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Abstract 

We consider the common-knowledge paradox raised by Halpem and Moses: common knowl- 
edge is necessary for agreement and coordination, but common knowledge is unattainable in the 
real world because of temporal imprecision. We discuss two solutions to this paradox: ( 1) mod- 
eling the world with a coarser granularity, and (2) relaxing the requirements for coordination. 
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1. Introduction 

The notion of common knovtjledge, where everyone knows, everyone knows that 

everyone knows, etc., has proven to be fundamental in various disciplines, including 
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Philosophy [22], Artificial Intelligence [23], Game Theory [l, 12, 131, Psychology [6], 

and Distributed systems [ 161. This key notion was first studied by the philosopher David 

Lewis [22] in the context of conventions. Lewis pointed out that in order for something 

to be a convention, it must in fact be common knowledge among the members of a 

group. (For example, the convention that green means “go” and red means “stop” is 

presumably common knowledge among the drivers in our society.) 

Common knowledge also arises in discourse understanding [6]. Suppose Ann asks 

Bob “What did you think of the movie?” referring to a showing of Monkey business 

they have just seen. Not only must Ann and Bob both know that “the movie” refers 

to Monkey business, but Ann must know that Bob knows (so that she can be sure 

that Bob will give a reasonable answer to her question), Bob must know that Ann 

knows that Bob knows (so that Bob knows that Ann will respond appropriately to his 

answer), and so on. In fact, by a closer analysis of this situation, it can be shown that 

there must be common knowledge of what movie is meant in order for Bob to answer 

the question appropriately. 

Finally, as shown in [16], common knowledge also turns out to be a prerequisite 

for agreement and coordinated action. This is precisely what makes it such a crucial 

notion in the analysis of interacting groups of agents. On the other hand, in practical 

settings common knowledge is impossible to achieve. This puts us in a somewhat 

paradoxical situation, in that we claim both that common knowledge is a prerequisite 

for agreement and coordinated action and that it cannot be attained. We discuss two 

answers to this paradox: (1) modeling the world with a coarser granularity, and (2) 

relaxing the requirements for coordination. 

2. Two puzzles 

We start by discussing two well-known puzzles that involve attaining common 

knowledge. The first is the “muddy children” puzzle (which goes back at least to 

[ 111, although the version we consider here is taken from [3]). 

The story goes as follows: Imagine rz children playing together. Some, say k of 

them, get mud on their foreheads. Each can see the mud on others but not on his own 

forehead. Along comes the father, who says, “At least one of you has mud on your 

forehead,” thus expressing a fact known to each of them before he spoke (if k > 1). The 

father then asks the following question, over and over: “Does any of you know whether 

you have mud on your own forehead?” Assuming that all the children are perceptive, 

intelligent, truthful, and that they answer simultaneously, what will happen? 

There is a straightforward proof by induction that the first k-l times he asks the 

question, they will all say “No,” but then the kth time the children with muddy fore- 

heads will all answer “Yes.” Let us denote the fact “at least one child has a muddy 

forehead” by p. Notice that if k > 1, i.e., more than one child has a muddy fore- 

head, then every child can see at least one muddy forehead, and the children initially 

all know p. Thus, it would seem that the father does not provide the children with 
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any new information, and so he should not need to tell them that p holds when 

li > 1. But this is false! What the father provides is common knowledge. If cx- 

actly k children have muddy foreheads, then it is straightforward to see that 15” )J 

holds before the father speaks, but E’p does not (here E”cp means cp, if k = 0, and 

everyone knows E”-‘rp, if k 3 1). The father’s statement actually converts the chil- 

dren’s state of knowledge from E”-‘p to Cp (here Cp means that there is common 

knowledge of p). With this extra knowledge, they can deduce whether their foreheads 

are muddy. 

In the muddy children puzzle, the children do not actually need common knowledge; 

E’p suffices for them to figure out whether they have mud on their foreheads. On 

the other hand, the coordinated attack problem introduced by Gray [14] provides an 

example where common knowledge is truly necessary. In this problem. two generals, 

each commanding a division of an army, want to attack a common enemy. They will 

win the battle only if they attack the enemy simultaneously; if only one division attacks, 

it will be defeated. Thus, the generals want to coordinate their attack. Unfortunately, 

the only way they have of communicating is by means of messengers, who might get 

lost or captured by the enemy. 

