Theoretical
Computer Science

Axiomatizing the subsumption and subword preorders on finite and infinite partial words

Zoltán Ésik *
Department of Computer Science, University of Szeged, 6701 Szeged, P.O.Box 652, Hungary

Dedicated to Professor Masami Ito on the occasion of his 60th birthday

Abstract

We consider two-sorted algebras of finite and infinite partial words equipped with the subsumption preorder and the operations of series and parallel product and omega power. It is shown that the valid equations and inequations of these algebras can be described by an infinite collection of simple axioms, and that no finite axiomatization exists. We also prove similar results for two related preorders, namely for the induced partial subword preorder and the partial subword preorder. Along the way of proving these results, we provide a concrete description of the free algebras in the corresponding varieties in terms of generalized series-parallel partial words. © 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

The notion of word, i.e., isomorphism class of a (finite) total order equipped with a labeling function, may be generalized in two directions to obtain partial words. On the one hand, a partial word is an isomorphism class of labeled total orders equipped with a partially defined labeling function, see [3]. In this paper, following [10], we define a partial word as an isomorphism class of a labeled partial order.

Partially ordered structures, and in particular partial words or pomsets for partially ordered multisets [15], have been used extensively to give semantics to concurrent languages $[15,8,14,7,1,2]$, and to Petri nets $[10,19,13,20,18]$, to mention a few references. The event structures of Winskel [21,22] are partial words enriched with a conflict relation subject to certain conditions. A wide variety of operations have been studied on partial words. The operations of series product $P \cdot Q$ and parallel product

[^0]$P \otimes Q$ have a fundamental role in many applications. In [6], the authors also considered the omega power operation P^{ω} which provides solutions to fixed-point equations of the sort
$$
X=P \cdot X
$$
for finite nonempty P. The models considered in [6] were two-sorted, since the series product and omega power operations $P \cdot Q$ and P^{ω} were restricted to finite partial words P. The restriction was due to the fact that only those partial words P represent the behavior of concurrent processes which satisfy the condition that each vertex of P generates a finite principal ideal. It was shown in [6] that the equational theory of partial words equipped with the operations of series and parallel product and omega power can be axiomatized by an infinite collection of simple equations, and that no finite axiomatization exists. In this paper, we consider the same algebras of partial words, but also equipped with the subsumption preorder [15,9] defined by $P \leqslant Q$ if and only if there is a monotonic and label-preserving bijective function $Q \rightarrow P$. We prove that the valid inequations of these algebras have a finite axiomatization over the set of valid equations, and exhibit a finite relative inequational axiomatization. We also show that no finite inequational axiomatization exists and establish similar results for two related preorders: the induced partial subword preorder and the partial subword preorder. Along the way of proving these results, we provide a concrete description of the free algebras in the corresponding varieties in terms of generalized series-parallel partial words. Our arguments make use of the theorems proved in [6], and our results extend the axiomatization of the subsumption order in [9].

2. Partial words

We consider finite nonempty and countably infinite posets $P=\left(P, \leqslant_{P}, l_{P}\right)$ whose elements, called vertices, are labeled in a set A. Thus, l_{P} is a function $P \rightarrow A$. A morphism of A-labeled posets is a monotonic function which preserves the labeling. An isomorphism is a morphism which is an order isomorphism. An A-labeled partial word, or just partial word [10], for short, is an isomorphism class of A-labeled posets. We will identify isomorphic labeled posets with the partial word they represent.
Some notation: For each nonnegative integer n, we denote the set $\{1, \ldots, n\}$ by $[n]$. Moreover, we denote $[\omega]=\{1,2, \ldots\}$.

Suppose that $P=\left(P, \leqslant_{P}, l_{P}\right)$ and $Q=\left(Q, \leqslant_{Q}, l_{Q}\right)$ are partial words. We define several operations, some of which will require that P is finite.
Series product. If P is finite, then the series product of P and Q is constructed by taking the disjoint union of P and Q and making each vertex of Q larger than any vertex of P. Thus, assuming without loss of generality that P and Q are disjoint,

$$
P \cdot Q=\left(P \cup Q, \leqslant P \cdot Q, l_{P \cdot Q}\right),
$$

where, for any $u, v \in P \cup Q$,

$$
\begin{aligned}
u \leqslant P \cdot Q & \Leftrightarrow(u \in P \text { and } v \in Q) \text { or } u \leqslant P v \text { or } u \leqslant \leqslant_{Q} v, \\
l_{P \cdot Q}(u) & = \begin{cases}l_{P}(u) & \text { if } u \in P, \\
l_{Q}(u) & \text { if } u \in Q .\end{cases}
\end{aligned}
$$

Parallel product. The parallel product of P and Q is constructed as the disjoint union of P and Q. Thus,

$$
P \otimes Q=\left(P \cup Q, \leqslant_{P \otimes Q}, l_{P \otimes Q}\right),
$$

where we again assume that P and Q are disjoint. Moreover, for any $u, v \in P \cup Q$,

$$
\begin{aligned}
u \leqslant P \otimes Q v \Leftrightarrow u \leqslant P v & \text { or } u \leqslant Q v, \\
l_{P \otimes Q}(u) & = \begin{cases}l_{P}(u) & \text { if } u \in P, \\
l_{Q}(u) & \text { if } u \in Q .\end{cases}
\end{aligned}
$$

Omega power. Assume that P is finite. The omega power of P, denoted P^{ω}, is the series product of P with itself ω-times. Thus,

$$
P^{\omega}=\left(P \times[\omega], \leqslant p^{\omega}, l_{P^{\omega}}\right),
$$

where

$$
\begin{aligned}
(u, i) \leqslant P^{\omega}(v, j) & \Leftrightarrow i<j \text { or }\left(i=j \text { and } u \leqslant P^{v}\right), \\
l_{P^{\omega}}((u, i)) & =l_{P}(u),
\end{aligned}
$$

for all $(u, i),(v, j) \in P \times[\omega]$.
More generally, given disjoint finite partial words $P_{i}, i \geqslant 0$, we define $P=P_{0} \cdot P_{1} \cdot \ldots$ as the partial word on the set $\bigcup_{i \geqslant 0} P_{i}$ equipped with the partial order and labeling

$$
\begin{aligned}
& u \leqslant{ }_{P} v \Leftrightarrow i<j \text { or }\left(i=j \text { and } u \leqslant P_{i} v\right), \\
& l_{P}(u)=l_{P_{i}}(u),
\end{aligned}
$$

for all vertices $u \in P_{i}$ and $v \in P_{j}$.
Let $\mathbf{P w}_{f}(A)$ denote the collection of all finite (nonempty) A-labeled partial words. Moreover, let $\mathbf{P w}_{\omega}(A)$ stand for the set of all (countably) infinite A-labeled partial words. Then we have the two-sorted algebra

$$
\mathbf{P} \mathbf{w}(A)=\left(\mathbf{P} \mathbf{w}_{f}(A), \mathbf{P} \mathbf{w}_{\omega}(A), \cdot \cdot, \otimes,{ }^{\omega}\right),
$$

where for all $P, Q \in \mathbf{P w}_{f}(A) \cup \mathbf{P w}_{\omega}(A), P \cdot Q$ and P^{ω} are defined if and only if $P \in \mathbf{P w}_{f}(A)$. Moreover, $P \cdot Q$ and $P \otimes Q$ are in $\mathbf{P w}_{f}(A)$ if and only if $P, Q \in \mathbf{P}_{f}(A)$. Thus, if $Q \in \mathbf{P w}_{\omega}(A)$, then $P \cdot Q \in \mathbf{P w}_{\omega}(A)$, and if P or Q is in $\mathbf{P w}_{\omega}(A)$, then $P \otimes Q \in$ $\mathbf{P} \mathbf{w}_{\omega}(A)$. We call the sets $\mathbf{P w}_{f}(A)$ and $\mathbf{P} \mathbf{w}_{\omega}(A)$ the carriers of finite and infinite sort, respectively.

Example 2.1. In the following examples, we assume that a, b, c are letters in A. If u, v are vertices of a poset, ordered by \leqslant, we write $u<v$ to mean that $u \leqslant v$ and $u \neq v$.
(1) Consider the partial word $P \in \mathbf{P w}_{f}(A)$ determined by the poset with vertices v_{1}, \ldots, v_{6} such that v_{1} is below v_{2}, v_{3} and v_{4}, v_{2} and v_{3} are below v_{4}, and v_{5} is below v_{6}, and where v_{1}, v_{4}, v_{5} are labeled a, and the other vertices are labeled b. Identifying letter a and b with the singleton partial word labeled a and b, respectively, P can be given by the expression $(a \cdot(b \otimes b) \cdot a) \otimes(a \cdot b)$, where we take advantage of the associativity of \cdot
(2) Let Q_{1} be the partial word in $\mathbf{P w}_{f}(A)$ determined by the poset with vertices v_{1}, \ldots, v_{4} where $v_{1}<v_{3}$ and $v_{2}<v_{4}$, and there are no other nontrivial order relations. Each vertex is labeled a. Let Q_{2} denote the partial word obtained from Q_{1} by additionally requiring $v_{2}<v_{3}$, and let Q_{3} be the partial word in which, in addition to the order relations of Q_{2}, also $v_{1}<v_{4}$ holds. Then $Q_{1}=(a \cdot a) \otimes(a \cdot a)=a^{2} \otimes a^{2}$ and $Q_{3}=(a \otimes a) \cdot(a \otimes a)=(a \otimes a)^{2}$. On the other hand, Q_{2} has no decomposition into a series or parallel product of two partial words.
(3) The partial word $R=a \cdot(b \cdot(c \otimes c))^{\omega} \in \mathbf{P w}_{\omega}(A)$ is determined by the poset on the vertices (i, j), where $i \geqslant 0$, and $j=1$ if i is 0 or odd, and $j=1,2$ if $i>0$ is even. We have $(i, j)<\left(i^{\prime}, j^{\prime}\right)$ iff $i<i^{\prime}$. Thus, vertices $(i, 1)$ and $(i, 2)$, where $i>0$ is even, are parallel. Moreover, vertex 0 is labeled a, and a vertex (i, j) with $i>0$ is labeled b if i is odd, and c if i is even.

Theorem 2.2 (Bloom and Ésik [6]). The variety \mathscr{V} generated by the algebras $\mathbf{P w}(A)$ is axiomatized by the equations

$$
\begin{align*}
& x \cdot(y \cdot u)=(x \cdot y) \cdot u, \tag{1}\\
& u \otimes(v \otimes w)=(u \otimes v) \otimes w, \tag{2}\\
& u \otimes v=v \otimes u, \tag{3}\\
& (x \cdot y)^{\omega}=x \cdot(y \cdot x)^{\omega}, \tag{4}\\
& \left(x^{n}\right)^{\omega}=x^{\omega}, \quad n \geqslant 2 \text { is prime. } \tag{5}
\end{align*}
$$

Here the variables x, y are of finite sort, and u, v, w can have either finite or infinite sort. (More precisely, in [6] the parallel product of two partial words is defined only if both partial words are finite or both are infinite, causing only a little change in the above result and its proof.) Note that (5) holds in \mathscr{V} for all integers $n \geqslant 2$, and that the equation

$$
\begin{equation*}
x \cdot x^{\omega}=x^{\omega} \tag{6}
\end{equation*}
$$

also holds in \mathscr{V}.
Remark 2.3. Eqs. (1), (4) and (5) define Wilke algebras [17] that have been used to construct syntactic algebras for ω-languages.

