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Introduction: Apoptosis is a crucial pathway in tumor growth and 
metastatic development. Apoptotic proteins regulate the underlying 
molecular cascades and are thought to modulate the tumor response 
to chemotherapy and radiation. However, the prognostic value of the 
expression of apoptosis regulators in localized non–small-cell lung 
cancer (NSCLC) is still unclear.
Methods: We investigated the protein expression of apoptosis regu-
lators Bcl-2, Bcl-xl, Mcl-1, and pp32/PHAPI, and the expression of 
the lncRNA MALAT-1 in tumor samples from 383 NSCLC patients 
(median age: 65.6 years; 77.5% male; paraffin-embedded tissue 
microarrays). For statistical analysis correlation tests, Log rank tests 
and Cox proportional hazard models were applied.
Results: Tumor histology was significantly associated with the 
expression of Bcl-2, Bcl-xl and Mcl-1 (all p < 0.001). Among the 
tested apoptotic markers only Bcl-2 demonstrated prognostic impact 
(hazard ratio = 0.64, p = 0.012). For NSCLC patients with non-
adenocarcinoma histology, Bcl-2 expression was associated with 
increased overall survival (p = 0.036). Besides tumor histology, 
prognostic impact of Bcl-2 was also found to depend on MALAT-1 
lncRNA expression. Gene expression analysis of A549 adenocarci-
noma cells with differential MALAT-1 lncRNA expression demon-
strated an influence on the expression of Bcl-2 and its interacting 
proteins.
Conclusions: Bcl-2 expression was specifically associated with 
superior prognosis in localized NSCLC. An interaction of Bcl-2 with 
MALAT-1 lncRNA expression was revealed, which merits further 
investigation for risk prediction in resectable NSCLC patients.
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Lung cancer is still one of the most lethal and most prevalent 
cancers in the world.1 To improve therapy and decrease its 

high lethality, new molecular markers and targeted therapies 
are required.2

Cancerogenesis and chemotherapy resistance are both 
driven by deregulation of apoptosis (also referred to as the 
“programmed cell death”).3 Apoptotic markers (e.g., the Bcl-2 
family proteins) regulate the molecular pathways. Bcl-2 itself 
serves as a prototype for the proapoptotic factors. It was first 
discovered in low-grade B-cell lymphoma.4,5 Together with 
Bcl-xl, another member of this family with structural homol-
ogy,6–9 Bcl-2 resides on the mitochondrial outer membrane10 
and interacts with membrane protein channels.11 By con-
trolling the organelle’s permeability and thus the release of 
caspases inducing proteins (e.g., cytochrome c)7 both factors 
function as anti-apoptotic proteins.7,8 Another family member 
is Mcl-1 with reported functional impact in human myeloma 
cells.12 Moreover, Mcl-1 is a key resistance factor in various 
cancer cell lines including lung cancer.13

The mitochondrial pathway can be influenced by con-
trolling proteins such as the nuclear phosphoprotein pp32/
PHAPI, which sensitizes intact cells to caspase activation 
similar to tumor suppressors.14,15 Moreover, resistance of can-
cer cells to the exhaustion of survival factors in vivo might be 
reduced by pp32/PHAPI.16

At present the knowledge about the molecular mecha-
nisms of Bcl-2 family members is well-studied in lymphomas. 
However, in lung cancer, the prognostic impact of these fac-
tors is controversially discussed. Especially, for Bcl-2 there are 
almost as many studies suggesting a positive effect17–26 as oth-
ers suggesting a negative prognostic effect27–29 (Supplemental 
Table 1, Supplemental Digital Content, http://links.lww.com/
JTO/A677). Only few studies focused on the prognostic 
impact of Bcl-xl,27,30–32 Mcl-1, or pp32/PHAPI in lung cancer.

Besides apoptotic factors Guo et al. reported cell 
growth, cell cycle progression, and invasion to depend on 
the expression of MALAT-1 long noncoding RNA through 
the regulation of apoptotic gene expression (i.e., caspase-3, 
-8, Bax, Bcl-2, and Bcl-xl).33 Although we could demonstrate 
a functional impact of MALAT-1 on tumor growth, cellular 
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migration, colony formation, and prognosis in lung cancer,34 
the underlying molecular mechanisms are unclear.

To investigate, whether MALAT-1 regulates lung can-
cer growth through an interaction with apoptotic factors, we 
evaluate the prognostic effects of Bcl-2, Bcl-xl, Mcl-1, and 
pp32/PHAPI in the context of MALAT-1 expression.