Suppose a messenger sent by General A reaches General B with a message saying 

“attack at dawn.” Should General B attack? Although the message was in fact dcliv- 

ered, General A has no way of knowing that it was delivered. A must therefore consider 

it possible that B did not receive the message (in which case B would definitely not 

attack). Hence, A will not attack given his current state of knowledge. Knowing this. 

and not willing to risk attacking alone, B cannot attack based solely on receiving d’s 

message. Of course, B can try to improve matters by sending the messenger back 

to A with an acknowledgement. Even if the messenger reaches A, similar reasoning 

shows that neither A nor B will attack at this point either. In fact, Yemini and Cohen 

[36] proved, by induction on the number of messages, that no number of successful 

deliveries of acknowledgements to acknowledgements can allow the generals to at- 

tack. Halpern and Moses [ 161 showed the relationship between coordinated attack and 

common knowledge, and used this to give a “knowledge-based” proof of Yemini and 

Cohen’s result. Specifically, assume that the generals behave according to some pre- 

determined deterministic protocol; that is, a general’s actions (what messages he sends 

and whether he attacks) are a deterministic function of his history and the time on his 

clock. Assume further that in the absence of any successful communication, neither 

general will attack. Halpern and Moses then prove the following theorem: 

Theorem 1. [16] A correct protocol fbu the coordinated attuck problem wmrt hure 

the propert)) that whenever the generals attack, it is common kno~z.le&r that the!’ 

ure uttucking. 

Halpern and Moses then define the notion of a system where comnzunication is nor 

guaranteed. Roughly speaking, this means (1) it is always possible that from some 

point on, no messages will be received, and (2) if a processor (or general) i does 
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not get any information to the contrary (by receiving some message), then i considers 

it possible that none of its messages were received. In particular, in the coordinated 

attack problem as stated, communication is not guaranteed. Halpern and Moses then 

prove that in such a system, nothing can become common knowledge unless it is also 

common knowledge in the absence of communication. This implies the impossibility 

of coordinated attack: 

Theorem 2 (Halpern et al. [16]). Any correct protocol for the coordinated attack 

problem guarantees that neither general ever attacks. 

Common knowledge of p is defined to be the infinite conjunction of the formulas 

Ekq. This definition seems to suggest that common knowledge has an “inherently in- 

finite” nature. Indeed, for a fact that is not common knowledge to become common 

knowledge, each participating agent must come to know an infinite collection of new 

facts. Could this be one of the reasons that common knowledge is impossible to attain 

in this case? As we shall see, it is not. 

In practice, there is always a finite bound on the number of possible local states of 

an agent in a real-world system. A jinite-state system is one where each agent’s set of 

possible local states is finite. Fischer and Immerman [lo] showed that in a finite-state 

system, common knowledge is equivalent to Ek for a sufficiently large k. Nevertheless, 

the result that common knowledge is not attainable if communication is not guaranteed 

applies equally well to finite-state systems (as do our later results on the unattainability 

of common knowledge). Thus, in such cases, Ekq is unattainable for some sufficiently 

large k. (Intuitively, k is large enough so that the agents cannot count up to k; that 

is, k is tantamount to infinity for these agents.) So the unattainability of common 

knowledge in this case is not due to the fact that common knowledge is defined in 

terms of an infinite conjunction. 

3. Common knowledge and uncertainty 

As we have seen, common knowledge cannot be attained when communication is 

not guaranteed. That is, common knowledge is not attainable when communication 

errors are possible, regardless of how unlikely these errors are and how long and de- 

tailed the communication is. Halpem and Moses show further that common knowledge 

cannot be attained in a system in which communication is guaranteed, but where there 

is no bound on the time it takes for messages to be delivered. It would seem that when 

all messages are guaranteed to be delivered within a fixed amount of time, say one 

second, attaining common knowledge should be a simple matter. But things are not 

always as simple as they seem; even in this case, uncertainty causes major difficulties. 

Consider the following example: Assume that two agents, Alice and Bob, commu- 

nicate over a channel in which (it is common knowledge that) message delivery is 

guaranteed. Moreover, suppose that there is only slight uncertainty concerning message 
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delivery times. It is commonly known that any message sent from Alice to Bob reaches 

Bob within E time units. Now, suppose that at some point Alice sends Bob a message 

p that does not specify the sending time in any way. Bob does not know initially that 

Alice sent him a message. We assume that when Bob receives Alice’s message. he 

knows that it is from her. How do Alice and Bob’s state of knowledge change with 

time? 

Let se,zt(p) be the statement that Alice sent the message ,u. After E time units. 

we have K,..K,+wnt(p), that is, Alice knows that Bob knows that she sent the mes- 

sage A(. And clearly, this state of knowledge does not occur before z time units. Define 

(K,IKE)‘sent(p) by letting it be sent(p) for k = 0, and K ,K~(K,,K~)“~‘sent(~l) for 

k 3 1. It is not hard to verify that (K,~K~)‘sent(p) holds after liE time units, and does 

not hold before then. In particular, common knowledge of sent(p) is never attained. 

This may not seem too striking when we think of E that is relatively large, say a day. 

or an hour. The argument, however, is independent of the magnitude of E, and remains 

true even for small values of c. Even if Alice and Bob are guaranteed that Alice’s 

message arrives within one nanosecond, they still nev:er attain common knowledge that 

her message was sent! 