2.1. Varieties of preordered algebras

We will consider two-sorted preordered algebras $M=\left(M_{f}, M_{\omega}, \cdot, \otimes,{ }^{\omega}, \leqslant\right)$ equipped with binary operations \cdot, \otimes, a unary operation ${ }^{\omega}$, and a preorder, i.e., a reflexive and transitive relation \leqslant preserved by the operations. The preorder \leqslant is defined on both M_{f} and M_{ω}, and in the algebras considered in Section 5, it may as well relate elements of M_{f} and M_{ω}. When the preorder is antisymmetric, the preordered algebra is sometimes referred to as an ordered algebra [4]. For preordered algebras $M=\left(M_{f}, M_{\omega}, \cdot, \otimes,{ }^{\omega}, \leqslant\right)$ and $M^{\prime}=\left(M_{f}^{\prime}, M_{\omega}^{\prime}, \cdot, \otimes,{ }^{\omega}, \leqslant\right)$, a morphism $h: M \rightarrow M^{\prime}$ is a pair of functions $h_{f}: M_{f} \rightarrow M_{f}^{\prime}, h_{\omega}: M_{\omega} \rightarrow M_{\omega}^{\prime}$ which jointly preserve the operations and the preorder. An isomorphism $M \rightarrow M^{\prime}$ is a morphism $h: M \rightarrow M^{\prime}$ such that the inverses h_{f}^{-1} and h_{ω}^{-1} exist and determine a morphism $M^{\prime} \rightarrow M$. Thus, e.g., for all $x, y \in M_{f}$, $x \leqslant y$ in M iff $x h_{f} \leqslant y h_{f}$ in M^{\prime}. We call M a subalgebra of M^{\prime} if $M_{f} \subseteq M_{f}^{\prime}, M_{\omega} \subseteq M_{\omega}^{\prime}$, and if the inclusions determine a morphism $M \rightarrow M^{\prime}$ such that for all $x, y \in M_{f} \cup M_{\omega}$, if $x \leqslant y$ in M^{\prime} then $x \leqslant y$ in M. Moreover, we call M^{\prime} a morphic image or quotient of M if there is a morphism $M \rightarrow M^{\prime}$ whose components are surjective functions. Direct products are defined as usual, the preorder on the direct product is the pointwise preorder. A variety of preordered algebras is any class of preordered algebras closed under taking subalgebras, quotients and direct products. Birkhoff's Variety Theorem can be extended to preordered algebras in a natural way (see [4] for the case of ordered algebras). Given a set E of equations $t=t^{\prime}$ and a set E^{\prime} of inequations $t \leqslant t^{\prime}$ between terms, let $\operatorname{Mod}\left(E, E^{\prime}\right)$ denote the class of all models of E and E^{\prime}, i.e., the class of all preordered algebras satisfying all equations in E as well as all inequations in E^{\prime}. Then $\operatorname{Mod}\left(E, E^{\prime}\right)$ is a variety, and any variety is of this form. The proof relies on the existence of free preordered algebras in any class closed under subalgebras and direct products. We say that an algebra M with carriers M_{f} and M_{ω} is freely generated by a pair of sets (A, B) in a class \mathscr{K} of preordered algebras, or that M is a free algebra on (A, B) in \mathscr{K}, if $M \in \mathscr{K}$ and there is a pair of functions $\eta_{f}: A \rightarrow M_{f}, \eta_{\omega}: B \rightarrow M_{\omega}$ with the following property: For any $M^{\prime} \in \mathscr{K}$ with carriers M_{f}^{\prime} and M_{ω}^{\prime} and for any functions $h_{f}: A \rightarrow M_{f}^{\prime}$ and $h_{\omega}: B \rightarrow M_{\omega}^{\prime}$ there is a unique morphism $h^{\sharp}=\left(h_{f}^{\#}, h_{\omega}^{\sharp}\right): M \rightarrow M^{\prime}$ with $\eta_{f} \circ h_{f}^{\#}=h_{f}$ and $\eta_{\omega} \circ h_{\omega}^{\sharp}=h_{\omega}$. It is clear that if both M and M^{\prime} are freely generated by (A, B) in \mathscr{K}, then M and M^{\prime} are isomorphic.

The free preordered algebra on a pair of sets (A, B) in the variety $\operatorname{Mod}\left(E, E^{\prime}\right)$ can be constructed from the algebra F freely generated by (A, B) in the Birkhoff variety $\operatorname{Mod}(E)$ by equipping F with the least preorder such that the resulting algebra satisfies the inequations in E^{\prime}. In particular, for all E^{\prime}, the free preordered algebras in $\operatorname{Mod}(E, \emptyset)$ and $\operatorname{Mod}\left(E, E^{\prime}\right)$ have the same underlying \leqslant-free reduct. The ordered algebras in the variety of preordered algebras $\operatorname{Mod}\left(E, E^{\prime}\right)$ form a variety \mathscr{V} of ordered algebras as defined in [4]. We call \mathscr{V} the variety of ordered algebras contained in $\operatorname{Mod}\left(E, E^{\prime}\right)$. It consists of those ordered algebras satisfying all equations in E as well as all inequations in E^{\prime}. The free algebra on (A, B) in \mathscr{V} may be constructed as a quotient of the preordered algebra F freely generated by the sets (A, B) in $\operatorname{Mod}\left(E, E^{\prime}\right)$: We identify
two elements x, y of F if both $x \leqslant y$ and $y \leqslant x$ hold. The partial order is the induced partial order.

3. The subsumption preorder

In this section, we study some properties of the subsumption preorder on partial words.

Definition 3.1. Suppose that $P=\left(P, \leqslant_{P}, l_{P}\right)$ and $Q=\left(Q, \leqslant_{Q}, l_{Q}\right)$ are partial words. We define $P \leqslant Q$ in the subsumption preorder if there is a bijective morphism from Q to P, i.e., a one-to-one and onto function $\varphi: Q \rightarrow P$ that preserves the partial order and the labeling.

Example 3.2. (1) Consider the partial words Q_{1}, Q_{2} and Q_{3} given in Example 2.1. Since the identity map on the set $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a bijective morphism $Q_{1} \rightarrow Q_{2}$, we have that $Q_{2} \leqslant Q_{1}$ in the subsumption order. In the same way, $Q_{3} \leqslant Q_{2}$ and $Q_{3} \leqslant Q_{1}$. On the other hand, the identity function is not a morphism $Q_{2} \rightarrow Q_{1}$. In fact, none of the relations $Q_{1} \leqslant Q_{2}, Q_{1} \leqslant Q_{3}$ and $Q_{2} \leqslant Q_{3}$ holds.
(2) Consider the partial words a^{ω} and $a^{\omega} \otimes a^{\omega}$, determined by the labeled partial orders $\left(P, \leqslant_{P}, l_{P}\right)$ and $\left(Q, \leqslant_{Q}, l_{Q}\right)$, where $P=\left\{u_{i}: i \geqslant 0\right\}, Q=\left\{v_{i, j}: i \geqslant 0, j=1,2\right\}$, with $u_{i} \leqslant{ }_{P} u_{i^{\prime}}$ iff $i \leqslant i^{\prime}$ and $v_{i, j} \leqslant Q_{Q} v_{i^{\prime}, j^{\prime}}$ iff $i \leqslant i^{\prime}$ and $j=j^{\prime}$, and where $l_{P}\left(u_{i}\right)=l_{Q}\left(v_{i, j}\right)=a$, for all $i \geqslant 0$ and $j=1,2$. The function $v_{i, 1} \mapsto u_{2 i}, v_{i, 2} \mapsto u_{2 i+1}$ is a monotonic bijection that preserves the labels. Thus, $a^{\omega} \leqslant a^{\omega} \otimes a^{\omega}$. On the other hand, there is no monotonic bijection $P \rightarrow Q$, since any such function should map some vertices u_{i} and u_{k} to $v_{0,1}$ and $v_{0,2}$, respectively. But then the function does not preserve the order, for u_{i} and u_{k} are related in P, but $v_{0,1}$ and $v_{0,2}$ are parallel.
(3) The subsumption order is not a partial order. To see this, consider the partial words

$$
\begin{aligned}
& a^{\omega} \otimes R, \\
& a^{\omega} \otimes a^{\omega} \otimes R,
\end{aligned}
$$

where R is a countably infinite discrete partial word whose vertices are labeled a. We may represent R as the labeled poset $\left(\left\{w_{i}: i \geqslant 0\right\}, \leqslant_{R}, l_{R}\right)$ where $w_{i} \leqslant_{R} w_{j}$ iff $i=j$, and where $l_{R}\left(w_{i}\right)=a$, for all $i \geqslant 0$. Thus, when P and Q denote the labeled posets of the previous example, $a^{\omega} \otimes R$ is represented by the disjoint union of P with R, and $a^{\omega} \otimes a^{\omega} \otimes R$ by the disjoint union of Q with R. Now the function defined by $u_{i} \mapsto v_{i, 1}$, $w_{2 i} \mapsto v_{i, 2}$ and $w_{2 i+1} \mapsto w_{i}, i \geqslant 0$, is a monotonic label-preserving bijection from the disjoint union of P and R onto the disjoint union of Q and R. Moreover, the function defined by $v_{i, 1} \mapsto u_{2 i}, v_{i, 2} \mapsto u_{2 i+1}$ and $w_{i} \mapsto w_{i}, i \geqslant 0$ is a monotonic bijection from the disjoint union of Q and R to the disjoint union of P and R. This proves that both

$$
a^{\omega} \otimes R \leqslant a^{\omega} \otimes a^{\omega} \otimes R
$$

and

$$
a^{\omega} \otimes a^{\omega} \otimes R \leqslant a^{\omega} \otimes R
$$

hold.
Nevertheless, the subsumption order is a partial order on an important subclass of the partial words.

Definition 3.3. We call an A-labeled partial word $P=\left(P, \leqslant_{P}, l_{P}\right) \omega$-linearizable if P is either finite or it has linearization to an ω-chain, i.e,. its elements can be enumerated in a sequence u_{0}, u_{1}, \ldots such that $u_{i} \leqslant u_{j}$ implies $i \leqslant j$, for all $i, j \geqslant 0$.

The following fact is clear.
Proposition 3.4. A partial word P is ω-linearizable if and only if each principal ideal of P is finite.

Of course, an ideal of P is a nonempty downward closed subset of P, and a filter is a nonempty upward closed subset. A principal ideal is an ideal which is generated by a single vertex, i.e., consists of the vertices \leqslant than a given vertex of P.

The width of a partial word P, denoted $w(P)$, is the maximal number of pairwise parallel vertices of P, if this number is finite. Otherwise the width of P is ω.

Proposition 3.5. Suppose that P and Q are ω-linearizable partial words of finite width. If $P \leqslant Q$ and f is a bijective morphism $P \rightarrow Q$, then f is an isomorphism.

