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a  b  s  t  r  a  c  t

Accurate  annotation  of  protein  function  is key  to understanding  life  at  the  molecular  level, but  auto-
mated  annotation  of  functions  is challenging.  We  here  demonstrate  the  combination  of  a method  for
protein  function  annotation  that uses  network  information  to  predict  the  biological  processes  a  protein
is  involved  in,  with  a sequence-based  prediction  method.  The  combined  function  prediction  is based  on
co-expression  networks  and  combines  the network-based  prediction  method  BMRF  with  the sequence-
based  prediction  method  Argot2.  The  combination  shows  significantly  improved  performance  compared
to  each  of  the  methods  separately,  as  well  as compared  to  Blast2GO.  The  approach  was  applied  to  predict
biological  processes  for  the  proteomes  of  rice,  barrel  clover,  poplar,  soybean  and  tomato.  The  novel  func-
tion  predictions  are  available  at www.ab.wur.nl/bmrf. Analysis  of the  relationships  between  sequence
similarity  and predicted  function  similarity  identifies  numerous  cases  of  divergence  of  biological  pro-
cesses  in  which  proteins  are  involved,  in  spite  of  sequence  similarity.  This  indicates  that  the integration
of  network-based  and sequence-based  function  prediction  is helpful  towards  the  analysis  of  evolutionary
relationships.  Examples  of potential  divergence  are  identified  for various  biological  processes,  notably  for
processes  related  to  cell development,  regulation,  and  response  to chemical  stimulus.  Such  divergence
in biological  process  annotation  for  proteins  with  similar  sequences  should  be taken  into  account  when

brought to you by ata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher C
analyzing  plant  gene  and  genome  evolution.
DATA: All  gene  functions  predictions  are  available  online  (http://www.ab.wur.nl/bmrf/). The  online

resource  can  be  queried  for  predictions  of  proteins  or  for Gene  Ontology  terms  of  interest,  and  the  results
can  be  downloaded  in  bulk. Queries  can  be based  on  protein  identifiers,  biological  process  Gene  Ontology
identifiers,  or  text  descriptors  of biological  processes.
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. Introduction

The amount of plant genome data grows disproportional to the
mount of available experimental data on these genomes [1–5]. To
onnect this ever increasing amount of genome data to plant biol-
gy, structural gene annotation followed by function annotation

s imperative. For example, the identification of candidate genes
nvolved in a trait of interest greatly benefits from gene function
nnotation [6]. In the context of the study of genome evolution,

∗ Corresponding author at: Applied Bioinformatics, Bioscience, Plant Sciences
roup, Wageningen University and Research Centre, Wageningen, The Netherlands.
el.: +31 317480994.

E-mail address: aaltjan.vandijk@wur.nl (A.D.J. van Dijk).

ttp://dx.doi.org/10.1016/j.cpb.2014.07.001
214-6628/© 2014 The Authors. Published by Elsevier B.V. This is an open access article un
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gene function annotations are necessary in order to enable com-
parison between sets of genes with different evolutionary histories,
e.g. those retained vs. those lost after duplication [7]. To annotate
gene or protein function, experimental data, if available, can be
used to annotate gene or protein function. However, the scarcity of
experimental data highlights the attractiveness of computational
approaches to assist in gene function annotation [8]. Indeed, newly
sequenced genomes are in general accompanied by a function
annotation which heavily relies on computational predictions. Such
automated annotations are delivered by a variety of approaches,
often without much knowledge about their reliability. For study-

ing plant genomes and plant genome evolution, reliable function
annotation is therefore a major challenge.

One way to annotate proteins without experimental data is
to infer function from sequence data [3]. The de facto standard
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processes (network input for BMRF, sequence input for Argot2).
Therefore, we  tested combining the two. Argot2 and BMRF can be
combined in multiple ways. We used a simple rank-based approach

Table 1
Prediction performance for rice protein function of various combinations of methods
and  input datasets.