Now let us consider what happens if both Alice and Bob use the SUIIZP clock. and 

suppose that, instead of sending p, Alice sends at time m a message ~1’ that specifics 

the sending time, such as 

“This message is being sent at time m; p.” 

Recall that it is common knowledge that every message sent by Alice is received by 

Bob within E time units. When Bob receives LI’, he knows that /I’ was sent at time nl. 

Moreover, Bob’s receipt of ,u’ is guaranteed to happen no later than time m + 5. Since 

Alice and Bob use the same clock, it is common knowledge at time IYI +~ t that it 

is m + E. It is also common knowledge that any message sent at time m is reccivcd 

by time m + -c. Thus, at time r~l + E, the fact that Alice sent ,u’ to Bob is comtnon 

knowledge. 

Note that in the first example common knowledge will never hold regardless of 

whether t is a day, an hour, or a nanosecond. The slight uncertainty about the scnd- 

ing time and the message transmission time prevents common knowledge of /I frotn 

ever being attained in this scenario. What makes the second example so dramatically 

different‘? When a fact cp is common knowledge, everybody must know that it is. It IS 

impossible for agent i to know that q~ is common knowledge without agent j knowing 

it as well. This means that the transition from cp not being common knowledge to its 

being common knowledge must involve a simulttmrous change in ail relevant agents’ 

knowledge. In the first example, the uncertainty makes such a simultaneous transition 

impossible, while in the second, having the same clock makes a simultaneous transition 

possible and this transition occurs at time m + E. These two examples help illustrate the 

connection between simultaneity and common knowledge and the effect this can have 

on the attainability of common knowledge. We now formalize and further explore this 

connection. 
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4. Simultaneous events 

The Alice and Bob examples illustrate how the transition from a situation in which 

a fact is not common knowledge to one where it is common knowledge requires si- 

multaneous events to take place at all sites of the system. The relationship between 

simultaneity and common knowledge, is in fact even more fundamental than that. We 

saw by example earlier that actions that must be performed simultaneously by all par- 

ties, such as attacking in the coordinated attack problem, become common knowledge 

as soon as they are performed: common knowledge is a prerequisite for simultaneous 

actions. In this section, we give a result that says that a fact’s becoming common 

knowledge requires the occurrence of simultaneous events at different sites of the sys- 

tem. Moreover, the results say that in a certain technical sense, the occurrence of 

simultaneous events is necessarily common knowledge. This demonstrates the strong 

link between common knowledge and simultaneous events. 

To make this claim precise, we need to formalize the notion of simultaneous events. 

We begin by briefly reviewing the framework of [9] for modeling multi-agent systems.6 

We assume that at each point in time, each agent is in some local state. Informally, 

this local state encodes the information available to the agent at this point. In addition, 

there is an environment state, that keeps track of everything relevant to the system not 

recorded in the agents’ states. 

A global state is an (n + I)-tuple (s,,.sl,. . . s, ) consisting of the environment state 

S, and the local state S; of each agent i. A ~uyl of the system is a function from 

time (which, for ease of exposition, we assume ranges over the natural numbers) to 

global states. Thus, if Y is a run, then r(O), r( l), . . . is a sequence of global states that, 

roughly speaking, is a complete description of how the system evolves over time in 

one possible execution of the system. We take a system to consist of a set of runs. 

Intuitively, these runs describe all the possible sequences of events that could occur in 

a system. 

Given a system ,3, we refer to a pair (r,m) consisting of a run r E .% and a time m 

as a point. If r(m) = (s~,sI,. . ,s,), we define r;(m) = s;, for i = 1,. . . , n; thus, q(m) 

is process i’s local state at the point (Y, m). We say two points (r, m) and (r’,m’) are 

indistinguishable to agent i, and write (r,m) -, (r’,m’), if r;(m) = r:(m’), i.e., if agent 

i has the same local state at both points. Finally, we define an interpreted system to 

be a pair (2,n) consisting of a system .% together with a mapping 7~ that associates a 

truth assignment to the primitive propositions with each global state. 

An interpreted system can be viewed as a Kripke structure: the points are the pos- 

sible worlds, and -; plays the role of the accessibility relation. We give semantics to 

knowledge formulas in interpreted systems just as in Kripke structures: Given a point 

(r,m) in an interpreted system .P = (.%, rc), we have (.Y, r,m) /= Kiq if (Y,r’,m’) b q 

‘The general framework presented here for ascribing knowledge in multi-agent systems originated with 

Halpem and Moses [16,26] and Rosenschein [33]. Variants were also introduced by Fischer and Immerman 

[lo], Halpem and Fagin [ 151, Parikh and Ramanujam [32], and Rosenschein and Kaelbling [34]. 