Proof. Suppose first that P and Q are finite. Since $P \leqslant Q$, there is a bijective morphism $g: Q \rightarrow P$. Let $h=f \circ g$, so that h is a bijective morphism $P \rightarrow P$. Since P is finite, there is an integer $n>0$ such that h^{n} is a the identity function $P \rightarrow P$. Thus, for all $x, y \in P$, if $f(x) \leqslant Q f(y)$, then

$$
x=h^{n}(x)=h^{n-1}(g(f(x))) \leqslant p^{n-1}(g(f(y)))=h^{n}(y)=y .
$$

This proves that f is an isomorphism.
Suppose now that P and Q are infinite. Let g denote a bijective morphism $Q \rightarrow P$. For each $n \geqslant 0$, let P_{n} denote the subposet of P determined by the vertices of height at most n, and define Q_{n} in the same way. Since P and Q have finite width, it follows that P_{n} and Q_{n} are finite. Moreover, $P=\bigcup_{n} P_{n}$ and $Q=\bigcup_{n} Q_{n}$, and since f and g are injective morphisms, $f^{-1}\left(Q_{n}\right) \subseteq P_{n}$ and $g^{-1}\left(P_{n}\right) \subseteq Q_{n}$, for each $n \geqslant 0$. Since the sets P_{n} and Q_{n} are finite, it follows now that $f^{-1}\left(Q_{n}\right)=P_{n}$ and $g^{-1}\left(P_{n}\right)=Q_{n}$, for each n, so that by the first part of the proof, the restriction of f to P_{n} is an isomorphism $P_{n} \rightarrow Q_{n}$. Since this holds for every n, and since $P=\bigcup_{n} P_{n}$ and $Q=\bigcup_{n} Q_{n}$, it follows now that f itself is an isomorphism.

Corollary 3.6. The subsumption preorder is a partial order on the set of ω-linearizable partial words with finite width.

Equipped with the subsumption order, the structure

$$
\mathbf{P w}^{\leqslant} \leqslant(A)=\left(\mathbf{P} \mathbf{w}_{f}(A), \mathbf{P w}_{\omega}(A), \cdot, \otimes,{ }^{\omega}, \leqslant\right)
$$

is a two-sorted preordered algebra, so that the operations preserve the preorder \leqslant. The (weak) interchange laws are the following inequations:

$$
\begin{align*}
& (x \otimes y) \cdot(u \otimes v) \leqslant(x \cdot u) \otimes(y \cdot v), \tag{7}\\
& x \cdot(u \otimes v) \leqslant(x \cdot u) \otimes v, \tag{8}\\
& (x \otimes y) \cdot u \leqslant(x \cdot u) \otimes y, \tag{9}\\
& x \cdot u \leqslant x \otimes u, \tag{10}\\
& (x \otimes y)^{\omega} \leqslant x^{\omega} \otimes y^{\omega}, \tag{11}
\end{align*}
$$

where x, y are finite sort variables and u and v can independently have finite or infinite sort.

Proposition 3.7. The weak interchange laws hold in all algebras $\mathbf{P} \mathbf{w} *(A)$.
Proof. We only prove that (7) holds, i.e., $(P \otimes Q) \cdot(R \otimes S) \leqslant(P \cdot R) \otimes(Q \cdot S)$, for all $P, Q \in \mathbf{P w}_{f}(A)$ and $R, S \in \mathbf{P w}_{f}(A) \cup \mathbf{P} \mathbf{w}_{\omega}(A)$. But this is clear, since $(P \otimes Q) \cdot(R \otimes S)$ is constructed by taking the disjoint union of P, Q, R, S and making each vertex in $R \cup S$ larger than any vertex in $P \cup Q$. The partial word $(P \cdot R) \otimes(Q \cdot S)$ is constructed as the same disjoint union, by making each vertex of R only larger than the vertices in P, and each vertex of S only larger than those in Q.

4. Axiomatizing the subsumption preorder

Let $\mathscr{V} \leqslant$ denote the collection of all preordered two-sorted algebras equipped with the above operations satisfying the equations that hold in \mathscr{V} (equivalently, the equations given in Theorem 2.2), and the weak interchange laws. Thus, $\mathscr{V} \leqslant$ is a variety of two-sorted preordered algebras. In this section we prove:

Theorem 4.1. An equation or inequation holds in all algebras $\mathbf{P w} \leqslant(A)$ if and only if it holds in $\mathscr{r} \leqslant$.

Thus, the algebras $\mathbf{P w}^{\leqslant}(A)$ generate the variety $\mathscr{V} \leqslant$. Theorem 4.1 will follow from Theorem 4.6 which gives a concrete description of the free algebras in $\mathscr{V} \leqslant$. To formulate this result, we need to consider partial words over a pair of disjoint sets. So suppose that A and B are disjoint. Let $\mathbf{P w}_{\omega}(A, B)$ denote those $(A \cup B)$-labeled partial
words which are either infinite or contain a vertex labeled in B, and such that any vertex labeled in B is maximal. Note that $\mathbf{P w}_{f}(A)$ is disjoint from $\mathbf{P w}_{\omega}(A, B)$. Moreover, if $P \in \mathbf{P w}_{f}(A)$ and $Q \in \mathbf{P} \mathbf{w}_{\omega}(A, B)$, then $P \cdot Q \in \mathbf{P w}_{\omega}(A, B)$, and if $P, Q \in \mathbf{P w}_{f}(A) \cup \mathbf{P} \mathbf{w}_{\omega}$ (A, B) such that P or Q is in $\mathbf{P} \mathbf{w}_{\omega}(A, B)$, then $P \otimes Q \in \mathbf{P w}_{\omega}(A, B)$. Thus, we have a twosorted algebra $\mathbf{P w}(A, B)=\left(\mathbf{P w}_{f}(A), \mathbf{P w}_{\omega}(A, B), \cdot, \otimes,{ }^{\omega}\right)$, defined in the same way as the algebra $\mathbf{P w}(A)$, so that $\mathbf{P w}(A, \emptyset)$ is just $\mathbf{P w}(A)$. Equipped with the subsumption preorder, this algebra is denoted $\mathbf{P} \mathbf{w} \leqslant(A, B)$. Note that $\mathbf{P w}(A, B) \in \mathscr{V}$ and $\mathbf{P} \mathbf{w} \leqslant(A, B) \in \mathscr{V} \leqslant$.

Definition 4.2. A partial word $P \in \mathbf{P w}_{f}(A)$ is series-parallel if P belongs to the least subalgebra of $\mathbf{P w}(A, B)$ (or $\mathbf{P w}(A)$) containing the singletons. Similarly, a partial word $P \in \mathbf{P w}_{\omega}(A, B)$ is generalized series-parallel if P is contained in the subalgebra of $\mathbf{P w}(A, B)$ generated by the singletons.

Example 4.3. Consider the partial words given in Example 2.1. P, Q_{1}, Q_{3} are seriesparallel, and R is generalized series-parallel. On the other hand, Q_{2} is not seriesparallel. The partial words $R, a^{\omega} \otimes R$ and $a^{\omega} \otimes a^{\omega} \otimes R$ of Example 3.2 are not generalized series-parallel. In fact, every generalized series-parallel partial word has finite width, as implied by Theorem 4.8. Let S denote the partial word ($\left\{u_{i}: i \geqslant 0\right\}, \leqslant s, l_{S}$) ordered by the relation $u_{i} \leqslant u_{j}$ iff $j \leqslant i$ and equipped with the labeling function $l_{S}\left(u_{i}\right)=a$, for all $i \geqslant 0$. Then S is not generalized series-parallel.

Let $\mathbf{S P}_{A}$ denote the collection of all series-parallel partial words in $\mathbf{P w}_{f}(A)$, and $\mathbf{S P}_{A, B}^{\omega}$ the collection of all generalized series-parallel partial words in $\mathbf{P} \mathbf{w}_{\omega}(A, B)$. These two sets determine a subalgebra of $\mathbf{P w}(A, B)$ denoted $\omega \mathbf{S P}_{A, B}$. Equipped with the subsumption preorder, $\omega \mathbf{S P}_{A, B}$ is a preordered algebra denoted $\omega \mathbf{S P}_{A, B}^{\lessgtr}$. We have that $\omega \mathbf{S P}_{A, B} \in \mathscr{V}$ and $\omega \mathbf{S P}_{A, B}^{\leq} \in \mathscr{V} \leqslant$.
By Proposition 3.5, if $P, Q \in \mathbf{P w}_{\omega}(A, B)$ such that both $P \leqslant Q$ and $Q \leqslant P$ hold in the subsumption preorder, and if P and Q are ω-linearizable and have finite width, then P and Q are isomorphic. Thus, since any generalized series-parallel partial word is ω-linearizable and has finite width, see below, we have

Corollary 4.4. The subsumption preorder is a partial order on (generalized) seriesparallel partial words.

Thus, $\mathbf{S P}_{A, B}^{\leq}$is in fact an ordered algebra.
The following result is a variation of Theorem 5.1 in [6]. (We identify each label with the corresponding singleton partial word.)

Theorem 4.5 (Bloom and Ésik [6]). For any pair (A, B) of disjoint sets, $\mathbf{S P}_{A, B}$ is freely generated in \mathscr{V} by (A, B).

The meaning of this result is the following. Given any algebra $M=\left(M_{f}, M_{\omega}, \cdot, \otimes{ }^{\omega}{ }^{\omega}\right)$ in \mathscr{V} and functions $h_{f}: A \rightarrow M_{f}, h_{\omega}: B \rightarrow M_{\omega}$, there exist unique functions $h_{f}^{\#}: \mathbf{S P}_{A} \rightarrow$
M_{f} and $h_{\omega}^{\ddagger}: \mathbf{S P}_{A, B}^{\omega} \rightarrow M_{\omega}$ extending h_{f} and h_{ω}, respectively, which together preserve all operations.

We use this result to prove:
Theorem 4.6. For any pair (A, B) of disjoint sets, $\mathbf{S P}_{A, B}^{\leqslant}$is freely generated in $\mathscr{V} \leqslant$ by (A, B).

Before proving this result, we recall the graph theoretic characterization of the seriesparallel partial words from $[10,16]$, and the characterization of the generalized seriesparallel partial words from [6]. We say that a partial word P is N-free if P does not have four distinct vertices $u_{1}, u_{2}, v_{1}, v_{2}$ whose induced partial order determines an N , i.e., $u_{1}<v_{1}, u_{2}<v_{2}, u_{2}<v_{1}$ and any other two vertices are incomparable.

Theorem 4.7 (Grabowski [10], Valdes et al. [16]). A partial word $P \in \mathbf{P w}_{f}(A)$ is series-parallel if and only if P is N-free.

Theorem 4.8 (Bloom and Ésik [6]). A partial word $P \in \mathbf{P w}_{\omega}(A, B)$ is a generalized series-parallel partial word if and only if the following hold.
(1) P is N-free.
(2) P is ω-linearizable.
(3) P has a finite number of filters (up to isomorphism).

It follows that each generalized series-parallel partial word P has finite width. Indeed, otherwise P would contain an n-generated filter for each $n \geqslant 1$, contradicting the last condition. Note also that the last two conditions hold for all finite $P \in \mathbf{P w}_{\omega}(A, B)$.

Corollary 4.9. Suppose that $P \in \mathbf{S P}_{A} \cup \mathbf{S P}_{A, B}^{\omega}$. If Q is a finite $(A \cup B)$-labeled partial word determined by a nonempty subset of P, then $Q \in \mathbf{S P}_{A}$ or $Q \in \mathbf{S P}_{A, B}^{\omega}$ depending on whether or not P has a vertex labeled in B.

Corollary 4.10. Suppose that $P \in \mathbf{S P}_{A, B}^{\omega}$ and Q is an infinite filter of P. Then $Q \in$ $\mathbf{S P}_{A, B}^{\omega}$.