METHODS

Study Population
Two collectives of 383 curatively resected non–small-cell 

lung cancer (NSCLC) patients with complete clinical follow-
up information and sufficient tumor material from the Thoracic 
Departments Ostercappeln, Germany (Niels-Steensen-Klinik, 
n = 304) and Mainz (University Hospital, n = 79) were col-
lected. Neoadjuvantly treated patients were excluded. The 
study was performed compliant to the rules and regulations of 
the state ethics committee, all subjects gave written consent. 
Clinicopathological data was obtained by medical chart review, 
including follow-up data. Clinical tumor, node, metastasis stag-
ing (including clinical examination, computed tomography 
scans, sonography, endoscopy, magnetic resonance imaging, 
bone scan) was performed according to International Union 
Against Cancer/American Joint Committee on Cancer recom-
mendations.35 To determine the definite tumor stage, postsurgi-
cal pathological examination was included. The pathological 
classification was based on the World Health Organization 2004 
guideline.36 The primary pulmonary lesion was classified as 196 
squamous cell carcinomas, 135 adenocarcinomas, eight bron-
choalveolar carcinomas, 11 adenosquamous carcinomas, and 
53 large cell carcinomas. All patients had follow-up visits on 
a regular basis. Systematic restaging was performed after 3, 6, 
12, 18, 24, 36, 48, etc. months or earlier if clinically indicated. 
Restaging included clinical examination, abdominal ultrasound 
scan, chest radiograph or computed tomography scans, and 
blood tests. Survival time was calculated from the date of his-
tological diagnosis to death or last contact, respectively. Table 1 
shows baseline characteristics of the NSCLC study population.

Immunohistochemistry
After lung resection, tumor samples were formalin 

fixed and paraffin embedded. In this study, tissue microarrays 
(TMA)37 were applied for immunohistochemical examination. 
After paraffin removal, TMA slides were steam heated for 30 
minutes in pH 9 buffers and simultaneously stained using a 
computer controlled autostainer (DakoCytomation, Denmark). 
Unspecific tissue peroxidase was blocked by H

2
O

2
. The slides 

were incubated for 60 min with the primary monoclonal anti-
bodies against Bcl-2 (clone 100, epitope: amino acids 41–54; 
mouse IgG1, 1:100),38–40 against Bcl-xl (clone H-5, epitope: 
C-terminus, mouse IgG1, 1:1000),41,42 and against Mcl-1 
(clone RC-13, epitope: amino acids 1–327; mouse IgG1, 
1:2000).43,44 The three antibodies were purchased from Santa 
Cruz Biotechnology (Heidelberg, Germany). Moreover, a 
fourth antibody against acidic nuclear phosphoprotein 32A 
epitope (pp32/PHAPI; clone RJ1, mouse IgG1, 1:2000; 
Alexis Biochemicals Grünberg, Germany) was applied. 
After primary antibody incubation, a secondary biotinylated 

anti-mouse-antibody (Labeled Strept Avidin-Biotin-Methode; 
DakoCytomation) was applied, and the tissue samples were 
stained with chromogen (RED; Dako REAL detection sub-
strate, DakoCytomation), counterstained by hematoxylin solu-
tion, and finally covered with Entellan (Merck, Darmstadt, 
Germany). The stained TMA slides were classified by three 
investigators (L.H.S., T.S., and R.W.) according to Remmele’s 
Immunoreactive Score (IRS range, 1–12).45 For immuno-
histochemical analysis only tumor cells were included. Bcl-
2, Bcl-xl, and Mcl-1 were considered as positive if an IRS 
greater than or equal to 3 was stated. For pp32/PHAPI, a posi-
tive staining signal was defined by an IRS≥9. Internal controls 
were included in all experiments.

In Situ Hybridization for MALAT-1 
RNA Expression Analysis

The full protocol for in situ hybridization for MALAT-1 
RNA expression analysis was published before in Schmidt 
et al.34 In brief, paraffin-embedded TMAs were incubated with 
Digoxigenin-labeled DNA probes complementary to MALAT-1 
RNA. After detection of Digoxigenin-labeled Zyto-Fast chro-
mogenic in situ hybridization (CISH) probes and hybridization, 
incubation with a secondary antibody for visualization was 
performed. On microscopic examination the NSCLC tissue 
cores were blindly classified (according to Tanner et al.)46 by 
two investigators (L.H.S. and T.S.) into either a “weak expres-
sion” or a “strong expression” of MALAT-1 RNA transcript.

Next Generation Sequencing
Among several cancer cells lines tested, best transfec-

tion rates and strongest downregulation effect of MALAT-1 
lncRNA were achieved in A 549 lung cancer cell line, for 
details please refer Schmidt et al.34 Because of this observa-
tion next generation sequencing was performed in A 549 cells 
as follows: Using Pure Link RNA Mini kit (Life Technologies 
GmbH, Darmstadt, Germany), total RNA (8 µg) was isolated 
according to the manufacturer’s protocol (for construction 
details regarding A549 cells please refer Schmidt et al.).34 
RNA quality was assessed by the RNA integrity number by 
Agilent 2100 bioanalyzer using the RNA Nano Chip and 
quantity was determined by NanoDrop (Peqlab, Erlangen, 
Germany). Ribo depletion (RiboMinus Eukaryote Kit for 
RNA-Seq, Life Technologies GmbH) and RNA fragmenta-
tion (SOLID Total RNA-Seq Kit, Life Technologies GmbH) 
were performed. cDNA library was prepared by hybridization 
and ligation reverse transcription (SOLID Total RNA-Seq Kit, 
Life Technologies GmbH). After conversion to first-strand 
cDNA size selection, purification, isolation, and bar cod-
ing were performed using SOLID Total RNA-Seq Kit (Life 
Technologies GmbH).