Network Methoda AUCb

(i) Rice only BMRF 0.60 (0.12)
(ii)  Rice only Argot2 0.67 (0.11)
(iii) Arabidopsis and rice combined BMRF 0.70 (0.12)
(iv)  Arabidopsis and rice combined Blast2GO 0.72 (0.13)
(v)  Arabidopsis and rice combined Argot2 + BMRF 0.71 (0.12)
(vi)  Arabidopsis and rice combined Argot2 → BMRF 0.83 (0.15)

a Methods analyzed were BMRF, Argot2, Blast2GO, Argot2 + BMRF (rank sum) and
Argot2 → BMRF (seeding). Rice network was used separately (rice only), or it was
4 J.W. Bargsten et al. / Curre

o capture function annotation today is the Gene Ontology (GO),
n particular, the Molecular Function (MF) and Biological Process
BP) sub-ontologies [9]. MF  describes activities, such as catalytic
r binding activities, that occur at the molecular level, whereas BP
escribes a series of events accomplished by one or more ordered
ssemblies of molecular functions [9]. Compared to MF,  terms in the
P ontology are generally associated with more conceptual levels
f function; BP terms describe the execution of one or more molec-
lar function instances working together to accomplish a certain
iological objective. The prediction of BP terms can depend on the
ellular and organismal context [10]. Therefore, BP terms tend to
e poorly predicted by methods based on sequence similarity only,
uch as BLAST [10,11]. The reliability of BP predictions increases
ith advanced approaches that employ, e.g., phylogenetic frame-
orks [12,13] or network data such as protein–protein interactions

14].
We  recently developed a protein function prediction method for

P terms called Bayesian Markov Random Field (BMRF) [15], which
ses network data as input. In BMRF, each protein is represented
s a node in the network, and connections in the network indi-
ate functional relationships between proteins. Networks can be
ased on, e.g., protein–protein interactions or co-expression data.
MRF uses existing BP annotations for proteins in the network
o infer biological processes for unannotated proteins in that net-
ork. To do so, BMRF uses a statistical model describing how likely
eighbors are to participate in the same BP; this constitutes the
arkov Random Field. Existing BP annotations are used as “seed”

r “training” data, providing a set of initial labels for the Markov
andom Field. Parameters in the statistical model are trained using

 Bayesian approach by performing simultaneous estimation of
he model parameters and prediction of protein functions. Impor-
antly, BMRF can transfer functional information beyond direct
nteractions. Therefore, it is able to generate function predictions
or proteins that are only linked with other proteins with unknown
unction.

In the Critical Assessment of Function Annotations (CAFA)
rotein function prediction challenge [10] BMRF obtained partic-
larly good performance in human (first place) and Arabidopsis
second place) for BP term prediction [10]. In these species,
MRF performance benefits from the wealth of existing func-
ion annotation, i.e. experimental data. Because of its dependence
n training data, function annotation for species with more
parse function annotation is challenging for BMRF. To improve
he prediction performance in sparsely annotated species, we
resent here a strategy to combine BMRF with the sequence-
ased function prediction method Argot2 [16]. Argot2 was  among
he top performing sequence-based algorithms in the CAFA cat-
gory “eukaryotic BP”. In its computational approach Argot2
s complementary to BMRF, because it is purely sequence-
ased.

We  demonstrate that a combination of Argot2 and BMRF has
 markedly better function prediction performance than each
ethod separately. This integrated method was applied to predict

P terms for proteins in five plant species, Medicago truncatula (bar-
el clover), Oryza sativa (rice), Populus trichocarpa (poplar), Glycine
ax (soybean) and Solanum lycopersicum (tomato), using microar-

ay co-expression networks as input. Numerous new proteins were
ssociated with specific biological processes, such as seed devel-
pment in rice or nitrogen fixation in Medicago. By comparison
etween sequence divergence and predicted function divergence,
umerous cases of putative neo-functionalization involving vari-
us biological processes were identified. This new method and the
esulting set of predicted gene functions will be of great value in
apitalizing on the large amount of plant genome data that is cur-

ently being generated for the study of the evolution of genome and
ene function.
t Biology 1 (2014) 73–82

