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SUMMARY

Histone methylation is an epigenetic mark essential
for gene regulation and development. We introduce
peptide SPOT synthesis to study sequence specific-
ity of the Dim-5 histone-3 lysine-9 methyltransferase.
Dim-5 recognizes R8-G12 of the H3 tail with T11 and
G12 being the most important specificity determi-
nants. Exchange of H3 tail residue S10 and T11 by
E strongly reduced methylation by Dim-5, suggesting
that phosphorylation of S10 or T11 may regulate the
activity of Dim-5. In the Dim-5/peptide structure,
E227 interacts with H3R8 and D209 with H3-S10. Mu-
tations of E227 or D209 caused predictable changes
in the substrate preference, illustrating that peptide
recognition of histone methyltransferases can be
altered by protein design. Comparative analyses of
peptide arrays with wild-type and mutant enzymes,
therefore, are well suited to investigate the target
specificity of protein methyltransferases and study
epigenetic crosstalk.
INTRODUCTION

Epigenetic regulation by covalent modification of histone pro-

teins and methylation of DNA controls gene activity during devel-

opment and disease processes (Egger et al., 2004; Feinberg and

Tycko, 2004; Jones and Baylin, 2002; Li, 2002). Histones are

posttranslationally modified by various enzymatic reactions in-

cluding methylation, primarily at their flexible N termini (Berger,

2007; Margueron et al., 2005). Methylation of lysine residues oc-

curs in histone H3 at residues K4, K9, K27, and K36; in histone H4

at K20; and in histone H1b at K26. All these modifications have

different biological functions (Berger, 2007; Martin and Zhang,

2005); for example, H3K9 methylation leads to condensation of

the chromatin and inhibition of gene expression, H3K27 methyl-

ation is correlated to gene silencing, while H3K4 methylation

marks active chromatin (Li et al., 2007).

Most histone lysine methyltransferases (HKMTs) contain

a SET (Su(var)3-9, Enhancer-of-zeste, Trithorax) domain which

comprises approximately 130 amino acids and harbors the ac-

tive center of the enzymes (Cheng et al., 2005). Different HKMTs
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not only vary in their substrate specificity but also in product pat-

tern because lysine can be mono-, di-, or trimethylated (Zhang

et al., 2003). Here, we investigate the target specificity of the

H3K9 Dim-5 HKMT from Neurospora crassa. The enzyme gener-

ates trimethylated H3K9 (H3K9me3) in a processive reaction

(Zhang et al., 2003) that controls DNA methylation in N. crassa

(Selker et al., 2002; Tamaru and Selker, 2001; Tamaru et al.,

2003). The three-dimensional structure of the protein alone and

in complex with a peptide has been solved and allowed to iden-

tify the directly interacting moieties in atomic detail (Zhang et al.,

2002, 2003).

While the sequence specificity of substrate and ligand interac-

tion of proteases (Overall, 2002), kinases (Kreegipuu et al., 1998),

and antibodies (Mariuzza et al., 1987) has been analyzed compre-

hensively, such in-depth studies have not yet been carried out for

HKMTs because a large number of different peptides have to be

analyzed to derive a complete specificity profile for one enzyme.

Peptide array SPOT synthesis on cellulose membranes had been

introduced to prepare large libraries of different peptides at

amounts sufficient for biochemical assays and at moderate costs

(Frank, 2002; Hilpert et al., 2007; Reineke et al., 2001; Wenschuh

et al., 2000). The method was used to analyze the specificity of ki-

nases and proteases (Hohne and Hilpert, 2005; Tegge and Frank,

1998) and to study the binding specificity of protein/protein inter-

action (Bialek et al., 2003; Frank, 2002; Hilpert et al., 2000, 2007).

Here, we demonstrate that peptide arrays are an ideal approach

to analyze the substrate specificity of HKMTs.