Mapping of the SOLID sequencing reads against the 
RefSeq (NCBI Reference Sequence Database) HG19 ref-
erence and the expression analysis was performed using 
LifeScope Genomic Analysis Software 2.5.1.

The transcript expression was quantified by calculating 
the RPKM values (reads per kilobase of transcript per million 
mapped reads).47 RPKM is defined as follows: If the number 
of reads that map to a given transcript is Mt the length of that 
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transcript is Lt, and the total number of mapped reads is M, such 
that M = Mt then RPKM = (109 × Mt)/(Lt × M). Thus, RPKM 
normalizes the read count to the length of the transcript and 
across samples of different coverage, so that direct comparisons 
of expression level can be performed among transcripts or across 
experimental conditions. The final results show an expression 
quantification of previously identified genes and the splice vari-
ants that are annotated in the RefSeq database. For each gene, 
the RPKM value and the total read count are reported. The major 
transcript with the highest RPKM was chosen to represent the 
genes with more than one transcript in the report.

Fold change values for strong versus weak MALAT-1 
expression were determined as log

2
 (RPKM

strong
 MALAT-1 

expression/ RPKM
weak

 MALAT-1 expression).

EGFR Protocol and KRAS Protocol
DNA extracted from formalin-fixed, paraffin-embedded 

tumor tissue samples were analyzed using sanger-sequenc-
ing technique for EGFR analysis and multiplex- polymerase 
chain reaction (PCR) followed by Snapshot analysis for 
KRAS. The cycling conditions for PCR amplification were 
done according to the manufacturer’s instructions. Primers 
were removed by adding ExoSAP-IT PCR Product Clean-Up 
(Affymetrix GmbH, Munich, Germany) to the mix. Next, 
Snapshot reaction was performed and again unincorporated 
ddNTP’s were removed. Analysis of the reaction was per-
formed using ABI3730 DNA Analyzer (Life Technologies 
GmbH). Mutations were confirmed by a new PCR/mutation 
detection reaction. The EGFR and KRAS mutation status of 
each patient’s tumor was assessed from the individual status 
of all mutation types and recorded as one of the following: 
positive (mutation detected for at least one of the mutation 
types assayed), negative (no mutation detected in any of the 
mutation types assayed), or undetermined/unknown (a posi-
tive or negative result could not be determined as per labora-
tory assessment (assay fail, insufficient DNA, fail because of 
assay criteria, or no/insufficient sample).

Statistical Analysis
Standard descriptive statistics such as frequencies, mean, 

median, and standard deviation were calculated to describe the 
study population. Clinicopathological correlations and depen-
dencies for antigenic expressions were assessed using χ2 test 
or Fisher’s exact test, if applicable. The prognostic analysis 
for overall survival (OS) was carried out by Log rank test and 
multivariate analyses using Cox proportional hazards utiliz-
ing a forward stepwise selection model (inclusion criteria: p 
value of the Likelihood Ratio test ≤ 0.05). To avoid devia-
tion because of low sample size or extremes, only parameters 
with complete data (<10 missing values) and with at least 10 
cases of interest were included. The following features were 
regarded as potential explanatory factors (reference category 
is underlined): sex (male versus female), age (≤70 years ver-
sus >70 years), smoking status (nonsmoker versus smoker), 
pathologic tumor stage (II–IV versus I), lymph node status 
(pN

0
 versus pN

1–3
) grading (G

1–2
 versus G

3–4
), and antibody 

staining using Bcl-2, Bcl-xl, Mcl-1, and pp32/PHAPI (for all: 
negative expression versus positive expression). All analyses 
were performed using SPSS 21. The local significance level 
was set to 0.05. An adjustment to multiplicity was not per-
formed. Therefore, an overall significance level was not deter-
mined and cannot be calculated. The presented findings may 
be used to generate new hypotheses.