2. Results

2.1. Method development and evaluation

We  previously developed the protein function prediction
method BMRF and used it to annotate protein function in Arabidop-
sis thaliana [17]. This method relies, besides on network data, on
existing function annotation as input. For Arabidopsis, we demon-
strated that the amount of available annotation (training) data was
sufficient to achieve a good prediction performance [17]. However,
for crop species, much less annotation data is available as input.
To increase the overall function prediction performance for plants
with sparse experimental data, we explored combining BMRF with
the sequence-based method Argot2.

Argot2 and BMRF were tested separately (standalone setting)
or in two  combinations (Fig. 1). Performance assessment focussed
on rice, the crop with the largest amount of annotation data
available: 415 proteins with experimental evidence for a bio-
logical process. The rice network used as input for BMRF was
obtained from a combination of microarray-based co-expression
data, data from STRING [18] and FunctionalNet [19] (Table S1). Of
the 415 proteins with experimental evidence, 394 were present
in the network, and were used for validation of predicted func-
tions.

Function prediction performance was assessed on the basis
of cross-validation, leaving out randomly selected proteins with
known function and comparing the predictions with those data.
The area under the receiver operator characteristic curve (AUC)
was used to compare the performance of the predictions that
come as ordered lists of predicted proteins per biological pro-
cess. In the standalone setting (Fig. 1A and B) with rice sequence
and network data, BMRF and Argot2 both have a low perfor-
mance, with AUC (average ± standard deviation) of 0.6 ± 0.12 and
0.67 ± 0.11, respectively (Tables 1 and S2). These values are con-
siderably lower than the AUC previously obtained with BMRF for
Arabidopsis (0.75) [17] due to the small amount of training data
(annotated gene functions) that is available for rice. Assuming
information from Arabidopsis would improve the performance
of rice protein function predictions in BMRF, we  connected pro-
teins in an available Arabidopsis network (Table S1) to proteins
in the rice network based on sequence similarity using BLAST.
With this rice-Arabidopsis interspecies network in addition to
the networks of both species separately (Fig. 1C), BMRF per-
formed slightly better than Argot2 (AUC 0.70 ± 0.12). The precise
value of the BLAST E-value cut-off used to create the interspecies
network did not influence the performance of BMRF (data not
shown).

Both methods use complimentary information about biological
connected to an Arabidopsis network based on sequence similarity (combined).
b Area under the curve; mean (standard deviation).
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Fig. 1. Strategies for predicting protein function. BMRF (A and C) and Argot2 (B) were used in a standalone setting or in two different combinations (D and E). Combining
BMRF  and Argot2 was done by combining the results of each of the two methods (D), and by using Argot2 predictions as input for BMRF (E). The rice network is indicated in
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ed,  the Arabidopsis network in black and interspecies connections in grey dashed l
eferences to color in this figure legend, the reader is referred to the web  version of

o predict biological processes by ordering Argot2 and BMRF results
eparately and then combining their ranks to produce a final rank
Fig. 1D). This integration was performed for each biological pro-
ess separately by sorting the proteins based on their score for that
rocess and using the sum of the ranks induced by this ordering
or BMRF and for Argot2. This integration of Argot2 and BMRF did
ot improve results compared to standalone BMRF (Table 1). Per-

ormance was markedly improved, however, by generating initial
redictions with Argot2 and supplying these to BMRF as training
ata (seed data; Fig. 1E). In this integration method, the initial

abelling of proteins in the network (i.e. the seed data for BMRF)
as based on the Argot2 predictions. Argot2 uses an algorithm-

pecific score to rank its results and requires a threshold for such
 score. To assess the influence of different thresholds on the per-
ormance of BMRF, BMRF was seeded with 5 different output sets
f Argot2 (Table S3). The best performance was  achieved with the
efault threshold of 5.