for all points (~‘,m’) such that (r’,m’) N, (r,m). Notice that under this interpreta- 

tion, an agent knows cp if cp is true at all the situations the system could be in, 

given the agent’s current information (as encoded by his local state). Since -, is an 

equivalence relation, knowledge in this framework satisfies the axioms of the modal 

system S5. If G is a set of agents, we define EC; (“everyone in the group G knows”) 

by saying (.fl,r,m) /= Eccp if (.P,r,m) b K,y, for every i t G. We define C,, 

(“it is common knowledge among the agents in G”) by saying (.P,r,m) + Cc,c~ if 

(X.r,m) b ( EG.)‘~ for every k. When G is the set of all agents, we may write E for 

EC;, and C for Cc;. We write .f b cp if (9,r,m) + cp for every point (r.m) of the 

system Y. 

We now give a few more definitions, all relative to a fixed interpreted system .Y : 

(.&, rc). Let S denote the set of points of the system .R. Define an ecrnt in 9 to be 

a subset of S; intuitively, these are the points where the event e holds. An event P 

is said to hold at a point (r,m) if ( r,m) E r. Of special interest are ev,ents whose 

occurrence is reflected in an agent’s local state. More formally, an event e is loc~rl 

to i (in interpreted system X) if there is a set L; of i’s local states such that for all 

points (K, nz l we have (r, m) E e iff f.i(m) t 15:. The events of sending a mcssagc, 

receiving a message, and performing an internal action are examples of local events 

for agent i. We remark that the definition of a local event does not imply that an cvcnt 

that is local to i cannot also be local to j. In order to be local to both agents, it only 

needs to be reflected in the local states of both agents. 

Certain events depend only on the global state. An event e is a stutr rz’mr if there is 

a set 9 of global states such that for all points (r.m) we have (r,nl) E e ilf r(m) t ‘P. 

It is easy to see that local events are state events. More generally, a state event is one 

that depends only on what is recorded in the local states of the agents and the state 

of the environment. We associate with every state event e a primitive proposition tb, 

that is true at the global state r(m) if and only if (r,m) t e. This is well defined, 

because it follows easily from the definition of state events that if TV is a state event 

and (r,m) and (I-‘,.,‘) are points such that r(m) = r’(m’), then (r,m) g e if and only 

if (r’,m’) E e. 

We can similarly associate with every formula cp an event ev y (cp) = {(I’, HZ ) : 

(.Y,r,m) b cp}. The event evy(cp) thus holds exactly when cp holds. We call ev,((p) 

the raent of’ cp holding (in Y). It is easy to check that an event e is local to i if and 

only if K,Ic/i, holds, that is, if and only if i knows that e is holding. Moreover. the 

event of K,cp holding is always a local event for i. 

We are now ready to address the issue of simultaneous events. Intuitively, two 

events are simultaneous if they occur at the same points. Our interest in simultaneity 

is primarily in the context of coordination. Namely, we are interested in events that are 

local to different agents and are coordinated in time. Thus, we concentrate on events 

whose occurrence is simultaneously reflected in the local state of the agents. Marc 

formally. we define an event ensemble .for G (or just rnsenrhle for short) to be a 

mapping e assigning to every agent i E G an event e(i) local to i. An ensemble e 

for G is said to be perfectly coordinuted if the local events in e hold simultaneously: 
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formally, if (~,m) E e(i) for some i E G, then (r,m) E e(J for all j E G. Thus, the 

ensemble e for G is perfectly coordinated precisely if e(i) = eG> for all i,j t G. 

Since an event e that is local to agent i is defined in terms of a set Lp of states local 

to agent i, the ensemble e for G is perfectly coordinated if all the agents in G enter 

their respective sets LF”’ simultaneously. Thus, the events in a perfectly coordinated 

ensemble are simultaneous. 

An example of a perfectly coordinated ensemble is the set of local events that 

correspond to the ticking of a global clock, if the ticking is guaranteed to be reflected 

simultaneously at all sites of a system. Another example is the event of shaking hands: 

being a mutual action, the handshakes of the parties are perfectly coordinated. 

Given an ensemble e for G, the proposition I&!, corresponds to the state event e(i) 

holding. We also define & = Vitc I&;). Thus, & is true whenever one of the state 

events e(i) holds. 

Proposition 3. Let Y be un interpreted system and G a set of ugents. 

(a) For every formula q, the ensemble e jbr G defined by e(i)=evf(KiCccp) is 

perjtictly coordinated. 

(b) If e is a perfectly coordinated ensemble for G, then 4 b & + CG$~. 

(In fact, K,C,cp in part (a) of Proposition 3 is logically equivalent to C~cp, but we 

write K,Cccp to bring out the similarities between this result and Proposition 6 below.) 