Interaction Analysis
Direct interaction partners of Bcl-2 were identified in 

the IntAct database (https://www.ebi.ac.uk/intact/).48 The 
interaction networks were then processed using Cytoscape49 
(Version 3.0.1). The following steps were performed: (1) 

TABLE 1.  Baseline Characteristics of the Study Population of 
Resected NSCLC Patients

Variable
Patients  
(n = 383) %a

Ageb (years) 65.6 ± 8.7

Sex  297 males 77.5

Smoker 301 81.4

Performance status

 ECOG 0 76 20.6

 ECOG I 272 73.7

 ECOG II 21 5.7

Any adjuvant therapy 76 18.0

Histological tumor type

 Squamous cell carcinoma 176 46.0

 Adenocarcinoma 135 35.2

 Bronchoalveolar carcinoma 8 2.1

 Adenosquamous carcinoma 11 2.9

 Large cell carcinoma 53 13.8

Grading

 G1–G2 135 35.9

 G3–G4 241 64.1

pT

 pT1 114 30.9

 pT 2 220 57.9

 pT3 + 4 34 8.9

pN

 pN 0 239 63.2

 pN 1–3 139 36.7

pStage

 I 209 54.6

 II 105 27.4

 III 62 16.2

 IV 7  1.8

Immunohistochemistry

 Bcl-2 positive (IRS ≥ 3) 87 23.4

 Bcl-xl positive (IRS ≥ 3) 128 35.5

 Mcl-1 positive (IRS ≥ 3) 198 55.2

 pp32/PHAPI positive (IRS ≥ 9) 248 67.4

Median survival (days)c 1184 (513; 2463)

a% of non-missing values.
bMean ± SD.
cMedian and quartiles (Q1, Q3).
IRS, immunoreactive score.

https://www.ebi.ac.uk/intact/


1297Copyright © 2014 by the International Association for the Study of Lung Cancer

Journal of Thoracic Oncology  ®  •  Volume 9, Number 9, September 2014 Apoptosis in resected NSCLC

import to Cytoscape, (2) removal of interactions without con-
firmed evidence in humans, (3) removal of nodes with con-
firmed evidence in other organisms than human, (4) removal 
of all proteins without any incoming or outgoing edge, (5) 
integration of expression data (log-fold change) as node attri-
bute, and (6) visualization.

Functional Enrichment
For the functional enrichment analysis of Bcl-2 and its 

direct interacting partners the BiNGO plugin50 for Cytoscape 
was applied. To identify significantly overrepresented gene-
ontology (GO) classes (www.geneontology.org), a hypergeo-
metrical test is used for each GO class against the full GO 
annotation. p values are adjusted according to the Benjamini-
Hochberg procedure, which controls the false discovery rate. 
GO classes with adjusted p values ≤ 0.05 are considered as 
significantly overrepresented in the respective gene set. The 
effect of MALAT-1 on a distinct GO class is measured by the 
median log fold change of the genes, which belong to the GO 
class. The median absolute deviation is used as a measure of 
variability of the gene cluster.

RESULTS

Immunohistochemical Expression 
of Regulators of Apoptosis

The characteristics of n = 383 NSCLC patients are 
summarized in Table 1; all of them had sufficient tissue 
material for the immunohistochemical analysis. Positive 

protein expression, as defined by an IRS greater than or 
equal to three, was found in 87 cases (23.4%) for Bcl-2, 
in 128 cases (35.5%) for Bcl-xl, and in 198 cases (55.2%) 
for Mcl-1. Because of a high frequency of positive stain-
ing results for pp32/PHAPI (≥80% of tumor samples), an 
IRS greater than or equal to nine was set to indicate posi-
tive antigen expression. Strong expression was found for 
n = 248 NSCLC tissue samples (67.4%; Table 1). pp32/
PHAPI was present predominantly in the nuclei (Fig. 1D),  
whereas Bcl-2, Bcl-xl, and Mcl-1 displayed a cytoplasmic 
expression pattern (Fig. 1A-C).

Expression of Apoptosis Regulators 
Correlates with Tumor Histology

Squamous cell carcinoma histology was associated with 
positive expression for Bcl-2, Bcl-xl, and Mcl-1 (all p < 0.05). Of 
interest, in adenocarcinomas Bcl-2 expression was lower com-
pared with non-adenocarcinoma patients, whereas Bcl-xl and 
Mcl-1 expression was more prominent in adenocarcinomas than 
in non-adenocarcinomas. Moreover, performance status (Eastern 
Cooperative Oncology Group [ECOG] 0 versus ECOG ≥ 1; 
p = 0.002) and smoking status (never smokers versus smokers; 
p < 0.001) were significantly associated with Mcl-1. For pp32/
PHAPI, no positive association was found (Table 2).

Bcl-2 Influences Prognosis in Non-
Adenocarcinoma NSCLC

Univariate Kaplan-Meier estimates did not demon-
strate any significant effect on OS for the tested antigens. The 
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FIGURE 1.  Immunohistochemical staining 
results for Bcl-xl, Bcl-2, Mcl-1, and pp32/ 
PHAPI. All tested Bcl-2 family proteins Bcl-2 
(A), Bcl-xl (B), and Mcl-1 (C) displayed a 
cytoplasmatic expression pattern, pp32/PHAPI 
(D) was also found in the nuclei. All images at 
x20, inlay x40.

http://www.geneontology.org
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p values of the Log rank test are displayed in Figure 2 in the 
corresponding charts (Fig. 2A: p value for Bcl-2 = 0.218; 
Fig. 2B: p value for Bcl-xl = 0. 590; Fig. 2C: p value for  
Mcl-1 = 0.270; Fig. 2D: p value for pp32/PHAPI = 0.385).