The results above indicate that our integrated method per-
ormed markedly better than each of the two methods separately.

s additional assessment of performance, we predicted annotations
ith the often-used method Blast2GO [21]. The resulting AUC of
last2GO was 0.72 ± 0.13, and the AUC of the combined Argot2-
MRF predictions was 0.83 ± 0.15 which is significantly (p < 10−15;
equence-based input is indicated by a DNA-helix symbol. (For interpretation of the
rticle.)

Mann–Whitney U) better than Blast2GO (Fig. 2A). The small num-
ber of experimentally verified annotations (true positives) and
high number of unannotated proteins (true negatives) could intro-
duce a skew in the cross-validation sets, leading to a bias in the
AUC performance assessment [22]. The F-score (harmonic mean
of precision and recall) does not suffer from this skew and the
final prediction performance was  therefore also assessed with the
maximum F-score (Fmax-score). In agreement with the AUC evalu-
ation, the Fmax-scores of Argot2-seeded BMRF (0.56 ± 0.24) were
significantly better (p < 10−15; Mann–Whitney U) than Blast2GO
(0.51 ± 0.23). Visual inspection of a histogram of AUC values and
of Fmax-score values for different BP terms in different cross-
validation runs confirms the performance difference between the
combined Argot2-BMRF predictions and Blast2GO (Fig. 2B and C).

To obtain independent validation in addition to the cross-
validation performed above, the Argot2-seeded BMRF predictions
were compared to annotations available in the Oryzabase database
[23] which were not present in our input data (71 proteins). The
AUC of 0.88 ± 0.13 we obtained was  similar to the AUC obtained

in the cross-validation, confirming the performance assessment.
Overall, the performance evaluation demonstrates that Argot2-
seeded BMRF is an effective way  to predict BP protein function in
sparsely annotated plant genomes.
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Fig. 2. Performance assessment of function prediction on rice proteins. (A) Receiver operator characteristic curve showing 1-specificity vs. sensitivity of the predictions of
Argot2-seeded BMRF and Blast2GO. Specificity and sensitivity were averaged over all cross-validation runs. Dots indicate evenly spaced intervals of the underlying prediction
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nd  Blast2GO.

.2. Application to crop species

Argot2-seeded BMRF using PlaNet [24] co-expression networks
s input (Table S4) was applied to predict BP protein functions in

 selection of model and crop plants comprising O. sativa (rice), M.
runcatula (barrel clover), G. max (soybean), P. trichocarpa (poplar)
nd S. lycopersicum (tomato). The posterior probability of a pro-
ein associated with a certain GO term was estimated for all GO
erms and all proteins in the network. In order to answer a question
uch as “does protein X perform biological process Y”, a finite set

f predictions is needed. To obtain such finite set, an F-score-based
ut-off was applied to the posterior probability. As Arabidopsis has
he highest coverage of experimental data, this cut-off was  adjusted
er GO term by comparing Arabidopsis predictions with available

ig. 3. Use case scenarios for the web interface. Argot2-seeded BMRF results can be querie
O  terms for each protein. (B) GO terms (or GO term descriptions) as query input. The resu
osterior probabilities (prob).
area under these curves. (B) Histogram of AUC values per GO term of every cross-
lues per GO term of every cross-validation run calculated for Argot2 seeding BMRF

experimental data, as previously described [17]: for each GO term,
a threshold on the posterior probability was defined that results in
the maximum F-score for that GO term. All predictions are available
online (http://www.ab.wur.nl/bmrf/). The online resource can be
queried for predictions of proteins or for GO terms of interest, and
the results can be downloaded in bulk. Queries can be based on pro-
tein identifiers, biological process GO identifiers, or text descriptors
of biological processes (Fig. 3). By default, only the most detailed
Gene Ontology terms (leave terms in the GO structure) are dis-
played, in order to focus on the most relevant predictions.
The fraction of proteins out of the complete proteome annotated
with at least one biological process (annotation coverage) varies
considerably between the species: rice shows the highest annota-
tion coverage (99%), followed by poplar (77%). Soybean (43%) and