Proposition 3 precisely captures the close correspondence between common knowledge 

and simultaneous events. It asserts that the local events that correspond to common 

knowledge are perfectly coordinated, and the local events in a perfectly coordinated 

ensemble are common knowledge when they hold. Notice that part (a) implies in par- 

ticular that the transitions from -K,C,rp to KjC~(p. for i E G, must be simultaneous. 

Among other things, this helps clarify the difference between the two examples consid- 

ered in Section 3: In the first example, Alice and Bob cannot attain common knowledge 

of sent(p) because they are unable to make such a simultaneous transition, while in 

the second example they can (and do). 

The close relationship between common knowledge and simultaneous actions is what 

makes common knowledge such a useful tool for analyzing tasks involving coordination 

and agreement. It also gives us some insight into how common knowledge arises. For 

example, the fact that a public announcement has been made is common knowledge, 

since the announcement is heard simultaneously by everyone. (Strictly speaking, of 

course, this is not quite true; we return to this issue in Section 6.) More generally, 

simultaneity is inherent in the notion elf copresence. As a consequence, when people 

sit around a table, the existence of‘ the table, as well as the nature of the objects on 

the table, are common knowledge. 

Proposition 3 formally captures the role of simultaneous actions in making agree- 

ments and conventions common knowledge. As we discussed earlier, common knowl- 

edge is inherent in agreements and conventions. Hand shaking, face-to-face or telephone 

conversation, and a simultaneous signing of a contract are standard ways of reaching 
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agreements. They all involve simultaneous actions and have the effect of making the 

agreement common knowledge. 

5. Temporal Imprecision 

As we illustrated previously and formalized in Proposition 3, simultaneity is inher- 

ent in the notion of common knowledge (and vice versa). It follows that simultaneity 

is a prerequisite for attaining common knowledge. Alice and Bob’s failure to reach 

common knowledge in the first example above can therefore be blamed on their in- 

ability to perform a simultaneous state transition. As might be expected, the fact that 

simultaneity is a prerequisite for attaining common knowledge has additional conse- 

quences. For example, in many distributed systems each process possesses a clock. 

In practice, in any distributed system there is always some uncertainty regarding the 

relative synchrony of the clocks and regarding the precise message transmission times. 

This results in what is called the temporal imprecision of the system. The amount 

of temporal imprecision in different systems varies, but it can be argued that every 

practical system will have some (possibly very small) degree of imprecision. For- 

mally, a given system :% is said to have temporal imprecision if for all pairs i.,j such 

that i # j and all points (~,m) with tn > 0, there exists a point (r’,m’) such that 

r:(m’) = ri(m) and either r;(d) = rj(m + 1) or ri(m’) = r,(m - 1). Intuitively, in a 

system with temporal imprecision, i is uncertain about j’s clock reading; at the point 

(v,m), process i cannot tell whether j’s clock is characterized by j’s local state at 

(r. m), by j’s local state at (~,m + 1) or by j’s local state at (r. m - 1). Techniques 

from the distributed-systems literature [7,17] can be used to show that any system in 

which, roughly speaking, there is some initial uncertainty regarding relative clock read- 

ings and uncertainty regarding exact message transmission times must have temporal 

imprecision. 

Systems with temporal imprecision turn out to have the property that no protocol 

can be guaranteed to synchronize the processes’ clocks perfectly. As we now show. 

events cannot be perfectly coordinated in systems with temporal imprecision either. 

These two facts are closely related. 

We define an ensemble e for G in .B to be nontrikd if there exist a run Y in .f 

and times m, m’ such that (Y, m) t U,E(; e(i) while (Y. m’) $ UIEc; e(i). Thus, if e is 

a perfectly coordinated ensemble for G, it is trivial if for each run r of the sys- 

tem and for each agent i E G, the events in e(i) hold either at all points of I‘ or 

at no point of r. The definition of systems with temporal imprecision implies the 

following: 

Proposition 4. In a system with temporal imprecision there are no nontrivial peQectlj. 

coordinated ensembles for G, if 1 G] 3 2. 

We thus have the following corollary. 
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Corollary 5. [ 161 Let f be a system with temporal imprecision, let cp be a for- 

mula, and let JGI >2. Then for all runs r and times m we have (Y,r, m) + CGC~ iff 

(9,r,O) l= CG~. 

In simple terms, Corollary 5 states that no fact can become common knowledge 

during a run of a system with temporal imprecision. If the units by which time is 

measured in our model are sufficiently small, then all practical distributed systems have 

temporal imprecision. For example, if we work at the nanosecond level, then there is 

bound to be some uncertainty regarding exact message transmission times. As a result, 

Corollary 5 implies that no fact can ever become common knowledge in practical 

distributed systems. Carrying this argument even further, we can view essentially all 

real-world scenarios as ones in which true simultaneity cannot be guaranteed. For 

example, the children in the muddy children puzzle neither hear nor comprehend the 

father simultaneously. There is bound to be some uncertainty about how long it takes 

each of them to process the information. Thus, according to our earlier discussion, the 

children in fact do not attain common knowledge of the father’s statement. 