For the tested apoptotic markers, subgroup analyses with 
regard to tumor histology (adenocarcinoma versus non-adeno-
carcinoma), therapy status (no adjuvant therapy vs. adjuvant 
therapy), sex (female versus male) and MALAT-1 expression 
(weak MALAT-1 expression versus strong MALAT-1 expres-
sion) were performed. Depending on histology a prognostic 
effect was shown for Bcl-2 in non-adenocarcinoma (Fig 3A; p = 
0.036). Only a low number of adenocarcinoma tumors exhibited 
Bcl-2 expression without any correlation (Fig 3B; p = 0.993).

Moreover in non-adenocarcinoma survival rates 
increased for lymph node negative patients (Fig. 3C; p = 0.049) 
in contrast to lymph node positive patients (Fig. 3D; p = 0.151). 
However, further stage depending subdivision (i.e., stage I ver-
sus II versus III versus IV) regarding all tested immunohisto-
chemical markers and regarding the three non-adenocarcinoma 
subtypes (squamous cell carcinoma, large cell carcinoma, and 
adenosquamous cell carcinoma) did not yield in any additional 
clinical relevant results (data not shown).

For MALAT-1 univariate Kaplan-Meier estimates did 
not reveal a prognostic effect neither for weak MALAT-1 

expression (p = 0.136; Fig. 4A) nor for strong MALAT-1 
expression (p = 0.734; Fig. 4B).

Prognostic Value of Bcl-2 Depends 
on MALAT-1 lncRNA Expression

To determine the prognostic value of the tested apoptotic 
markers Bcl-2, Bcl-xl, Mcl-1, and PP32/PHAPI, Cox propor-
tional hazards model for comparison with established prognostic 
factors was applied. Besides Bcl-2 expression (hazard ratio (HR) 
0.64, 95% CI 0.452–0.905, p = 0.012), tumor stage (HR 1.917, 
95% CI 1.449–2.537, p < 0.001), sex (HR 1.72, 95% CI 1.173–
2.522, p = 0.005) and age (HR 1.576, 95%-CI 1.177–2.110, 
p = 0.002) were relevant prognostic parameters in the multivari-
ate analysis (Table 3A: whole study collective; n = 304 patients).

Moreover, MALAT-1 expression was found to influence 
multivariate analysis. In case of weak MALAT-1 expression 
the same parameters as mentioned above were prognostically 
significant (Table 3B: patients with weak MALAT-1 expres-
sion; n = 155 patients), whereas in case of strong MALAT-1 
expression only lymph node stage (HR 0.372, 95% CI 0.162–
0.850, p = 0.019) and tumor stage (HR 5.415, 95% CI 2.308–
12.702, p < 0.001) were prognostically significant, but not 
Bcl-2 (Table 3C: patients with strong MALAT-1 expression; 
n = 87 patients).

TABLE 2.  Clinicopathological dependencies regarding immunohistochemistry.

Variables

positive antigen expression (%)

Bcl-2 Bcl-xl Mcl-1 pp32/PHAPI

Sex p = 0.077 p = 0.086 p = 0.898 p = 0.787

 Male
 female

25.6%
15.7%

33.1%
43.8%

55.0%
55.8%

67.8%
65.8%

Age p = 0.897 p = 0.816 p = 0.571 p = 0.122

 <70 years
 ≥70 years

23.3%
24.0%

35.8%
34.5%

54.4%
57.8%

64.8%
73.1%

Performance Status p = 0.123 p = 0.491 p = 0.002 p = 0.671

 ECOG 0
 ECOG ≥ 1

16.0%
25.0%

37.3%
32.6%

39.7%
60.4%

70.4%
67.0%

Smokers p = 0.335 p = 1.000 p < 0.001 p = 0.193

 never-smokers
 smokers

17.9%
24.3%

34.9%
34.4%

79%
50.5%

74.6%
65.4%

NSCLC Histology p = 0.037 p < 0.001 p = 0.034 p = 0.222

 Non-squamous cell ca.
 Squamous cell carcinoma

19.0%
28.5%

44.7%
25.6%

66.3%
49.1%

70.3%
64.2%

pStage p = 0.805 p = 0.32 p = 0.522 p = 0.797

 I
 II - IV

22.6%
24.0%

37.8%
32.5%

53.1%
57.0%

66.5%
68.7%

Grading
 G1-G2
 G3-G4

p = 0.365
20.3%
24.9%

p = 0.726
33.3%
35.5%

p = 0.736
57.0%
55.0%

p = 0.242
72.0%
65.5%

Lymph node status p = 0.443 p = 0.254 p = 0.322 p = 0.486

 pN0 21.7% 37.7% 53.8% 66.1%

 pN1-3 25.5% 31.6% 59.4% 70.0%

MALAT-1 expression (ISH) p = 1.000 p = 0.342 p = 0.345 p = 0.789

 weak 36.1% 33.7% 32.6% 33.7%

 strong 35.2% 40.2% 38.7% 36.1%

All p-values according to Fisher’s exact test
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Interaction Analysis and Functional Enrichment
Bcl-2 interaction network (Fig, 5) displays the direct 