RESULTS AND DISCUSSION

We synthesized 21-residue peptides on a functionalized cellu-

lose membrane by the SPOT synthesis method (Frank, 2002; Re-

ineke et al., 2001; Wenschuh et al., 2000). The methylation of the

respective substrates was analyzed by following the enzymatic

transfer of radioactively labeled methyl groups from the coen-

zyme S-adenosyl-L-methionine (AdoMet) to the immobilized

peptides. As a pilot experiment, several spots with the sequence

of the first 21 amino acids of the N-terminal tail of histone H3 and

spots of the K9A peptide variant in which the target lysine had

been replaced by alanine were prepared. After incubation with

Dim-5, a clear methylation signal was detected at the H3 pep-

tides, while no methylation occurred on H3 K9A peptides (Fig-

ure 1A). The methylation signal at H3 peptides was linearly in-

creasing with incubation time and enzyme concentration
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(Figures 1B and 1C). To analyze if the activity of Dim-5 on immo-

bilized substrates is comparable with data obtained in solution,

we determined the Km value for AdoMet by using H3 tail peptides

as substrates either bound to the cellulose membrane or in solu-

tion. For both experiments, similar Km values between 1.2 and

1.3 mM were obtained (data not shown).

Substrate Specificity of Dim-5
To study the influence of each residue on peptide recognition by

Dim-5, an alanine scanning experiment was performed by syn-

thesizing a small array of 21 peptides each carrying an exchange

of a single residue against alanine (Figure 1D). The reduced

methylation of peptides carrying substitutions at positions 8–12

demonstrated an important role of R8, K9 (the target of methyl-

ation), S10, T11, and G12 in the peptide recognition by Dim-5.

The residual methylation activities were measured on four inde-

pendent membranes, and standard deviations were determined

(Figure 1E). The average standard error in all four experiments
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was ± 7%; standard errors of individual substrates were gener-

ally smaller than ± 15%, indicating that the assay is reliable

and accurate. We conclude that the peptide methylation assay

on solid support allows rapid methylation analysis of several tar-

get peptides. One inherent advantage of the method is that all

peptide spots are methylated in competition, which ensures

that equal amounts of active enzyme and cofactor are available

for all substrates. Under the experimental conditions used here,

the relative rates of methylation correspond to ratios of kcat/Kd

values for the respective peptide, the latter representing an es-

tablished parameter for quantification of enzyme specificity

(Fersht, 1998) (Supplemental Experimental Procedures, see the

Supplemental Data available with this article online).

Next, we determined the influence of each possible amino acid

exchange at each position of the peptide substrate on the activ-

ity of Dim-5. Therefore, H3 tail arrays comprising 420 individual

peptides were used, in which each peptide contains an ex-

change of one amino acid of the wild-type H3 tail sequence
Figure 1. Application of the Peptide SPOT Synthesis to Study the Activity of Histone Methyltransferases

(A) Example of the methylation of peptides on solid support. After SPOT synthesis of the wild-type histone H3 N-terminal tail sequence (H3) and a K9A variant, the

membrane was incubated with Dim-5 and radioactive AdoMet. Methylation was visualized by fluorography.

(B and C) The methylation rate of peptide spots increases linearly with enzyme concentration and time.

(D) Alanine scan of H3 tail methylation by Dim-5. In this assay, all 21 positions of the H3 tail were exchanged individually against alanine. The spot labeled with wt

contains the wild-type H3 tail sequence.

(E) Quantitative analysis of four independent alanine scans indicating the average activity and standard error for each target peptide.
rights reserved
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against each of the 20 natural amino acids (Figure 2A). Three in-

dependent membrane arrays were synthesized and incubated

with Dim-5 (Figure 2B). After normalization, the results showed

excellent reproducibility as indicated by the distribution of stan-

dard deviations (Figure 2C). To quantify the contribution of each

amino acid to the recognition of the substrate and display it

graphically, a discrimination factor of Dim-5 for each position

was calculated and displayed in Figure 2D. Strikingly, and in

excellent agreement with the structure of Dim-5 in complex

with an H3 residue 1–15 peptide, where residues 7–12 are

ordered (Zhang et al., 2003) (Figure 3A), the data highlights the

importance of substrate residues R8 to G12 for the activity of

Dim-5. These results are consistent with a more limited data

set previously obtained testing Dim-5 on modified recombinant

histones (E. Selker, personal communication).