We now seem to have a paradox. On the one hand, we have argued that common 

knowledge is unattainable in practical contexts. On the other hand, given our claim 

that common knowledge is a prerequisite for agreements and conventions and the 

observation that we do reach agreements and that conventions are maintained, it seems 

that common knowledge is attained in practice. Note that this paradox applies not 

only to situations that explicitly require coordination, such as the coordinated attack 

problem, but even to situations that do not require coordination, such as conventions 

and discourse understanding. If a convention requires common knowledge, then this 

common knowledge must arise somehow. (After all, we do not have innate knowledge 

about red traffic lights meaning stop.) This cannot happen in any real-world system, 

since common knowledge must arise simultaneously for all participants. 

What is the catch? How can we explain this discrepancy between our practical expe- 

rience and our technical results? In the next two sections, we consider two resolutions 

to this paradox. The first rests on the observation that if we model time at a suf- 

ficiently coarse level, we can and do attain common knowledge. The question then 

becomes when and whether it is appropriate to model time in this way. The second 

says that, although we indeed cannot attain common knowledge, we can attain close 

approximations of it, and this suffices for our purposes. 

6. The Granularity of Time 

Given the complexity of the real world, any mathematical model of a situation must 

abstract away many details. A useful model is typically one that abstracts away as 

much of the irrelevant detail as possible, leaving all and only the relevant aspects of a 

situation. When modeling a particular situation, it can often be quite difficult to decide 

the level of granularity at which to model time. The notion of time in a run rarely 
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corresponds to real time. Rather, our choice of the granularity of time is motivated 

by convenience of modeling. Thus, in a distributed application, it may be perfectly 

appropriate to take a round to be sufficiently long for a process to send a message to 

all other processes, and perhaps do some local computation as well. 

As we have observed, the argument that every practical system has some degree of 

temporal imprecision holds only relative to a sufficiently fine-grained model of time 

For Proposition 4 and Corollary 5 to apply, time must be represented in sufbciently tine 

detail for temporal imprecision to be reflected in the model. If a model has a coarse 

notion of time, then simultaneity, and hence common knowledge, are often attainable. 

For example, in synchronous systems (those where the agents have access to a shared 

clock, so that, intuitively, the time is common knowledge) there is no temporal im- 

precision As an example, consider a simplified model of the muddy children problem. 

The initial states of the children and the father describe what they see; later states de- 

scribe everything they have heard. All communication proceeds in rounds. In round I. 

if there is at least one muddy child, a message to this effect is sent to all children. In 

the odd-numbered rounds 1, 3, 5,. ., the father sends to all children the message “Does 

any of you know whether you have mud on your own forehead?” The children respond 

“Yes” or “No” in the even-numbered rounds. In this simplified model, the children do 

attain common knowledge of the father’s statement (after the first round). If, however, 

we “enhance” the model to take into consideration the minute details of the neural 

activity in the children’s brains, and considered time on, say, a millisecond scale. the 

children would not be modeled as hearing the father simultaneously. Moreover. the 

children would not attain common knowledge of the father’s statement. We conclude 

that whether a given fact becomes common knowledge at a certain point, or in fact 

whether it ever becomes common knowledge, depends in a crucial way on the model 

being used. While common knowledge may be attainable in a certain model of a given 

real world situation, it becomes unattainable once we consider a more detailed model 

of tlw smrw situution. 

When are we justified in reasoning and acting as if common knowledge is attainable? 

This reduces to the question of when we can argue that one model - in our case a 

coarser or less detailed model - is “as good’ as another, finer, model. The answer, of 

course, is “it depends on the intended application.” Our approach for deciding whether 

a less detailed model is as good as another, finer, model, is to assume that there is some 

“specification” of interest, and to consider whether the finer model satisfies the same 

specification as the coarser model. For example, in the muddy children puzzle, our 

earlier model implicitly assumed that the children all hear the father’s initial statement 

and his later questions simultaneously. We can think of this as a coarse model where, 

indeed, the children attain common knowledge. For the fine model, suppose instead that 

every time the father speaks, it takes somewhere between 8 and IO milliseconds for 

each child to hear and process what the father says. but the exact time may be ditfercnt 

for each child, and may even be different for a given child every time the father speaks. 

Similarly, after a given child speaks, it takes between 8 and IO milliseconds for the 

other children and the father to hear and process what he says. (While them is nothing 
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particularly significant in our choice of 8 and 10 milliseconds, it is important that a 

child does not hear any other child’s response to the father’s question before he utters 

his own response.) The father does not ask his kth question until he has received the 

responses from all children to his (k - 1)” question. 