Thus, if $P=R \cdot S$ or $P=R \otimes S$ with $P \in \mathbf{S P}_{A}$, then $R, S \in \mathbf{S P}_{A}$. Moreover, if $P=R \cdot S \in$ $\mathbf{S P}_{A, B}^{\omega}$, then $R \in \mathbf{S P}_{A}$ and $S \in \mathbf{S P}_{A, B}^{\omega}$, and if $P=R \otimes S \in \mathbf{S P}_{A, B}^{\omega}$, then $R, S \in \mathbf{S P}_{A} \cup \mathbf{S P}_{A, B}^{\omega}$ and either R or S is in $\mathbf{S P}_{A, B}^{\omega}$. Also, if $P=S^{\omega} \in \mathbf{S P}_{A, B}^{\omega}$, then $S \in \mathbf{S P}_{A}$. Below we will use these facts without mention.

For later use, we note the following.
Lemma 4.11. Suppose that $P \in \mathbf{S P}_{A, B}^{\omega}, R$ is a partial word in $\mathbf{S P}_{A} \cup \mathbf{S P}_{A, B}^{\omega}$ determined by a subset of P and Q is a partial word determined by a finite nonempty subset of P. Then the partial word determined by $R \cup Q$ is in $\mathbf{S P}_{A} \cup \mathbf{S P}_{A, B}^{\omega}$.

Proof. Any filter of $R \cup Q$ is the union of a filter of R with a subset of Q. Moreover, the partial word determined by $R \cup Q$ is N -free and ω-linearizable.

By Theorem 4.8, or by a straightforward induction on the number of operations needed to generate an infinite partial word $P \in \mathbf{S P}_{A, B}^{\omega}$ from the singletons, it is easy to see that P is either disconnected, i.e., $P=R \otimes S$ for some (nonempty) R, S; or eventually disconnected, i.e., $P=R \cdot S$, where S is disconnected; or P is directed, ${ }^{1}$ in which case P is of the form $R \cdot S^{\omega}$, where R and S are finite. Moreover, if $P \in \mathbf{S P}_{A, B}^{\omega}$ is finite and not a singleton, then P is either disconnected or $P=R \cdot S$ for some R and S.

Lemma 4.12. Suppose that $P \leqslant R=R_{1} \cdot R_{2}$, where $R_{1} \in \mathbf{P w}_{f}(A)$, and $P, R_{2} \in \mathbf{P w}_{f}(A)$ or $P, R_{2} \in \mathbf{P} \mathbf{w}_{\omega}(A, B)$. Then there exist $P_{1} \in \mathbf{P w}_{f}(A)$ and $P_{2} \in \mathbf{P w}_{f}(A)$ or $P_{2} \in \mathbf{P w}_{\omega}(A, B)$ with $P=P_{1} \cdot P_{2}$ and $P_{i} \leqslant R_{i}, i=1,2$.

Proof. Without loss of generality, we may assume that P and R have the same vertex set and labeling and that the partial order \leqslant_{P} is an extension of the order \leqslant_{R}. Thus, we have $v_{1} \leqslant P v_{2}$ for any $v_{1} \in R_{1}$ and $v_{2} \in R_{2}$. It follows that $P=P_{1} \cdot P_{2}$, where for $i=1,2, P_{i}$ is R_{i} with the partial order inherited from P. It is clear that $P_{i} \leqslant R_{i}, i=1,2$.

Lemma 4.13. Let $P=P_{1} \otimes P_{2} \leqslant R$ for some partial words P, P_{1}, P_{2} and R in $\mathbf{P w}_{f}(A) \cup$ $\mathbf{P w}_{\omega}(A, B)$. Then there exist partial words R_{1} and R_{2} in $\mathbf{P w}_{f}(A) \cup \mathbf{P w}_{\omega}(A, B)$ with $R=R_{1} \otimes R_{2}$ and $P_{i} \leqslant R_{i}, i=1,2$.

Proof. Assume that P and R have the same vertex set and labeling, and that the partial order \leqslant_{P} is an extension of \leqslant_{R}. For $i=1,2$, let R_{i} be P_{i} with the partial order inherited from R.

Proof of Theorem 4.6. Suppose that $M=\left(M_{f}, M_{\omega}, \cdot, \otimes,{ }^{\omega}, \leqslant\right)$ is a preordered algebra in $\mathscr{V} \leqslant$. Given maps $h_{f}: A \rightarrow M_{f}$ and $h_{\omega}: B \rightarrow M_{\omega}$, by Theorem 4.5 there is a unique morphism

$$
h^{\#}=\left(h_{f}^{\#}, h_{\omega}^{\ddagger}\right): \omega \mathbf{S P}_{A, B} \rightarrow M
$$

extending $\left(h_{f}, h_{\omega}\right)$ which preserves the operations. We need to show that the extension preserves the preorder. Below we will write h^{\sharp} for both h_{f}^{\sharp} and h_{ω}^{\ddagger}.

The fact that h^{\sharp} preserves the preorder on $\mathbf{S P}_{A}$ can be derived from the main completeness result (Theorem 5.9) in [9]. In order to make the paper self-contained, we give our simple semantic argument here. This argument is also shorter than the one given in [9]. Suppose that $P \leqslant Q$, where $P, Q \in \mathbf{S P}_{A}$. We argue by induction on the size

[^1](i.e., number of vertices) of Q to show that $P h^{\ddagger} \leqslant Q h^{\ddagger}$. Without loss of generality, we assume that P and Q have the same vertex set and labeling, and that the partial order on P is an extension of the order on Q. When Q is a singleton we have $P=Q$, so that $P h^{\#}=Q h^{\#}$. Suppose that $Q=Q_{1} \cdot Q_{2}$, where Q_{1} and Q_{2} are in $\mathbf{S P}_{A}$. Then, by Lemma 4.1, we can write $P=P_{1} \cdot P_{2}$, where $P_{1}, P_{2} \in \mathbf{S P}_{A}$ with $P_{i} \leqslant Q_{i}, i=1,2$. By induction, $P_{i} h^{\sharp} \leqslant Q_{i} h^{\sharp}, i=1,2$, so that
\[

$$
\begin{aligned}
P h^{\#} & =P_{1} h^{\#} \cdot P_{2} h^{\#} \\
& \leqslant Q_{1} h^{\#} \cdot Q_{2} h^{\#} \\
& =Q h^{\#},
\end{aligned}
$$
\]

using the fact that $h^{\#}$ preserves series product and that series product preserves the preorder.

The nontrivial case is that Q is disconnected. If P is also disconnected, then by Lemma 4.13 we can write $P=P_{1} \otimes P_{2}$ and $Q=Q_{1} \otimes Q_{2}$, where $P_{1}, P_{2}, Q_{1}, Q_{2}$ are in $\mathbf{S P}_{A}$ with

$$
\begin{equation*}
P_{i} \leqslant Q_{i}, \quad i=1,2 . \tag{12}
\end{equation*}
$$

Since the sizes of Q_{1} and of Q_{2} are strictly less than the size of Q, we have

$$
\begin{equation*}
P_{i} h^{\sharp} \leqslant Q_{i} h^{\#}, \quad i=1,2 \tag{13}
\end{equation*}
$$

by the induction hypothesis. Thus, using the fact that $h^{\#}$ preserves parallel product and that parallel product preserves the preorder,

$$
\begin{aligned}
P h^{\#} & =P_{1} h^{\#} \otimes P_{2} h^{\#} \\
& \leqslant Q_{1} h^{\#} \otimes Q_{2} h^{\#} \\
& =\left(Q_{1} \otimes Q_{2}\right) h^{\#} \\
& =Q h^{\#} .
\end{aligned}
$$

If P is connected, then write $P=R \cdot S$, where $R, S \in \mathbf{S P}_{A}$. Since Q is disconnected, there exist Q_{1} and Q_{2} in $\mathbf{S P}_{A}$ with $Q=Q_{1} \otimes Q_{2}$. Define

$$
\begin{align*}
& R_{i}=Q_{i} \cap R, \tag{14}\\
& S_{i}=Q_{i} \cap S, \quad i=1,2, \tag{15}
\end{align*}
$$

and equip each set with the partial order (and labeling) inherited from Q. Below, we will assume that none of the sets $R_{1}, R_{2}, S_{1}, S_{2}$ is empty, since the argument can be
modified easily in the other cases. Note that $R_{i}, S_{i} \in \mathbf{S P}_{A}, i=1,2$, and

$$
\begin{align*}
& R \leqslant R_{1} \otimes R_{2}, \tag{16}\\
& S \leqslant S_{1} \otimes S_{2} . \tag{17}
\end{align*}
$$

Thus,

$$
\begin{align*}
& R h^{\#} \leqslant R_{1} h^{\#} \otimes R_{2} h^{\#}, \tag{18}\\
& S h^{\#} \leqslant S_{1} h^{\#} \otimes S_{2} h^{\#}, \tag{19}
\end{align*}
$$

by the induction assumption. Moreover, for $i=1,2, R_{i} \cdot S_{i} \leqslant Q_{i}$, so that

$$
\begin{equation*}
\left(R_{i} \cdot S_{i}\right) h^{\sharp} \leqslant Q_{i} h^{\#}, \tag{20}
\end{equation*}
$$

again by the induction assumption. Thus, using (18)-(20),

$$
\begin{aligned}
P h^{\#} & =R h^{\#} \cdot S h^{\#} \\
& \leqslant\left(R_{1} h^{\#} \otimes R_{2} h^{\#}\right) \cdot\left(S_{1} h^{\#} \otimes S_{2} h^{\#}\right) \\
& \leqslant\left(R_{1} h^{\#} \cdot S_{1} h^{\#}\right) \otimes\left(R_{2} h^{\#} \cdot S_{2} h^{\#}\right) \\
& =\left(R_{1} \cdot S_{1}\right) h^{\#} \otimes\left(R_{2} \cdot S_{2}\right) h^{\#} \\
& \leqslant Q_{1} h^{\#} \otimes Q_{2} h^{\#} \\
& =Q h^{\#}
\end{aligned}
$$

by the interchange law (7) and the fact that the operations preserve the preorder and h^{\ddagger} preserves the operations. The argument is similar when one of the R_{i} and/or one of the S_{i} is empty. One uses (8), (9), or (10).

Suppose now that $P \leqslant Q$ in $\mathbf{S P}_{A, B}^{\omega}$. Without loss of generality, we may again assume that P and Q have the same vertex set and labeling, and that the partial order \leqslant_{P} is an extension of the partial order $\leqslant Q$. We need to show that $P h^{\ddagger} \leqslant Q h^{\#}$ holds in M_{ω}. When Q is finite, the argument is the same as above. So we assume that Q and thus P are infinite. If $w(Q)=1$ then $P=Q$, so that $P h^{\ddagger}=Q h^{\#}$. We proceed by induction on $w(Q)$. Assuming that $w(Q)>1$, there are several cases.

Case 1: Q is disconnected. If P is also disconnected, then by Lemma 4.13 we can write $P=P_{1} \otimes P_{2}, Q=Q_{1} \otimes Q_{2}$, where the P_{i} and Q_{i} are partial words in $\mathbf{S P}_{A} \cup \mathbf{S P}_{A, B}^{\omega}$ satisfying (12) such that $w\left(Q_{i}\right)<w(Q), i=1,2$. Thus, by the induction hypothesis, or by the previous argument, also (13) holds. The proof can be completed as above.

