basically correct, while many details
are lost. The result obtained by our method in Fig. 13(c)
successfully preserves more details such as the ears.

Figs. 14-16 show more results of our method. The data
points in Fig. 14 are obtained by intersecting 3D models with
parallel planes. The fitting curves and reconstructed surfaces
are shown. Fig. 15 gives some results of extracting B-spline
curves from noisy point clouds with complex shapes. Our
algorithm correctly recovers the topological structure of point
clouds with B-spline curves. The results are reasonable
segmentation of the data points and associating fitting B-
spline curves. The reconstruction procedure is fully automatic.

A picture composed of simple line drawings is useful for
imagination education for children. Our method can be applied
to extract meaningful curve strokes from such images. Fig. 16
shows some segmentation results of simple line drawing
pictures. Each character is segmented into a set of drawing
lines rendered with different colors. The vectorization of
images by fitting B-spline curves is also shown.

5.3. Discussion and limitations

In our algorithm, data points near intersection regions need
to be removed. It is important to decide a proper size for
intersection region. For most cases, the size of point cloud

a

Fig. 14. Point clouds are generated by cutting 3D models with planar slices.
The shown 3D surfaces are constructed using the segmentation result and
fitting B-spline curves of our method.

width gives satisfactory results, as demonstrated by the
examples we have already shown. Our method for determining
intersection regions works well for point cloud with large
noise. Fig. 8 shows an experiment.

Eq. (2) is important for deciding curve segment combina-
tion. For all examples in Figs. 10-12 and 14-16, we set 1, = 1
and 4; = 10 and get pleasing results. However, in some cases,
there are ambiguities in shapes and the reasonable solution is
not unique. Refer to Fig. 9 for an example. In this case, we
may adjust the values of 4; and 4, to give different results.

Our method depends on the skeleton of data points. If the
skeleton results obtained using the image thinning algorithm is
not correct for expressing the topology of data points, our
curve extraction algorithm will consequently give wrong
segmentation results and fitting curves. This happens when
some curves are very close to each other as shown in Fig. 17.

6. Conclusion

We have described a novel method for reconstructing curves
from a planar point cloud. We introduce a weighted graph
representation of point cloud which is able to evaluate all
segmentation results of data points by a shape evaluation
functional. Curvature histogram is proposed for defining shape
characteristic of a curve segment. Guided by this weighted
graph and associated energy functional, we are able to divide
the given data points into meaningful subgroups for curve
fitting. Our algorithm has the virtue that it considers the shape
goodness of all possible grouping results and is capable of
finding curves having good shape if some assumptions on
fitting curves are made. We demonstrated the performances of
our proposed method by applying it to the problems of stroke
recognition in simple line drawings and multiple curve
reconstruction from planar point cloud with complicated shape.

For further work, we will try to apply our algorithm to some
practical problems in image processing such as image seg-
mentation and image vectorization. We are also interested in
extracting strokes in hand-written characters and studying the
semantic information of digital maps.

Fig. 15. Example of curve structure reconstruction from planar point clouds. Data points are rendered by yellow points. Fitting B-spline curves are rendered
together with their control polygons. The example in (a) contains 24,346 data points. The example in (b) contains 19,447 data points. The example in (c) contains
11,827 data points. (For interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)
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.

Fig. 16. Segmentation and vectorization of several simple line drawing images. We use different color to render extracted line stokes. (a) Results of segmentation;
(b) fitting B-spline curves as a vectorization of the image. The number of data points (pixels) are 10,637, 9436 and 5066 from left to right respectively. (For
interpretation of the references to color in this figure caption, the reader is referred to the web version of this paper.)

b
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c

Fig. 17. An example of three crossing circles. (a) Data points. The skeleton result is shown in (b) which does not express three crossing circles. As a result, a wrong

segmentation result is obtained (c).
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