The specification of interest for the muddy children puzzle is the following: A child 

says “Yes” if he knows whether he is muddy and says “No” otherwise. This speci- 

fication is satisfied in particular when each child follows the protocol that if he sees 

k muddy children, then he responds “No” to the father’s first k questions and “Yes” 

to all the questions after that. This specification is true in both the coarse model 

and the fine model. Therefore, we consider the coarse model adequate. If part of 

the specification had been that the children answer simultaneously, then the coarse 

model would not have been adequate. For a more formal presentation of our approach, 

see [9]. 

The observation that whether or not common knowledge is attainable depends in part 

on how we model time was made in a number of earlier papers [2, 10,16,21,29,30]. 

Our approach formalizes this observation and offers a rigorous way to determine when 

the coarse model is adequate. 

7. Approximations of Common Knowledge 

Section 4 shows that common knowledge captures the state of knowledge resulting 

from simultaneous events. It also shows, however, that in the absence of events that are 

guaranteed to hold simultaneously, common knowledge is not attained. In Section 6, 

we tried to answer the question of when we can reason and act as if certain events 

were simultaneous. But there is another point of view we can take. There are situations 

where events holding at different sites need not happen simultaneously; the level of 

coordination required is weaker than absolute simultaneity. For example, we may want 

the events to hold at most a certain amount of time apart. It turns out that just as 

common knowledge is the state of knowledge corresponding to perfect coordination, 

there are states of shared knowledge corresponding to other forms of coordination. We 

can view these states of knowledge as approximations of true common knowledge. It 

is well known that common knowledge can be defined in terms of a fixed point, as 

well as an infinite conjunction. As shown in [ 161, Carp is equivalent to vx[E~(q A x)], 

where vx is the greatest jxed-point operator. 7 As we shall see, the approximations 

of common knowledge have similar fixed-point definitions. Fortunately, while perfect 

coordination is hard to attain in practice, weaker forms of coordination are often at- 

tainable. This is one explanation as to why the unattainability of common knowledge 

might not spell as great a disaster as we might have originally expected. This section 

considers two of these weaker forms of coordination, and their corresponding states of 

knowledge. 

’ Formal definitions of this operator can be found in [9,16] 
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Let us return to the first Alice and Bob example. Notice that if E = 0, then Al- 

ice and Bob attain common knowledge of sent(p) immediately after the message is 

sent. In this case, it is guaranteed that once the message is sent, both agents im- 

mediately know the contents of the message, as well as the fact that it has been 

sent. Intuitively, it seems that the closer E is to 0, the closer Alice and Bob’s state 

of knowledge should be to common knowledge. Compare the situation when cc > 0 

with E = 0. As we saw, if E > 0 then Alice does not know that Bob received her mes- 

sage immediately after she sends the message. She does, however, know that lt,ithin 

E tkne units Bob will receive the message and know both the contents of the mes- 

sage and that the message has been sent. The sending of the message results in a 

situation where, within E time units, everyone knows that the situation holds. This 

is analogous to the fact that common knowledge corresponds to a situation where 

everyone knows that the situation holds. This suggests that the state of knowledge 

resulting in the Alice and Bob scenario should involve a fixed point of some sort. 

We now formalize a notion of coordination related to the Alice and Bob example, 

and define an approximation of common knowledge corresponding to this type of 

coordination. 

An ensemble e for G is said to be E-coordinated (in a given system X) if the local 

events in e never hold more than E time units apart; formally, if (r,m) t e(i) for some 

i t G, then there exists an interval I = [m’,m’ + E] such that m E I and for all ,j E G 

there exists nz, E I for which (r,mi) E eG). Note that E-coordination with c’ = 0 is 

perfect coordination. While it is essentially infeasible in practice to coordinate events 

so that they hold simultaneously at different sites of a distributed system, c-coordination 

is often attainable in practice, even in systems where there is uncertainty in message 

delivery time. Moreover, when E is sufficiently small, there are many applications 

for which F-coordination is practically as good as perfect coordination. For example, 

instead of requiring a simultaneous attack in the coordinated attack problem, it may bc 

sufficient to require only that the two divisions attack within a certain E-time bound of 

each other. This is called an E-coordinated attack. 

More generally, E-coordination may be practically as good as perfect coordination for 

many instances of agreements and conventions. One example of &-coordination results 

from a message being broadcast to all members of a group G, with the guarantee that 

it will reach all of the members within E time units of one another. In this case it is 

easy to see that when an agent receives the message, she knows the message has been 

broadcast, and knows that within E time units each of the members of G will have 

received the message and will know that within E . 