If P is connected but not directed, then write $P=R \cdot S$, where $R \in \mathbf{S P}_{A}, S \in \mathbf{S P}_{A, B}^{\omega}$, and S is disconnected. Since Q is disconnected, there exist Q_{1} and Q_{2} in $\mathbf{S P}_{A} \cup \mathbf{S P}_{A, B}^{\omega}$ with $Q=Q_{1} \otimes Q_{2}$. Clearly, $w\left(Q_{1}\right), w\left(Q_{2}\right)<w(Q)$. Define R_{i} and $S_{i}, i=1,2$ as in (14) and (15), and equip each set with the partial order and labeling inherited from Q. Below, we will again assume that none of the sets $R_{1}, R_{2}, S_{1}, S_{2}$ is empty, since the argument can be modified easily in the other cases. Note that $R_{i} \in \mathbf{S P}_{A}, S_{i} \in \mathbf{S P}_{A} \cup \mathbf{S P}_{A, B}^{\omega}$,
$i=1,2$ such that S_{1} or S_{2} is in $\mathbf{S P}_{A, B}^{\omega}$, and (16) and (17) hold. Thus, since $R_{1} \otimes R_{2}$ is in $\mathbf{S P}_{A}$ and $S_{1} \otimes S_{2}$ is a disconnected partial word in $\mathbf{S P}_{A, B}^{\omega}$ with $w\left(S_{1} \otimes S_{2}\right) \leqslant w(S)$, also (18) and (19) hold. Using (7), it follows as above that $P h^{\#} \leqslant Q h^{\sharp}$.

Suppose now that P is directed. Write $Q=Q_{1} \otimes Q_{2}$ as before, so that $w\left(Q_{1}\right), w\left(Q_{2}\right)<$ $w(Q)$. Since P is directed, there exist $P_{0}, P_{1} \in \mathbf{S P}_{A}$ with $P=P_{0} \cdot P_{1}^{\omega}$, i.e.,

$$
P=P_{0} \cdot P_{1} \cdot P_{2} \cdot \ldots,
$$

where the $P_{j}, j \geqslant 2$ are disjoint copies of P_{1}. For each $i=1,2$ and $j \geqslant 0$, let

$$
\begin{aligned}
& P_{i, j}=Q_{i} \cap P_{j}, \\
& Q_{i, j}=Q_{i} \backslash \bigcup_{k=0}^{j-1} P_{i, k}=\bigcup_{k \geqslant j} P_{i, k},
\end{aligned}
$$

and equip each set $P_{i, j}$ with the partial order and labeling inherited from P, and each $Q_{i, j}$ with the partial order and labeling inherited from Q_{i}. It is clear that each $Q_{i, j}$ is either empty or a filter of Q_{i} (and of Q). Now let $0<j_{0}<j_{1}<\cdots$ be any sequence such that $P_{0} \cdot \ldots \cdot P_{j_{0}-1}$ contains all minimal vertices of Q and for all $t \geqslant 1, P_{0} \cdot \ldots \cdot P_{j_{t}-1}$ contains all minimal vertices in the set obtained from Q by removing all vertices belonging to the product $P_{0} \ldots \cdot P_{j_{t-1}-1}$, i.e., all minimal vertices of $Q_{1, j_{t-1}}$ and $Q_{2, j_{t-1}}$.

Below we will make use of the following fact.
Fact: Suppose that Q is an ω-linearizable partial word, F is a filter of Q isomorphic to Q and $G=Q-F$ is finite and nonempty. If $P \leqslant G$ and G contains all minimal vertices of Q, then $P^{\omega} \leqslant Q$.

Returning now to the main proof, suppose now that both Q_{1} and Q_{2} are infinite. Since up to isomorphism Q_{1} and Q_{2} have a finite number of filters, there exist $t_{1}<t_{2}$ with

$$
\begin{equation*}
Q_{i, j_{i_{1}}}=Q_{i, j_{i_{2}}}, \quad i=1,2 \tag{21}
\end{equation*}
$$

Now let

$$
\begin{aligned}
R_{i} & =P_{i, 0} \cdot \ldots \cdot P_{i, j_{t_{1}}-1} \\
S_{i} & =P_{i, j_{1}} \cdot \ldots \cdot P_{i, j_{2}-1}, \quad i=1,2
\end{aligned}
$$

By (21), and since S_{i} contains all minimal vertices of $Q_{i, j_{1}}, i=1,2$, it follows from the above fact that

$$
\begin{aligned}
S_{i}^{\omega} & \leqslant Q_{i, j_{t_{1}}} \\
R_{i} \cdot S_{i}^{\omega} & \leqslant Q_{i}, \quad i=1,2
\end{aligned}
$$

so that

$$
\left(R_{i} h^{\#}\right) \cdot\left(S_{i} h^{\#}\right)^{\omega} \leqslant Q_{i} h^{\#}, \quad i=1,2,
$$

by the induction hypothesis and the fact that h^{\ddagger} preserves the operations. Since

$$
P_{0} \cdot P_{1}^{j_{t_{1}}-1}=P_{0} \cdot P_{1} \cdot \ldots \cdot P_{j_{t_{1}}-1} \leqslant R_{1} \otimes R_{2}
$$

and

$$
P_{1}^{j_{t_{2}}-j_{t_{1}}}=P_{j_{t_{1}}} \cdot \ldots \cdot P_{j_{L_{2}}-1} \leqslant S_{1} \otimes S_{2}
$$

and since $R_{1} \otimes R_{2}$ and $S_{1} \otimes S_{2}$ are finite, we have

$$
P_{0} h^{\sharp} \cdot\left(P_{1} h^{\sharp}\right)^{j_{1}-1}=P_{0} h^{\#} \cdot P_{1} h^{\#} \cdot \ldots \cdot P_{j_{1}-1} h^{\#} \leqslant R_{1} h^{\#} \otimes R_{2} h^{\#}
$$

and

$$
\left(P_{1} h^{\#}\right)^{j_{2}-j_{t_{1}}} \leqslant S_{1} h^{\#} \otimes S_{2} h^{\#} .
$$

Thus, using Eqs. (6) and (5) and the interchange laws (7) and (11), and the fact that the operations preserve \leqslant and h^{\sharp} preserves the operations, it follows that

$$
\begin{aligned}
P h^{\#} & =P_{0} h^{\sharp} \cdot\left(P_{1} h^{\sharp}\right)^{\omega} \\
& =P_{0} h^{\#} \cdot\left(P_{1} h^{\#}\right)^{j_{1}-1} \cdot\left(\left(P_{1} h^{\#}\right)^{j_{2}-j_{t_{1}}}\right)^{\omega} \\
& \leqslant\left(R_{1} h^{\#} \otimes R_{2} h^{\sharp}\right) \cdot\left(S_{1} h^{\#} \otimes S_{2} h^{\#}\right)^{\omega} \\
& \leqslant\left(R_{1} h^{\#} \otimes R_{2} h^{\#}\right) \cdot\left(\left(S_{1} h^{\#}\right)^{\omega} \otimes\left(S_{2} h^{\#}\right)^{\omega}\right) \\
& \leqslant\left(R_{1} h^{\#} \cdot\left(S_{1} h^{\#}\right)^{\omega}\right) \otimes\left(R_{2} h^{\#} \cdot\left(S_{2} h^{\#}\right)^{\omega}\right) \\
& \leqslant Q_{1} h^{\#} \otimes Q_{2} h^{\#} \\
& =Q h^{\#} .
\end{aligned}
$$

If Q_{1} is infinite and Q_{2} is finite, say, then choose the integers $t_{1}<t_{2}$ such that $Q_{1, j_{t_{1}}}=Q_{1, j_{t_{2}}}$ and $Q_{2, j_{t_{1}}}$ is empty. Moreover, let k denote the least integer such that $Q_{2, k}$ is empty. Then let R_{1} and S_{1} be defined as before and

$$
R_{2}=P_{2,0} \cdot \ldots \cdot P_{2, k-1}
$$

We have

$$
\begin{aligned}
R_{1} \cdot S_{1}^{\omega} & \leqslant Q_{1} \\
R_{2} & \leqslant Q_{2} .
\end{aligned}
$$

Thus, using the induction assumption and the fact that $h^{\#}$ is monotonic on finite partial words,

$$
\begin{aligned}
\left(R_{1} h^{\sharp}\right) \cdot\left(S_{1} h^{\#}\right)^{\omega} & \leqslant Q_{1} h^{\#}, \\
R_{2} h^{\#} & \leqslant Q_{2} h^{\#} .
\end{aligned}
$$

The proof can be completed using (9) as above:

$$
\begin{aligned}
P h^{\#} & =P_{0} h^{\sharp} \cdot\left(P_{1} h^{\sharp}\right)^{\omega} \\
& =P_{0} h^{\#} \cdot\left(P_{1} h^{\#}\right)^{j_{t_{1}}-1} \cdot\left(\left(P_{1} h^{\sharp}\right)^{j_{2}-j_{t_{1}}}\right)^{\omega} \\
& \leqslant\left(R_{1} h^{\#} \otimes R_{2} h^{\#}\right) \cdot\left(S_{1} h^{\sharp}\right)^{\omega}
\end{aligned}
$$

$$
\begin{aligned}
& \leqslant\left(R_{1} h^{\#} \cdot\left(S_{1} h^{\#}\right)^{\omega}\right) \otimes R_{2} h^{\#} \\
& \leqslant Q_{1} h^{\#} \otimes Q_{2} h^{\#} \\
& =Q h^{\#} .
\end{aligned}
$$

Case 2: Q is eventually disconnected. Then write $Q=Q_{1} \cdot Q_{2}$, where $Q_{1} \in \mathbf{S P}_{A}$ and $Q_{2} \in \mathbf{S P}_{A, B}^{\omega}$ and Q_{2} is disconnected. Since $P \leqslant Q$, there exist $P_{1} \in \mathbf{S P}_{A}$ and $P_{2} \in \mathbf{S P}_{A, B}^{\omega}$ with $P=P_{1} \cdot P_{2}$ and $P_{i} \leqslant Q_{i}, i=1,2$. Since $Q_{1} \in \mathbf{S} \mathbf{P}_{A}$, we have $P_{1} h^{\#} \leqslant Q_{1} h^{\#}$. Also, since Q_{2} is disconnected and $w\left(Q_{2}\right) \leqslant w(Q)$, we have $P_{2} h^{\#} \leqslant Q_{2} h^{\#}$, by the previous case. Thus,

$$
\begin{aligned}
P h^{\#} & =P_{1} h^{\#} \cdot P_{2} h^{\#} \\
& \leqslant Q_{1} h^{\#} \cdot Q_{2} h^{\#} \\
& =Q h^{\#} .
\end{aligned}
$$

Case 3: Q is directed. Then we can write $Q=Q_{0} \cdot Q_{1}^{\omega}$ for some $Q_{0}, Q_{1} \in \mathbf{S P}_{A}$. Since $P \leqslant Q$, there exist partial words $P_{0}, P_{1}, P_{2}, \ldots$ in $\mathbf{S P}_{A}$ with

$$
\begin{aligned}
P_{0} & \leqslant Q_{0}, \\
P_{i} & \leqslant Q_{1}, \quad i \geqslant 1, \\
P & =P_{0} \cdot P_{1} \cdot P_{2} \cdot \ldots .
\end{aligned}
$$