Among histone H3 residues R8–G12, recognition of T11 and

G12 was most pronounced. The spectrum of residues accepted

at position 11 (T, C, A, and L) suggests that hydrophobic con-

tacts are important, which is in agreement with the Dim-5 pep-
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tide structure because the residues within 4 Å of the side chain

of T11 are F206, I250, and L265. The Dim-5 atoms in contact

with G12 are approximately 5 Å away. The preference for G12

suggests that either glycine-specific backbone angles are pre-

ferred at this position as the H3 peptide meanders off the face

of Dim-5 after G12 and/or the presence of a Cb atom would

sterically interfere with complex formation. R8 could only be

substituted by K and G. The preference for K and R suggests rec-

ognition of positively charged residues at this position, which is

in agreement with a contact between R8 and E227 seen in the

Dim-5 peptide structure (Figure 3A). Surprisingly, G is favored

as well, probably because it gives conformational flexibility to

the peptide chain. The specificity for recognition of S10 is lower

as compared to R8, T11, and G12, and peptides containing var-

ious amino acids (including T, V, and R) at this position were

methylated. However, serine and threonine are the preferred res-

idues, which can be explained by the hydrogen bond between

S10 and D209 observed in the Dim-5 peptide structure (Fig-

ure 3A).
Figure 2. Specificity of Peptide Methylation by Dim-5

(A) Example of one full H3 peptide tail array. The sequence of the H3 tail is given on the horizontal axis. Each residue was exchanged against all 20 natural amino

acid residues (as indicated on the vertical axis) and the relative efficiency of methylation by Dim-5 analyzed.

(B) Compilation of the results of the peptide scan experiments with Dim-5. Data are averaged numbers from three independent experiments.

(C) Distribution of standard deviations for the data shown in (B) after normalizing full activity to 1.0.

(D) Bar diagram showing the discrimination factors of Dim-5 at the positions tested.

(E) Compilation of the specificity of Dim-5 for its target peptide.
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The peptide arrays included exchanges of histone H3 residues

S10 and T11 by E. Substitution of S10 and T11 by E strongly

reduced enzymatic activity of Dim-5 (86% inhibition for S10E,

91% for T11E). Because S10 and T11 are known phosphorylation

sites in eukaryotes (Margueron et al., 2005) and E resembles

a phosphoserine in steric and electrostatic terms, this results

suggest that the activity of Dim-5 can be regulated by phosphor-

ylation of S10 (or T11), the same way as phosphorylation of
8 Chemistry & Biology 15, 5–11, January 2008 ª2008 Elsevier Ltd All
H3S10 prevents H3K9 methylation by Suv39H1 and Clr4 (Na-

kayama et al., 2001; Rea et al., 2000). In contrast, a T6E exchange

did not affect Dim-5 activity, in agreement with structural result

and specificity profile.

A search of the entire proteome of Neurospora crassa using

Scansite (Obenauer et al., 2003) revealed that histone H3 is the

only N. crassa protein that contains a (R/G/K)-K-(S/T)-T-G se-

quence, which represents the ideal Dim-5 target sequence
Figure 3. Analysis of Dim-5 Peptide Contacts

(A) Structure of the Dim-5 binding cleft (Zhang et al., 2002). H3 peptide residues from A7-G12 are indicated in green; Dim-5 residues contacting the peptide (D209

and E227) are shown in red. For clarity of visualization, the side chains of D209 and E227 were not included in the calculation of the surface of Dim-5.

(B) Alignment of some lysine residues in the different histone tails.

(C) Relative rates of modification of H3K9, H3K27, H4K20, and H1bK25 peptides by Dim-5. Error bars denote the standard deviation of the mean.

(D) Substrate discrimination of Dim-5 wild-type and mutants on H3 tail substrates with all 20 natural amino acid substitutions at position R8.

(E) Substrate discrimination of Dim-5 wild-type and mutants on H3 tail substrates with all 20 natural amino acid substitutions at position S10.
rights reserved
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(Figure 2E). In particular, the recognition of T11 and G12 is impor-

tant to distinguish H3K9 from H3K27 and H4K20 (Figures 3B and

3C). In agreement with the profile, Dim-5 can methylate the tail of

human histone H1b in vitro (Figure 3C), but this protein is not

present in N. crassa.