Let c be arbitrary. We say that kcithin an E intercal everyone in G knoivs cp, denoted 

E,cp. if there is an interval of E time units containing the current time such that each 

process comes to know cp at some point in this interval. Formally, (.Y, I’. m ) /= Ei;cp 

if there exists an interval I = [m’,m’ + E] such that m E I and for all i E G there 

exists m, E I for which (Y,u,m,) F K,cp. Thus, in the case of Alice and Bob, we 

have .f + srnt(p) =+ Ei,4,Bl sent(y). We define E-common knowledge, denoted by C,,, 

using a greatest fixed-point operator: CGcp =+f vx[EE(cp AX)]. Notice how similar this 
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definition is to the fixed-point definition of common knowledge. The only change is in 

replacing EG by El. 

Just as common knowledge is closely related to perfect coordination, E-common 

knowledge is closely related to E-coordination. We now make this claim precise. The 

next proposition is analogous to Proposition 3. 

Proposition 6. Let 9 he an interpreted system and G a set of agents. 

(a) For every formula q, the ensemble e for G dejined by e(i)=ev,f(K,C&q) is 

E-coordinated 

(b) If e is an E-coordinated ensemble jbr G, then Y t= It/e + Cs&. 

Note that in part (a), we write K;Cgq; we cannot write C&cp, since ev.f(C&q) is not 

an event local to agent i. 

Since in the coordinated attack problem message delivery is not guaranteed, it can be 

shown that the generals cannot achieve even E-coordinated attack. On the other hand, 

if messages are guaranteed to be delivered within E units of time, then E-coordinated 

attack can be accomplished. General A simply sends General B a message saying 

“attack” and attacks immediately; General B attacks upon receipt of the message. 

The notion of E-coordination enables us to quantify how closely (temporally) we 

want to approximate perfect coordination. Although E-coordination is useful for the 

analysis of systems where the uncertainty in message communication time is small, it 

is not quite as useful in the analysis of systems where message delivery may be delayed 

for a long period of time. In such systems, rather than perfect or &-coordination, what 

can often be achieved is eventual coordination. An ensemble e for G is eventually 

coordinated (in a given system 9) if, for every run of the system, if some event in,e 

holds during the run, then all events in e do. More formally, if (r,m) E e(i) for some 

i E G, then for all j g G there exists some m, for which (r,mi) E eG>. An example 

of an eventual coordination of G consists of the delivery of (copies of) a message 

broadcast to every member of G in a system with message delays. An agent receiving 

this message knows the contents of the message, as well as the fact that each other 

member of G must receive the message at some point in time, either past, present, or 

future. 

Eventual coordination gives rise to eventual common knowledge, denoted by Cs, 

and defined by Czcp =+r vx[E,Y$(q~x)]. Here we define EEcp to hold at (Y,r,m) if for 

each i E G there is some time mi such that (Y,r.m,) /= Kiq. Thus, Eg can be viewed 

as the limit of E,$ as E approaches infinity. It is straightforward to show that CE is 

related to eventual coordination just as C, is related to perfect coordination, and Cg 

to &-coordination. Interestingly, although Cg is definable as an infinite conjunction, it 

can be shown that Cg is not [9]. We really need to use fixed points here; cf. [4]. 

Just as &-coordinated attack is a weakening of the simultaneity requirement of coor- 

dinated attack, a further weakening of the simultaneity requirement is given by eventu- 

ally coordinated attack. This requirement says that if one of the two divisions attacks, 

then the other division eventually attacks. If messages are guaranteed to be delivered 
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eventually, then even if there is no bound on message delivery time, an eventually 

coordinated attack can be carried out. 

The notions of E-common knowledge and of eventual common knowledge are from 

[ 161. Our contribution here is in introducing ensembles as a formalization of the concept 

of coordination and in showing that approximations of common knowledge correspond 

to approximations of coordination. Other similar variants of common knowledge, also 

defined by means of fixed points, have been considered in the literature, including 

timestamped common know-ledge [ 161, continual common knowledge [ 181, and coon- 

current common knowledge [31]. Another way to approximate common knowledge rc- 

quires the introduction of probability. Probabilistic common kno,vledgr [5,8, 19,20.24-- 

28,351, corresponds to probabilistic coordination. In probabilistic coordination we can 

quantify how closely (probabilistically) we want to approximate perfect coordination. 

Thus, in both c-coordination and probabilistic coordination we can control the risk of 

deviating from perfect coordination. For a game-theoretical analysis of this perspective 

see, for example, [25,27,28,35]. 

8. Summary 

The central theme of this paper is an attempt to resolve the paradox of common 

knowledge raised in [16]: Although common knowledge can be shown to be a pre- 

requisite for day-to-day activities of coordination and agreement, it can also be shown 

to be unattainable in practice. The resolution of this paradox leads to a deeper under- 

standing of the nature of common knowledge and simultaneity, and shows once again 

the importance of the modeling process. In particular, it brings out the importance of 

the granularity at which we model time, and stresses the need to consider the applica- 

tions for which these notions are being used. Moreover, by using the notion of event 

ensembles, we are able to clarify the tight relationship between common knowledge 

and coordination. 
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