Since P has a finite number of filters, there exist $1 \leqslant i<j$ with

$$
P_{i} \cdot P_{i+1} \cdot \ldots=P_{j} \cdot P_{j+1} \cdot \ldots
$$

Thus, letting

$$
\begin{aligned}
R_{0} & =P_{0} \cdot P_{1} \cdot \ldots \cdot P_{i-1}, \\
R_{1} & =P_{i} \cdot \ldots \cdot P_{j-1}, \\
S_{0} & =Q_{0} \cdot Q_{1}^{i-1}, \\
S_{1} & =Q_{1}^{j-i},
\end{aligned}
$$

we have $R_{i} \leqslant S_{i}, i=0,1$ and $P=R_{0} \cdot R_{1}^{\omega}$. Since the R_{i} and S_{i} are in $\mathbf{S P}_{A}$, also $R_{i} h^{\#} \leqslant S_{i}$ $h^{\sharp}, i=0,1$. Thus,

$$
\begin{aligned}
P h^{\#} & =R_{0} h^{\sharp} \cdot\left(R_{1} h^{\sharp}\right)^{\omega} \\
& \leqslant S_{0} h^{\sharp} \cdot\left(S_{1} h^{\sharp}\right)^{\omega} \\
& =Q_{0} h^{\#} \cdot\left(Q_{1} h^{\#}\right)^{i-1} \cdot\left(\left(Q_{1} h^{\sharp}\right)^{j-i}\right)^{\omega} \\
& =Q_{0} h^{\#} \cdot\left(Q_{1} h^{\#}\right)^{\omega} \\
& =Q h^{\#} \cdot \quad \square
\end{aligned}
$$

Proof of Theorem 4.1. By Theorem 2.2 and Proposition 3.7, all of the valid equations and inequations of $\mathscr{V} \leqslant$ hold in the algebras $\mathbf{P w}^{\leqslant}(A)$ (and $\mathbf{P} \mathbf{w}^{\leqslant}(A, B)$). Suppose
that $M=\left(M_{f}, M_{\omega}, \cdot, \otimes,{ }^{\omega}, \leqslant\right)$ is in $\mathscr{V} \leqslant$. Then let $A=M_{f}, B=M_{\omega}$, and consider the identity functions $h_{f}: A \rightarrow M_{f}$ and $h_{\omega}: B \rightarrow M_{\omega}$. By Theorem 4.6, the pair of functions $h=\left(h_{f}, h_{\omega}\right)$ extends to a morphism $h^{\sharp}=\left(h_{f}^{\sharp}, h_{\omega}^{\ddagger}\right): \omega \mathbf{S P}_{A, B}^{\leq} \rightarrow M$. Since the functions h_{f}^{\ddagger} and $h_{\omega}^{\#}$ are surjective and preserve \leqslant, it follows that any equation or inequation that holds in the algebras $\omega \mathbf{S P}_{A, B}^{\leqslant}$holds in M. Since (in)equations are preserved by taking preordered subalgebras, we conclude that any (in)equation that holds in the algebras $\mathbf{P} \mathbf{w} \leqslant(A, B)$ also holds in M. The result follows from Lemma 4.14.

Lemma 4.14. Suppose that A and B are disjoint sets, and let $C=A \cup B$. Then $\mathbf{P} \mathbf{w}^{\leqslant}(A, B)$ is isomorphic to a preordered subalgebra of $\mathbf{P w}^{\leqslant}(C)$ and $\omega \mathbf{S P}_{A, B}^{\in}$ is isomorphic to a preordered subalgebra of $\omega \mathbf{S P}_{C}^{\leqslant}$.

Proof. For each $P \in \mathbf{P w}_{f}(A)$ and $Q \in \mathbf{P w}_{\omega}(A, B)$, let $P h_{f}=P$ and $Q h_{\omega}$ the partial word obtained from Q by replacing each maximal vertex labeled by a letter $b \in B$ by the partial word b^{ω}. Then $h=\left(h_{f}, h_{\omega}\right)$ preserves the operations, and for any two partial words $P, Q \in \mathbf{P w}_{f}(A)$ or $P, Q \in \mathbf{P w}_{\omega}(A, B), P \leqslant Q$ if and only if $P h \leqslant Q h$. For the second claim, note that if P is (generalized) series-parallel, then so is $P h$.

Corollary 4.15. The variety $\mathscr{V} \leqslant$ is generated by the single algebra $\omega \mathbf{S P}_{A_{0}}^{\leqslant}$or $\mathbf{P w}^{\leqslant} \leqslant\left(A_{0}\right)$, where $A_{0}=\{a\}$ is a singleton set.

Proof. By Lemma 4.14, it is sufficient to show that each algebra $\omega \mathbf{S P}_{A}^{\leqslant}$can be embedded into $\omega \mathbf{S P}_{A_{0}}$, for any finite set $A=\left\{a_{1}, \ldots, a_{n}\right\}$. But it is clear that the extension of the assignment

$$
a_{i} \mapsto a \cdot(a \otimes \cdots \otimes a) \cdot a,
$$

where the parallel product of a with itself is taken i times, is an injective morphism $h: \omega \mathbf{S P}_{A}^{\leqslant} \rightarrow \omega \mathbf{S P}_{A_{0}}^{\leqslant}$. Moreover, $P \leqslant Q$ if and only if $P h \leqslant Q h$, for all P, Q in $\mathbf{S P}_{A} \cup \mathbf{S P}_{A}^{\omega}$.

4.1. No finite axiomatization

It has been shown in [6] that the variety \mathscr{V} has no finite axiomatization. Since for every two-sorted algebra M, we have $M \in \mathscr{V}$ if and only if $M \leqslant \in \mathscr{V} \leqslant$, where $M \leqslant$ is M equipped with the total relations on its carriers, it follows that $\mathscr{V} \leqslant$ has no finite axiomatization either. In this subsection we point out that not even the variety of ordered algebras contained in $\mathscr{V} \leqslant$ has a finite axiomatization. We modify an argument from [6]. Suppose that p is a prime number. Let F_{p} denote the set of positive integers, and let $I_{p}=\{1, p, \top\}$. The preorder \leqslant on F_{p} is the discrete order. Moreover, for all $u, v \in I_{p}, u \leqslant v$ if and only if $u=v$ or $v=\mathrm{T}$. For all $a, b \in F_{p}$ and $u, v \in I_{p}$, define

$$
\begin{aligned}
a \cdot b & =a+b, \\
a \otimes b & =a+b,
\end{aligned}
$$

$$
\begin{aligned}
a \cdot u & =u \\
a \otimes u & =\top \\
u \otimes a & =\top \\
u \otimes v & =\top \\
a^{\omega} & = \begin{cases}1 & \text { if } p \text { divides } a \\
p & \text { otherwise }\end{cases}
\end{aligned}
$$

The resulting two-sorted ordered algebra $M_{p}=\left(F_{p}, I_{p}, \cdot, \otimes,{ }^{\omega}, \leqslant\right)$ satisfies Eqs. (1)-(4), inequations (7)-(11), as well as Eq. (5) for all primes $n \neq p$. On the other hand, $\left(1^{p}\right)^{\omega}=p^{\omega}=p$ and $1^{\omega}=1$, showing that (5) does not hold in M_{p}. Thus, by Theorem 4.1 and the compactness theorem we have:

Theorem 4.16. Neither $\mathscr{V} \leqslant$ nor the variety of ordered algebras contained in $\mathscr{V} \leqslant$ has a finite axiomatization.

5. The subword preorder

Definition 5.1. Suppose that P and Q are partial words in $\mathbf{P w}_{f}(A) \cup \mathbf{P w}_{\omega}(A, B)$. We say that P is an induced partial subword of Q, denoted $P \sqsubseteq Q$, if there is an order reflecting morphism $P \rightarrow Q$, i.e., a morphism $f: P \rightarrow Q$ such that $x \leqslant_{P} y$ if and only if $f(x) \leqslant Q f(y)$ holds for all $x, y \in P$. Moreover, we say that P is a partial subword of Q, denoted $P \preceq Q$, if there is an induced partial subword $R \sqsubseteq Q$ such that $P \leqslant R$ in the subsumption preorder.

It is clear that $P \preceq Q$ holds whenever $P \sqsubseteq Q$ or $P \leqslant Q$.

Example 5.2. The partial words $a, a \cdot a, a \otimes a, a \cdot(a \otimes a),(a \otimes a) \cdot a$ and $(a \otimes a)$. $(a \otimes a)$ are all induced partial subwords, and hence partial subwords of $(a \otimes a) \cdot(a \otimes a)$. Since $a^{3}=a \cdot a \cdot a \leqslant a \cdot(a \otimes a)$, also a^{3} is a partial subword of $(a \otimes a) \cdot(a \otimes a)$. In the same way, $a^{4}, a^{2} \cdot(a \otimes a),(a \otimes a) \cdot a^{2}$ are all partial subwords of $(a \otimes a) \cdot(a \otimes a)$. On the other hand, Q_{1} and Q_{2} of Example 2.1 are not partial subwords of $(a \otimes a) \cdot(a \otimes a)$. The partial word a^{ω} is an induced partial subword of $a^{\omega} \otimes a^{\omega}$.

Remark 5.3. If P and Q are finite with $P \preceq Q$ and $Q \preceq P$, then P is in fact isomorphic to Q, see below. The same fact holds for the relation \sqsubseteq. Thus, both \sqsubseteq and \preceq are partial orders on $\mathbf{P w}_{f}(A)$. On the other hand, for $P=(a \cdot b)^{\omega}$ and $Q=(b \cdot a)^{\omega}$ we have that $P \sqsubseteq Q$ and $Q \sqsubseteq P$, but P and Q are not isomorphic.

Note that both \sqsubseteq and \preceq are preorders preserved by the operations \cdot, \otimes and ${ }^{\omega}$. Thus,

$$
\begin{aligned}
& \mathbf{P w}(A, B)^{\sqsubseteq}=\left(\mathbf{P w}_{f}(A), \mathbf{P w}_{\omega}(A, B), \cdot, \otimes,{ }^{\omega}, \sqsubseteq\right), \\
& \mathbf{P w}(A, B)^{\preceq}=\left(\mathbf{P w}_{f}(A), \mathbf{P w}(A, B), \cdot, \otimes,{ }^{\omega}, \preceq\right)
\end{aligned}
$$

are both preordered algebras. They include

$$
\begin{aligned}
& \omega \mathbf{S P}_{\bar{A}, B}^{\sqsubseteq}=\left(\mathbf{S P}_{A}, \mathbf{S P}_{A, B}^{\omega}, \cdot, \otimes,{ }^{\omega}, \sqsubseteq\right), \\
& \omega \mathbf{S P}_{A, B}^{\preceq}=\left(\mathbf{S P}_{A}, \mathbf{S P}_{A, B}^{\omega}, \cdot, \otimes,{ }^{\omega}, \preceq\right)
\end{aligned}
$$

as subalgebras.

Proposition 5.4. The following inequations hold in the preordered algebras $\mathbf{P w}(A, B) \sqsubseteq$:

$$
\begin{align*}
& x \leqslant x \cdot u \tag{22}\\
& u \leqslant x \cdot u \tag{23}\\
& u \leqslant u \otimes v \tag{24}
\end{align*}
$$

where x ranges over partial words in $\mathbf{P w}_{f}(A)$ and u and v range over partial words in $\mathbf{P w}_{f}(A) \cup \mathbf{P w}_{\omega}(A, B)$.