interaction partners of Bcl-2 and their log-fold change values 
in dependency of MALAT-1. Among the upregulated factors, 
we found Bcl-2, Bcl2l1, BID, and BAX, whereas BIK, Bcl2l11, 
TP53, and MAPK1 were downregulated by MALAT-1 (Fig. 5 
and Table S2). Moreover, interactions among the Bcl-2 inter-
acting proteins were revealed (e.g., Bcl-2l1 interacts with 
TP53, Bcl2l11, BAD, MAPK8, and BAX; Fig. 5). The BiNGO 
analysis of significantly overrepresented GO-terms confirmed 
the annotated functions and compartmental localizations for 
the selected gene set (data not shown).

Within the functional enrichment analyses with regard 
to MALAT-1 expression (up/downregulated genes), biological 
function was of interest. Among the downregulated genes in 
the BiNGO analysis, focus was put on the gene sets that were 
mostly affected by MALAT-1. The gene set TP53, NLRP1 

displayed the second lowest median log FC (-0.79, mad = 0.36) 
and was associated with “activation of caspase activity,” sug-
gesting that MALAT-1 inhibits caspase activation. Likewise, 
another gene set containing MAPK1, BNIP3L, TP53, NR4A1, 
BIK, BAD, BCL2L11, and NLRP1 (median log FC = −0.62, 
mad = 0.41) shows a negative effect of MALAT-1 on both 
induction of apoptosis and on regulation of caspase activity. 
For the complete list, please refer to the Supplemental Digital 
Content (http://links.lww.com/JTO/A677).

Mutational Analysis
To understand the relationship of the tested apoptotic 

factors and the mutation status of EGFR and KRAS, we 
reevaluated the mutational status of a randomly assigned 
study subgroup of our study collective. Mutation status was 
analyzed for a subcohort of n = 146 patients with comparable 
clinical characteristics (p = 0.128, Mann-Whitney-U test for 

FIGURE 2.  Kaplan-Meier survival analysis for all tested apoptotic factors (n = 383). The blue line indicates negative antigenic 
expression, and the red line stands for a positive immunohistochemical signal. The p values of the Log rank test are displayed in 
the corresponding charts. In the total study collective no prognostic effect was found for Bcl-2 (A; p = 0.218, log rank test), for 
Bcl-xl (B; p = 0.590, log rank test), for Mcl-1 (C; p = 0.270, log rank test) nor for pp32/PHAPI (D; p = 0.385, log rank test).
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age; p = 0.956 and p = 0.202, χ2 test for sex and tumor stage, 
respectively).

Among EGFR mutated patients (six of 146 (4%) posi-
tive, either at position 18, 19, or 21) Bcl-2 was not expressed. 
For KRAS (14 of 146, 10% positive) only in 1 case Bcl-2 was 
expressed. Because of the low number of Bcl-2 in mutated 
patients, no comparative survival analysis was calculated for 
Bcl-2. Likewise, we could not show any relevant association 
or prognostic effect for other apoptotic factors (i.e., Bcl-xl, 
Mcl-1, and pp32/PHAPI) and mutation status (p > 0.05, all 
comparisons, for both EGFR and KRAS, log rank test).

DISCUSSION
Apoptosis is a central pathway with strong impact on lung 

cancer pathogenesis. Apoptotic regulators such as the Bcl-2 
family proteins are involved in the cellular response to various 
stresses, including oncogene activation, growth factor deple-
tion, and DNA damage. Bcl-2 is well characterized in indolent 
B-cell lymphoma.4,5 Functionally, Bcl-2 prevents apoptotic cell 
death as induced through the so-called mitochondrial or intrinsic 

pathway of caspase activation.17,19,20,22,23,25,26 In lung cancer, the 
functional role of Bcl-2 and its family members is less clear. 
Published studies of Bcl-2 expression in lung cancers suggest a 
positive prognostic effect,17–26 whereas others demonstrate a neg-
ative prognostic effect27–29 (Supplemental Table 1, Supplemental 
Digital Content, http://links.lww.com/JTO/A677).