Influence of Dim-5 Residues on H3 Peptide Recognition
To investigate the role of the H3R8-E227 and H3S10-D209 con-

tacts for peptide recognition by Dim-5, mutant enzymes were

created with substitutions of D209 or E227 to A and S, respec-

tively. In solution experiments with the wild-type H3 sequence,

the D209A and S mutants showed a 100-fold and the E227A

and S mutants a 10-fold reduced activity as compared to wild-

type Dim-5 (data not shown). All four mutants were analyzed

for methylation of peptides carrying all possible substitutions

at position 8 and 10 of the N-terminal histone tail (Figures 3D

and 3E). The E227A and S variants had lost the preference for

R or K at position 8 of the H3 tail confirming charge complemen-

tarity as specificity determining factor at this position. The broad

spectrum of amino acids accepted at this position by E227A and

S could be explained because besides E227, no other residue in

wild-type Dim-5 closely contacts the side chain at this position.

As expected, the D209A and S influenced the specificity profile

at position 8 only to a minor degree.

The D209A and S variants showed clear changes of their inter-

action with substrate position 10 because they both displayed

a preference for hydrophobic amino acids at this position. While

the wild-type Dim-5 equally accepts S and T, the D290A variant

showed a pronounced preference for T over S (5.6-fold), fol-

lowed by I, and about 18-fold above the average of all amino

acids other than T at position 10. The D209S variant also pre-

ferred hydrophobic residues at position 10 (L, I, and T). These re-

sults can be interpreted in the light of the Dim-5 peptide structure

because after mutational exchange of D209 to A or S, an extra

space is generated close to the substrate position 10. In addi-

tion, the side chain of S209 (in D209S) as well as the main chain

carbonyl of A207 may serve as hydrogen bond partners for the

side chain of substrate position 10. These potential contacts

might explain the specificity profile of D209A and S at substrate

position 10, because S, T, and H may form hydrogen bonds, and

T, I, L, and H may occupy the extra space generated due to the

loss of a larger protein side chain. As expected, the E227A and S

exchange did not influence the recognition at position 10 sub-

stantially as indicated by the finding that both variants still pre-

ferred S and T, and all in all, the relative preferences for most

amino acid residues were similar to wild-type Dim-5.

Interestingly, the D209A variant showed a new specificity for T

at position 10, which was preferred about 18-fold over all other

residues at this position. This level of specificity is even higher

than the preference of wild-type Dim-5 for T11 and G12

(Figure 2D), illustrating that peptide recognition by Dim-5 is mal-

leable by protein design, and one can create synthetic enzyme-

substrate pairs by using existing HKMTs as a starting point.

SIGNIFICANCE

Methylation of histone tails is an important epigenetic signal

(Martin and Zhang, 2005). The first HKMT was identified in

2000 (Rea et al., 2000), and today about 30 different enzymes
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are known in different species (Kouzarides, 2007). However,

many of the enzymatic properties of these enzymes are still

uncharacterized. We established the peptide SPOT array

technology as a method to investigate the specificity of pro-

tein methyltransferases. It allows at moderate costs to per-

form a rapid analysis of methylation of a large number of dif-

ferent peptides (>1000 per array) to determine the specificity

signature for each particular enzyme. The substrate prefer-

ences determined by this way are of importance because

they allow us to predict new potential methylation targets

(as we did for G9a) (Rathert et al., unpublished data), since

the intrinsic preferences of the HKMT most likely reflect

some functional constraints and adaptation of the enzyme

to its substrates. In addition, the specificity profiles provide

a detailed knowledge about the substrate’s chemical prop-

erties recognized by the enzyme and, thereby, may help to

design compounds for the inhibition of these enzymes. Fur-

thermore, the histone tails contain residues that are subject

to one or sometimes several different modifications at dif-

ferent positions. Crosstalk occurs between different histone

modification marks, such that methylation of H3K9 pre-

cludes H3K4 methylation or phosphorylation of H3S10 (Mar-

gueron et al., 2005) and methylation of H3R2 prevents H3K4

methylation (Guccione et al., 2007; Kirmizis et al., 2007).