Corollary 5.5. The weak interchange laws and the inequations (22)-(24) hold in all algebras $\mathbf{P w}(A, B)^{\preceq}$.

Let $\mathscr{V} \sqsubseteq$ denote the varieties of preordered algebras axiomatized by the equations defining \mathscr{V} together with the inequations (22)-(24). Moreover, let $\mathscr{V} \preceq$ denote the subvariety of $\mathscr{V} \sqsubseteq$ consisting of all algebras in $\mathscr{V} \sqsubseteq$ satisfying the weak interchange laws. We thus have $\mathbf{P w}(A, B) \sqsubseteq, \omega \mathbf{S P}_{A, B}^{\sqsubseteq} \in \mathscr{V} \sqsubseteq$ and $\mathbf{P w}(A, B) \preceq, \omega \mathbf{S P}_{A, B}^{\preceq} \in \mathscr{V} \preceq$.

Theorem 5.6. The algebra $\omega \mathbf{S} \mathbf{P}_{A, B}^{\sqsubseteq}$ is freely generated by (A, B) in $\mathscr{V} \sqsubseteq$.

Proof. Suppose that $M=\left(M_{f}, M_{\omega}, \cdot, \otimes,{ }^{\omega}, \leqslant\right)$ is in $\mathscr{V} \sqsubseteq$ and $h=\left(h_{f}, h_{\omega}\right):(A, B) \rightarrow$ $\left(M_{f}, M_{\omega}\right)$, so that h_{f} and h_{ω} are functions $A \rightarrow M_{f}$ and $B \rightarrow M_{\omega}$, respectively. We know that h extends to a unique morphism $\omega \mathbf{S P}_{A, B} \rightarrow M$. Let h denote this morphism also. We need to show that for all $P, Q \in \mathbf{S P}_{A} \cup \mathbf{S P}_{A, B}^{\omega}$, if $P \sqsubseteq Q$ then $P h \leqslant Q h$. We show this by induction on the rank of Q, i.e., by induction on the least number of operations needed to generate Q from the singletons. When Q is a singleton, we have $P=Q$ so that our claim holds obviously. Suppose now that $Q=$ $Q_{1} \cdot Q_{2}$ for some $Q_{1} \in \mathbf{S P}_{A}$ and $Q_{2} \in \mathbf{S P}_{A} \cup \mathbf{S P}_{A, B}^{\omega}$ such that $\operatorname{rank}\left(Q_{i}\right)<\operatorname{rank}(Q)$ $i=1,2$. Then three cases arise. If $P \sqsubseteq Q_{1}$, then, using the induction assumption and (22),

$$
\begin{aligned}
P h & \leqslant Q_{1} h \\
& \leqslant Q_{1} h \cdot Q_{2} h \\
& =Q h .
\end{aligned}
$$

The case that $P \sqsubseteq Q_{2}$ is handled in the same way using (23). Finally, if $P=P_{1} \cdot P_{2}$ with $P_{i} \sqsubseteq Q_{i}, i=1,2$, then we have

$$
\begin{aligned}
P h & =P_{1} h \cdot P_{2} h \\
& \leqslant Q_{1} h \cdot Q_{2} h \\
& =Q h,
\end{aligned}
$$

by the induction assumption. If $Q=Q_{1} \otimes Q_{2}$ for some Q_{1} and Q_{2} in $\mathbf{S P}_{A} \cup \mathbf{S P}_{A, B}^{\omega}$ with $\operatorname{rank}\left(Q_{i}\right)<\operatorname{rank}(Q), i=1,2$, then $P h \leqslant Q h$ is proved in the same way using (24). Assume now that $Q=R^{\omega}$, where $R \in \mathbf{S P}_{A}$ with $\operatorname{rank}(R)<\operatorname{rank}(Q)$. If P is finite we have $P \sqsubseteq R^{n}$ for some $n>0$. As before, we can prove that $P h \leqslant R^{n} h$. Thus,

$$
\begin{aligned}
P h & \leqslant R^{n} h \\
& \leqslant R^{n} h \cdot(R h)^{\omega} \\
& =(R h)^{n} \cdot(R h)^{\omega} \\
& =(R h)^{\omega} \\
& =Q h,
\end{aligned}
$$

by (23), (5) and (6). Assume now that P is infinite. Then, since $P \in \mathbf{S P}_{A, B}^{\omega}$, we can write

$$
P=P_{0} \cdot P_{1}^{\omega}
$$

for some $P_{0}, P_{1} \in \mathbf{S P}_{A}$ such that $P_{0} \sqsubseteq R^{m}$ and $P_{1} \sqsubseteq R^{n}$ for some $m, n>0$. As before, we can prove that $P_{0} h \leqslant R^{m} h$ and $P_{1} h \leqslant R^{n} h$. Thus,

$$
\begin{aligned}
P h & =P_{0} h \cdot\left(P_{1} h\right)^{\omega} \\
& \leqslant R^{m} h \cdot\left(R^{n} h\right)^{\omega} \\
& =(R h)^{m} \cdot\left((R h)^{n}\right)^{\omega} \\
& =(R h)^{\omega} \\
& =Q h . \quad \square
\end{aligned}
$$

Corollary 5.7. The algebra $\omega \mathbf{S P}_{A, B}^{\preceq}$ is freely generated by (A, B) in $\mathscr{V} \preceq$.
Proof. Suppose that $M=\left(M_{f}, M_{\omega}, \cdot, \otimes_{,}{ }^{\omega}, \leqslant\right)$ is in $\mathscr{V} \preceq$ and $h_{f}: A \rightarrow M_{f}, h_{\omega}: B \rightarrow M_{\omega}$. We know that $h=\left(h_{f}, h_{\omega}\right)$ extends to a unique morphism $\omega \mathbf{S P}_{A, B} \rightarrow M$ that we also denote by h. To complete the proof, we must show that for all $P, Q \in \mathbf{S P}_{A} \cup \mathbf{S P}_{A, B}^{\omega}$, if $P \preceq Q$ then $P h \leqslant Q h$. But by Lemma 5.8, if $P \preceq Q$, then there is some R in $\mathbf{S P}_{A} \cup \mathbf{S P}_{A, B}^{\omega}$ with $P \leqslant R$ and $R \sqsubseteq Q$. Thus, by Theorems 4.6 and $5.6, P h \leqslant R h \leqslant Q h$.

Lemma 5.8. Suppose that $P, Q \in \mathbf{S P}_{A} \cup \mathbf{S P}_{A, B}^{\omega}$ with $P \preceq Q$. If S is a partial word determined by a subset of Q with $P \leqslant S$, then S has a nonempty subset R such that the partial word determined by R is in $\mathbf{S P}_{A} \cup \mathbf{S P}_{A, B}^{\omega}$ and $P \leqslant R$.

Proof. We prove this lemma by induction on the rank of P. However, let us remark that our claim holds if P is finite. This is immediate from the fact that any finite induced partial subword of a (generalized) series-parallel partial word is series-parallel. In the rest of the proof we may thus assume that P is infinite. The basis case that the rank of P is 0 is trivial. Assuming that the rank of P is positive, several cases arise.

Case 1: $P=P_{1} \cdot P_{2}$ for some $P_{1} \in \mathbf{S P}_{A}$ and $P_{2} \in \mathbf{S P}_{A, B}^{\omega}$ such that $\operatorname{rank}\left(P_{i}\right)<\operatorname{rank}(P)$, $i=1,2$. Without loss of generality, we may assume that P and S have the same vertices and labeling and the partial order on P extends the partial order on S. Thus, P_{1} and P_{2} are subsets of S and hence of Q. Let $S_{i}, i=1,2$ denote the partial word determined by P_{i} equipped with the partial order and labeling inherited from Q. Since S_{1} is finite, we have that $S_{1} \in \mathbf{S P}_{A}$. Let $R_{1}=S_{1}$. Now let F denote the filter generated by S_{2} in Q. Then F is in $\mathbf{S P}_{A, B}^{\omega}, F \cap S_{1}=\emptyset$, and $P_{2} \leqslant S_{2}$. Thus, by the induction assumption, there exists some $R_{2} \subseteq S_{2}$ such that the partial word determined by R_{2} is in $\mathbf{S P}_{A, B}^{\omega}$ and $P_{2} \leqslant R_{2}$. Let R denote the partial subword of Q induced by the set $R_{1} \cup R_{2}$. By Lemma 4.11, we have $R \in \mathbf{S P}_{A, B}^{\omega}$. Moreover, $P \leqslant R$.

Case 2: $P=P_{1} \otimes P_{2}$ for some $P_{1}, P_{2} \in \mathbf{S P}_{A} \cup \mathbf{S P}_{A, B}^{\omega}$ such that $\operatorname{rank}\left(P_{i}\right)<\operatorname{rank}(P)$. Again, we may assume that P has the same vertices and labeling as S and that the partial order on P extends the order on S. For $i=1,2$, let S_{i} denote the partial word induced by P_{i} as a subset of Q (and of S). Note that $S=S_{1} \otimes S_{2}$. By the induction hypothesis, there exists $R_{i} \subseteq S_{i}, i=1,2$ such that the partial word determined by R_{i} is in $\mathbf{S P}_{A} \cup \mathbf{S P}_{A, B}^{\omega}$, moreover, $P_{i} \leqslant R_{i}$. Since $S=S_{1} \otimes S_{2}$, the partial word determined by $R_{1} \cup R_{2}$ is isomorphic to $R_{1} \otimes R_{2}$. Since also $P=P_{1} \otimes P_{2} \leqslant R_{1} \otimes R_{2}$, the proof of this case is complete.

Case 3: $P=P_{1}^{\omega}$, for some $P_{1} \in \mathbf{S P}_{A}$ with $\operatorname{rank}\left(P_{1}\right)<\operatorname{rank}(P)$. In this case, we argue by induction on the rank of Q. The basis case that $\operatorname{rank}(Q)=0$ is trivial. When $\operatorname{rank}(Q)>0$, three subcases arise.

Subcase 1: $Q=Q_{1} \cdot Q_{2}$, where $\operatorname{rank}\left(Q_{i}\right)<\operatorname{rank}(Q), i=1,2$. Then Q_{1} is finite, so that there exist some $S^{\prime} \subseteq S_{2} \cap Q_{2}$ such that $P \leqslant S^{\prime}$ holds for the partial word induced by S^{\prime}. Our claim is immediate from the induction assumption.