Because previous studies are based on heterogeneous 
NSCLC patient populations, the prognostic effect of Bcl-2 
might be influenced by various confounders. To reduce hetero-
geneity, only curatively resected patients without neoadjuvant 
treatment and with a definite NSCLC histology were included 
into the analysis. With regard to the discovered subgroup-spe-
cific effects of Bcl-2, we suggest to reevaluate the published 
studies.

Of the four tested markers a nonsignificant correlation 
with improved survival was found for patients with NSCLC 
expressing Bcl-2 or Mcl-1. To investigate whether these 
effects are random or systematic, exploratory subgroup anal-
yses for the main clinical parameters (i.e., tumor histology, 
lymph node status, and tumor stage) were performed.

FIGURE 3.  The prognostic effect of Bcl-2 depends on tumor histology and lymph node stage (Kaplan-Meier survival analysis,  
n = 383). The blue line indicates negative antigenic expression, and the red line stands for a positive immunohistochemical sig-
nal. The p values of the Log rank test are displayed in the corresponding charts. Depending on histology a prognostic effect was 
shown for Bcl-2 in non-adenocarcinoma (A; p = 0.036) but not for adenocarcinoma (B; p = 0.993). Moreover, in non-adenocar-
cinoma survival rates increased for lymph node negative patients (C; p = 0.049) in contrast to lymph node positive patients (D; 
p = 0.151).
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Whereas no further prognostic effect for Mcl-1 was 
found, Bcl-2 showed a strong impact on survival in our study 
collective. On the one hand, we could confirm the reported 
association of Bcl-2 with squamous cell carcinomas.20,22,23,29 
On the other hand, Bcl-2 expression in patients with non-ade-
nocarcinomas was associated with increased OS (p = 0.036). 
The median OS was longer for Bcl-2-positive patients with 
non-adenocarcinoma histology without lymphatic spread  
(p = 0.049). The observation of an improved survival for 
Bcl-2 positive patients was also confirmed by multivariate 
analysis. Bcl-2 positive NSCLC patients showed decreased 
hazard ratios (i.e., their lethality is reduced by a factor of 
0.64) compared with Bcl-2-negative patients. Besides Bcl-2, 
age, sex, and tumor stage were also identified as independent 
risk factors.

A recent study described an interaction with MALAT-1 
lncRNA in cervical cancer cells. Here, downregulation of 
MALAT-1 induced the expression of Caspase-3, Caspase-8, 
Bax, and suppressed the expression of Bcl-2 and Bcl-xl33. To 
evaluate this hypothesis, we performed RNASeq experiments 
in human lung cancer cell lines with differential MALAT-1 
expression. Therefore, downregulation of MALAT-1 was 
tested in several cancer cell lines. Best transfection rates and 
strongest downregulation of MALAT-1 lncRNA was achieved 
in A 549 lung cancer cell line.34 Because of this observa-
tion and also because of cost effectiveness, next generation 
sequencing was exclusively performed in A 549 cells.

We found Bcl-2 expression to depend on MALAT-1 
expression status in a positively related manner. i.e., strong 
MALAT-1 expression results in elevated Bcl-2 expression 
values (log-fold change = 0.46), confirming the hypothesis of 
Guo et al.33

Furthermore, among Bcl-2 family proteins Bcl-2 
showed the highest upregulation depending on MALAT-1. 
Whether this is because of direct or indirect regulation should 
be evaluated in further studies. A functional enrichment analy-
sis with regard to cellular localization, biological processes, 

and molecular functions of Bcl-2 and its interacting partners 
was performed. The analysis confirms the typical character-
istics of Bcl-2 and its interacting partners, e.g., mitochon-
dric localization. A further analysis separated for MALAT-1 
expression did not generate new insights into the effect of 
MALAT-1 onto apoptotic regulation.

To test whether Bcl-2 is an independent risk factor 
dependent on MALAT-1 expression in vivo, we combined our 
expression profiles for the apoptotic markers with MALAT-1 
lncRNA expression data and performed a multivariate Cox 
proportional hazard analysis stratified by MALAT-1 expres-
sion status (i.e., patients with weak versus patients with strong 
MALAT-1 expression). For NSCLC patients with strong 
MALAT-1 expression, Bcl-2 is no longer an independent 
risk factor, which may be explained by the positive regula-
tion of MALAT-1 on Bcl-2 expression. In patients with strong 
MALAT-1 expression, Bcl-2 and corresponding Bcl-2 family 
members might be elevated. Tumor stage remains the strongest 
risk factor in both MALAT-1 groups. Of note, the prognostic 
impact of stage might be dependent of MALAT-1 expression, 
because the HR for stage II versus stage I increases from HR 
= 1.750 to HR = 5.002 and the HR for stage III and IV versus 
I rises from HR = 3.065 to HR = 6.472, respectively.