Such epigenetic crosstalk can occur at the level of the mod-

ification reading domains or the modifying enzymes. For ex-

ample, H3R8, which is an important specificity determinant

of Dim-5, can be methylated by Prmt5 (Pal et al., 2004) in

vivo. The peptide spot array method is well suited to investi-

gate the sensitivity of HKMTs toward mutations on the his-

tone tails—that can be easily expanded to include pre-exist-

ing posttranslational modifications. This allows to decode

the effect of the complex posttranslational modification pat-

tern of histone tails on HKMT activity and is, therefore, of

great value for an understanding of the cellular role of these

enzymes.
EXPERIMENTAL PROCEDURES

Enzyme Purification

Dim-5 wild-type and variants were expressed and purified as described previ-

ously (Zhang et al., 2002). The E. coli strain XL1 blue was used as cloning host

for Dim-5 variants. The plasmid pXC379 (Zhang et al., 2002) encoding Dim-5

was mutated at different positions to yield Dim-5 D209A/S and E227A/S vari-

ants by site-directed mutagenesis methods (Jeltsch and Lanio, 2002). All

mutants were sequenced to verify the presence of the intended mutation

and the absence of additional mutations.

Peptide Methylation in Solution

A synthetic peptide corresponding to the first 19 amino acids of histone H3 tail

plus a methionine (Bt-MARTKQTARKSTGGKAPRKQ), which contains a biotin

at its N terminus, was purchased from IRIS Biotech (Marktredwitz, Germany) in

HPLC-purified form and was dissolved in water. Purity of the peptide was

greater than 95%, as confirmed by HPLC and MALDI-TOF mass-spectromet-

ric analysis. Methylation reactions on micro plates were carried out as

described (Gowher et al., 2005).

Synthesis of Peptide Spot Arrays

Peptide arrays were synthesized as described by the SPOT synthesis method

(Frank, 2002; Wenschuh et al., 2000). Successful synthesis of each peptide

was confirmed by bromphenol blue staining of the membranes (Figure S1).
gy 15, 5–11, January 2008 ª2008 Elsevier Ltd All rights reserved 9
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The peptide spots used in our assay had diameters of 2 mm and contained

approximately 9 nmol of peptide (Autospot Reference Handbook, Intavis AG).

Methylation of Peptide Spot Arrays

For methylation, the membranes containing 420 peptide spots were washed

for 20 min in methylation buffer containing 50 mM glycine (pH 9.8), 2 mM

dithiothreitol (DTT), 25 mg/ml BSA, 10% glycerol, and subsequently incubated

with 20 nM enzyme in methylation buffer at ambient temperature in the

presence of 0.35 mM labeled [methyl-3H]-AdoMet (2.93 3 1015 Bq/mol) (NEN

Life Sciences). After 45 min, the membranes were washed four times with

50 mM NH4HCO3, dried between whatman papers (Whatman GmbH, Dassel,

Germany), and washed once with Amplify NAMP100V solution (GE Healthcare,

Munich, Germany). The membranes were incubated on Hyperfilm high perfor-

mance autoradiography films (GE Healthcare, Munich, Germany) in the dark.

After 3–7 days, the films were developed by using AGFA Curix 60 developing

machine (Agfa Deutschland Vertriebsgesellschaft mbH & Co. KG, Cologne,

Germany).

Data Analysis

All experiments were carried out at least in triplicate. Data are reported as

mean values and standard errors. To compare the accuracy of recognition

of each residue in the substrate quantitatively, the relative contribution of

each amino acid i at position x for peptide recognition was calculated by a

discrimination factor D:

D =
vjsi

vi

� 1

where vi is the rate of modification of peptide carrying amino acid i and vjsi is

the average rate of methylation of all 19 peptides carrying a different amino

acid jsi at position x (including the wild-type sequence). For example in

Figure 2D, the discrimination factor of 10 for a Thr at position 11 indicates

that the peptide with Thr at that position is methylated ten times faster than

the average of all peptides carrying any of the other amino acids at this site.

Since the detection limit of the experiments was at about 3% of the full activity,

the discrimination factor for K9, which could not be replaced by any other

residue, was 30.

Supplemental Data

Supplemental Data include one figure that shows an example of Bromophenol

blue stained peptide membrane and Supplemental Experimental Procedures

that give a detailed description of data analysis and are available with this ar-

ticle online at http://www.chembiol.com/cgi/content/full/15/1/5/DC1/.
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