Subcase 2: $Q=Q_{1} \otimes Q_{2}$, where $\operatorname{rank}\left(Q_{i}\right)<\operatorname{rank}(Q), i=1,2$. Write $P=U_{0} \cdot U_{1} \cdot \ldots$, where each U_{i} is isomorphic to P_{1}. Without loss of generality, we may assume that P and S have the same vertices and labeling, and that the partial order on P extends the order on S. Define

$$
P_{i j}=U_{i} \cap S \cap Q_{j}, \quad i \geqslant 0, j=1,2 .
$$

Equipped with the partial order and labeling inherited from P, each $P_{i j}$ determines a partial word. For convenience, here we also allow the case that some $P_{i j}$ are empty. Since the size of each $P_{i j}$ is bounded by the size of P_{1}, there is an infinite sequence $i_{0}<i_{1}<\cdots$ such that $P_{i_{0}}, P_{i_{1} 1}, \ldots$ are all isomorphic to a partial word P_{1}^{\prime}, and $P_{i_{0}}, P_{i_{1} 2}, \ldots$ are all isomorphic to a partial word P_{2}^{\prime}. Suppose that neither P_{1}^{\prime} nor P_{2}^{\prime} is empty. Clearly, there exist $S_{1}^{\prime} \subseteq S \cap Q_{1}$ and $S_{2}^{\prime} \subseteq S \cap Q_{2}$ such that for the partial word induced by these sets in Q we have $\left(P_{1}^{\prime}\right)^{\omega} \leqslant S_{1}^{\prime}$ and $\left(P_{2}^{\prime}\right)^{\omega} \leqslant S_{2}^{\prime}$. Thus, by induction, there exist some $R_{1} \subseteq S_{1}^{\prime}, R_{2} \subseteq S_{2}^{\prime}$ with $\left(P_{1}^{\prime}\right)^{\omega} \leqslant R_{1},\left(P_{2}^{\prime}\right)^{\omega} \leqslant R_{2}$ and such that
$R_{1}, R_{2} \in \mathbf{S P}_{A, B}^{\omega}$. Now let $R=R_{1} \cup R_{2}$. Then in Q, R determines the partial word $R_{1} \otimes R_{2}$, moreover, $P=\left(P_{1}\right)^{\omega} \leqslant\left(P_{1}^{\prime}\right)^{\omega} \otimes\left(P_{2}^{\prime}\right)^{\omega} \leqslant R_{1} \otimes R_{2}=R$. If P_{2}^{\prime} is empty, say, then P_{1}^{\prime} is just P, and thus we have $P \leqslant S_{1}$. The result is immediate from the induction assumption.

Subcase 3: $Q=\left(Q_{1}\right)^{\omega}$, for some $Q_{1} \in \mathbf{S P}_{A}$. Write $Q=Q_{0}^{\prime} \cdot Q_{1}^{\prime} \cdot \ldots$, where each Q_{i}^{\prime} is isomorphic to Q_{1}. There existsa sequence $0=i_{0}<i_{1}<\ldots$ and sets $S_{0} \subseteq Q_{i_{0}}^{\prime} \cdot \ldots \cdot Q_{i_{1}-1}^{\prime} \cap S$, $S_{1} \subseteq Q_{i_{1}}^{\prime} \cdot \ldots \cdot Q_{i_{2}-1}^{\prime} \cap S$, etc, such that the following hold for all j :

- The partial words induced by the S_{j} are all isomorphic to a partial word R_{1}.
- $P_{1} \leqslant R_{1}$.

Thus, letting R denote the partial word determined by the union of the S_{j}, we have that R is isomorphic to $\left(R_{1}\right)^{\omega}$ and $P \leqslant R$.

Corollary 5.9. An equation or inequation holds in all preordered algebras $\mathbf{P w}(A) \sqsubseteq$ if and only if it holds in $\mathscr{\digamma} \sqsubseteq$. An equation or inequation holds in all preordered algebras $\mathbf{P w}(A) \preceq$ if and only if it holds in $\mathscr{V} \preceq$.

It is easy to modify the construction used in Section 4 to show that $\mathscr{V} \sqsubseteq$ and $\mathscr{V} \preceq$ as well as the varieties of ordered algebras contained in $\mathscr{V} \sqsubseteq$ and $\mathscr{V} \preceq$ have no finite axiomatization. One needs to consider the same algebras M_{p} with the partial order extended such that $x \leqslant y$ for all $x \in F_{p}$ and $y \in I_{p}$.

The proof of the next fact is the same as that of Corollary 4.15.
Corollary 5.10. The variety $\mathscr{V} \sqsubseteq$ is generated by the single algebra $\mathbf{S P}_{A_{0}}^{\sqsubseteq}$ or $\mathbf{P w}\left(A_{0}\right) \sqsubseteq$, where $A_{0}=\{a\}$ is a singleton set. Similarly, $\mathscr{V} \preceq$ is generated by each of $\mathbf{S P}_{A_{0}}^{\preceq}$ and $\mathbf{P w}\left(A_{0}\right) \preceq$.

6. Adding 1

Naturally, one might wish to include the empty partial word 1 in the carrier $\mathbf{P w}_{f}(A)$ of finite partial words. This can be done in at least two different meaningful ways. First, it makes sense to define 1^{ω} to be also empty. But then, we need to include the empty partial word, and hence the whole of $\mathbf{P w}_{f}(A)$ in the carrier $\mathbf{P} \mathbf{w}_{\omega}(A, B)$ of partial words of infinite sort. The equations of the resulting structures can be axiomatized over the equational theory of \mathscr{V} by

$$
\begin{align*}
& 1 \cdot u=u, \tag{25}\\
& x \cdot 1=x, \tag{26}\\
& u \otimes 1=u, \tag{27}\\
& y \otimes 1^{\omega}=y, \tag{28}\\
& x \cdot 1^{\omega}=x \otimes 1^{\omega}, \tag{29}
\end{align*}
$$

where x is of finite sort, y is of infinite sort, and the sort of u can be both finite and infinite. Moreover, the inequations satisfied by the subsumption preorder may be captured by (7) and (11). For the induced partial subword preorder one needs the inequations

$$
\begin{align*}
& 1 \leqslant u, \tag{30}\\
& 1^{\omega} \leqslant y, \tag{31}
\end{align*}
$$

and for the partial subword preorder (7), (11), (30), (31). (Here, we assume that the empty partial word 1^{ω} is not a partial subword of any partial word in $\mathbf{P w}_{f}(A)$.)

The other way is to define $1^{\omega}=\perp$, where \perp is a designated element of the set B. In this case, the valid equations can be captured by the equations that hold in \mathscr{V} together with (25), (26) and (27). For the subsumption preorder, one also needs (7), (9), (10) and (11). To capture the induced partial subword preorder one needs the axiom (30), and for the partial subword preorder, the axioms (7), (9), (10), (11) and (30).

7. Future work

By an analysis of the proof of Theorem 4.6, it is possible to show that the (in)equational theory of $\mathscr{V} \leqslant$ decidable. Similarly, it can be proved that the (in)equational theories of $\mathscr{V} \sqsubseteq$ and $\mathscr{V} \preceq$ are decidable. It was shown in [6] that the equational theory of \mathscr{V} is decidable in polynomial time. It is an open question whether this holds for $\mathscr{V} \leqslant, \mathscr{V} \sqsubseteq$ and $\mathscr{V} \preceq$.

One might also wish to consider a single-sorted (preordered) algebra of countable partial words with no restriction on the applicability of the operations. We will address these models in a forthcoming paper. The word case (without parallel product) is studied in [5].

Recently, Lodaya and Weil have studied recognizable, rational and regular subsets of $\mathbf{S P}_{A}$, see $[11,12]$). They have shown that for sets of bounded width, these three concepts are equivalent. It is quite clear how to define recognizable and rational subsets of $\mathbf{S P}_{A}^{\omega}$. We plan to extend the notion of regularity to subsets of $\mathbf{S P}_{A}^{\omega}$ so that the equivalence result of Lodaya and Weil carries over.

Acknowledgements

The author would like to thank Stephen L. Bloom for valuable comments.

References

[1] L. Aceto, Full abstraction for series-parallel pomsets in: TAPSOFT 91, Lecture Notes in Computer Science, Vol. 493, Springer, Berlin, 1991, pp. 1-25.
[2] Ch. Baier, M.E. Majster-Cederbaum, Denotational semantics in the cpo and metric approach, Theoret. Comput. Sci. 135 (1994) 171-220.
[3] J. Berstel, L. Boasson, Partial words and a theorem of Fine and Wilf, Theoret. Comput. Sci. 218 (1999) 135-141.
[4] S.L. Bloom, Varieties of ordered algebras, J. Comput. System Sci. 13 (1976) 200-212.
[5] S.L. Bloom, C. Choffrut, Long words: The theory of concatenation and ω-power, Theoret. Comput. Sci. 259 (2001) 533-548.
[6] S.L. Bloom, Z. Ésik, Shuffle binoids, Theoret. Inform. Appl. 32 (1988) 175-198.
[7] J.W. de Bakker, J.H.A. Warmerdam, Metric pomset semantics for a concurrent language with recursion, in: Semantics of Systems of Concurrent Processes, Lecture Notes in Computer Science, Vol. 469, Springer, Berlin, 1990, pp. 21-49.
[8] G. Boudol, I. Castellani, On the semantics of concurrency: partial orders and transition systems, in: TAPSOFT' 87, Vol. 1, Lecture Notes in Computer Science, Vol. 249, Springer, Berlin, 1987, pp. 123-137.
[9] J.L. Gischer, The equational theory of pomsets, Theoret. Comput. Sci. 61 (1988) 199-224.
[10] J. Grabowski, On partial languages, Fund. Inform. 4 (1981) 427-498.
[11] K. Lodaya, P. Weil, Series-parallel posets: algebra, automata and languages, in: STACS'98, Lecture Notes in Computer Science, Vol. 1373, Springer, Berlin, 1998, pp. 555-565.
[12] K. Lodaya, P. Weil, Series-parallel languages and the bounded width property, Theoret. Comput. Sci. 237 (2000) 347-380.
[13] A. Mazurkiewicz, Concurrency, modularity and synchronization, in: MFCS'89, Lecture Notes in Computer Science, Vol. 379, Springer, Berlin, 1989, pp. 577-598.
[14] J.-J. Ch. Meyer, E.P. de Vink, Pomset semantics for true concurrency with synchronization and recursion, in: MFCS'89, Lecture Notes in Computer Science, Vol. 379, Springer, Berlin, 1989, pp. 360-369.
[15] V. Pratt, Modeling concurrency with partial orders, Int. J. Parallel Process. 15 (1986) 33-71.
[16] J. Valdes, R.E. Tarjan, E.L. Lawler, The recognition of series-parallel digraphs, SIAM J. Comput. 11 (2) (1982) 298-313.
[17] Th. Wilke, An Eilenberg theorem for ∞-languages, in: ICALP'91, Lecture Notes in Computer Science, Vol. 510, 1991, pp. 588-599.
[18] H. Wimmel, L. Priese, Algebraic characterization of Petri net pomset semantics, in: CONCUR'97, Lecture Notes in Computer Science, Vol. 1243, Springer, Berlin, 1997, pp. 406-420.
[19] J. Winkowski, Behaviours of concurrent systems, Theoret. Comput. Sci. 12 (1980) 39-60.
[20] I. Winkowski, Concatenable weighted pomsets and their applications to modelling processes of Petri nets, Fund. Inform. 28 (1996) 403-421.
[21] G. Winskel, Event structure semantics for CCS and related languages, in: ICALP'82, Lecture Notes in Computer Science, Vol. 140, Springer, Berlin, 1982, pp. 561-576.
[22] G. Winskel, M. Nielsen, Models for concurrency, in: Handbook of Logic in Computer Science, Vol. 4, Oxford University Press, New York, 1995, pp. 1-148.

[^0]: ${ }^{4}$ Partially supported by Grant No. T30511 from the National Foundation of Hungary for Scientific Research and by Grant No. FKFP 247/1999 from the Ministry of Education of Hungary.

 * Correspondence address. Department of Computer Science, University of Szeged, Árpád tér 2, 6720 Szeged, Hungary.
 E-mail address: esik@inf.u-szeged.hu (Z. Ésik).

[^1]: ${ }^{1}$ A partial word is directed if any two of its vertices have an upper bound.