Despite the fact that we analyzed a large, clinically well 
characterized study cohort of localized and locally advanced 
NSCLC without neoadjuvant treatment, we cannot provide 
deeper insights into the molecular pathways. Whether the 
Bcl-2 related prognostic effect is independent on the EGFR 
and K-ras, somatic mutation status cannot be answered con-
clusively because of the small number of observed mutations. 
Moreover, the influence of the assumed anti-apoptotic effect 
of Bcl-2 in advanced stages of NSCLC on chemo-resistance 
remains unclear. Further studies should specifically address 
this question in a homogeneous collective of patients receiv-
ing adjuvant chemotherapy

In summary, three of the four markers tested (Bcl-xl, 
Mcl-1, and pp32/PHAPI) did not reveal any prognostic effect, 

FIGURE 4.  Univariate prognostic analysis for Bcl-2 and MALAT-1. The blue line in the Kaplan-Meier charts for overall survival  
(n = 383) indicates negative antigenic expression, and the red line stands for a positive immunohistochemical signal. The p val-
ues of the Log rank test are displayed in the corresponding charts. In univariate analysis, no prognostic effect was found neither 
for weak MALAT-1 expression (A; p = 0.136) nor for strong MALAT-1 expression (B; p = 0.734).
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whereas Bcl-2 could be identified as a prognostic factor, espe-
cially in non-adenocarcinoma lung cancer patients. Furthermore, 
Bcl-2 expression was positively related to MALAT-1 lncRNA 
expression status. With respect to weak MALAT-1 expression, 
Bcl-2-negative patients with resected lung cancer demonstrated 
an adverse prognosis. Non-adenocarcinoma patients with a 
negative expression of Bcl-2 might benefit from intensified 
postoperative care and treatment regimens. However, prospec-
tive studies are required to confirm this hypothesis.

Moreover, our data neither provides biochemical asso-
ciations between MALAT-1 and Bcl-2 in cancer cells, nor a 
causal relationship between MALAT-1 and Bcl-2 because 
of the multivariate analysis including MALAT-1 as potential 
independent risk factor does not result in a significant p value 
(data not shown). However, our analysis provides a strong 
basis for further functional studies of interactions between 
MALAT-1 and molecules of the apoptotic network using ana-
lytical cell models.

TABLE 3.  Overall Survival: Explanatory Prognostic Factors in a Cox Proportional Hazards Model

Prognostic Factor p value HRa (95% CI)b

A) Total study cohort

 Tumor stage <0.001

  (II vs. I) 1.544 (1.115–2.139)

  (III and IV vs. I) 2.824 (1.974–4.039)

 Age (≤70 years vs. ≥70 years) 0.002 1.598 (1.193–2.141)

 Sex (male vs. female) 0.005 0.595 (0.405–0.873)

 Bcl-2 expression (negative vs. positive expression) 0.014 0.657 (0.465–0.930)

 Lymph node status (pN0 vs. pN1-3) 0.537

 Smoking status (nonsmoker vs. smoker) 0.378

 Bcl-xl expression (negative vs. positive expression) 0.790

 Mcl-1 expression (negative vs. positive expression) 0.348

 pp32/PHAPI expression (negative vs. positive expression) 0.353

 Grading (G1–2 vs. G3–4) 0.190

B) Weak MALAT-1 expression

 Tumor stage <0.001

  (II vs. I) 1.750 (1.103–2.777)

  (III and IV vs. I) 3.065 (1.873–5.014)

 Age (≤70 years vs. ≥70 years) 0.003 1.879 (1.250–2.826)

 Sex (male vs. female) 0.018 0.556 (0.333–0.930)

 Bcl-2 expression (negative vs. positive expression) 0.017 0.579 (0.363–0.923)

 Lymph node status (pN0 vs. pN1-3) 0.588

 Smoking status (nonsmoker vs. smoker) 0.513

 Bcl-xl expression (negative vs. positive expression) 0.985

 Mcl-1 expression (negative vs. positive expression) 0.437

 pp32/PHAPI expression (negative vs. positive expression) 0.773

 Grading (G1–2 vs. G3–4) 0.262

C) Strong MALAT-1 expression

 Tumor stage 0.002

  (II vs. I) 5.002 (2.057–12.162)

  (III and IV vs. I) 6.472 (2.426–17.268)

 Lymph node status (pN0 vs. pN1-3) 0.028 0.364 (0.159–0.835)

 Age (≤70 years vs. ≥70 years) 0.311

 Sex (male vs. female) 0.636

 Bcl-2 expression (negative vs. positive expression) 0.818

 Smoking status (nonsmoker vs. smoker) 0.300

 Bcl-xl-2 expression (negative vs. positive expression) 0.219

 Mcl-1 expression (negative vs. positive expression) 0.685

 pp32/PHAPI expression (negative vs. positive expression) 0.173

 Grading (G1–2 vs. G3–4) 0.397

aHazard ratio < 1 indicates improved survival.
bConfidence interval.
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