d in two ways. (A) Protein identifiers as query input. The result consists of predicted
lt consists of predicted protein identifiers for the relevant GO term(s) and associated

http://www.ab.wur.nl/bmrf/
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arrel clover (39%) show lower coverage. Tomato has the lowest
overage (12%). Such differences in annotation coverage can have
t least two reasons. First, although for every biological process
very protein in the input network will have an associated poste-
ior probability, these probabilities can be below the F-score-based
ut-off. This means that not necessarily every protein in the input
etwork will be annotated. In addition, because BMRF only predicts

unctions for proteins in the input network, the maximum possi-
le annotation coverage is limited by the number of proteins in the
espective network. This limit is reflected by the tomato annotation
overage, as the tomato network is the smallest with 4355 proteins.

ith exception of soybean, the annotation coverage correlates with
he number of proteins in the respective network (Table S4).

To investigate differences between available gene function
nnotation data and Argot2-seeded BMRF, we compared the results
ith existing protein function predictions from the reference

enomes of barrel clover [25], poplar [26], tomato [27], rice [28] and
oybean [29]. Except for tomato, the existing annotations have a
uch lower coverage than the above mentioned coverage obtained

y Argot2-seeded BMRF (Table S5). The increase of percentage of
umber of proteins with at least one biological process predicted
y our approach varied per species. The percentage increase ranged
rom ∼60% for rice (24,160 in existing annotation vs. 38,998 in our
nnotation) to over 100% for poplar (13,682 vs. 32,119).

To complement the above presented results on coverage, which
ocused on the question how many proteins obtain at least one
nnotation, we also compared the number of predicted functions
er protein. The average number of GO terms per protein in the
vailable experimental annotation data for Arabidopsis is 4.4. As
dditional experimental evidence is supposed to accumulate, this
umber should be regarded as a lower bound of the average real
umber of GO terms a protein should be annotated with. Existing
ets of predicted annotations for the plant species included here
re considerably below this bound, whereas our set of predictions
s relatively close to this bound (Table S5). Note that in this assess-

ent, only the most granular level of the Gene Ontology is taken
nto account (i.e. only leaf-node terms are considered, and not more
eneral parent terms). For those proteins for which existing annota-
ions are available, these annotations are to a large extent a subset of
hat we predict (∼80% of the existing annotations is also predicted

y Argot2-seeded BMRF; data not shown). The higher annotation
overage in combination with the good prediction performance
emonstrates the appreciable added value of the Argot2-seeded
MRF strategy for obtaining gene function annotations.

.3. Predicted protein functions: showcases

To illustrate the potential of the functions predicted, we
creened all predictions for newly annotated biological processes
hat are considered particularly relevant for the individual species
Table S6). Biological processes considered comprise: seed devel-
pment for rice and soybean; nitrogen fixation for barrel clover;
ruit development for tomato; and lignin related processes for
oplar. Inspection of the selected predictions shows that the func-
ions of proteins tend to become more specific: broadly defined
unctions are replaced by or augmented with more specific bio-
ogical processes. For example, the rice protein LOC Os10g38080,

as previously annotated with anatomical structure morphogen-
sis, and is annotated by Argot2-seeded BMRF with seed (coat)
evelopment. LOC Os10g38080 is a subtilisin homologue which
ccording to available RNAseq data is expressed in amongst other
eproductive organs and seeds [28]. As additional evidence for

he Argot2-seeded BMRF prediction, in Arabidopsis subtilisin and
elated proteases are involved in seed coat development [30]. An
xample for an annotation for a previously completely unannotated
rotein is LOC Os05g02520, a cupin domain containing protein,
t Biology 1 (2014) 73–82 77

which was  annotated by Argot2-seeded BMRF with seed matura-
tion.

2.4. Divergence and conservation of biological processes in
ortholog groups

The set of function predictions delivered above allows to com-
pare function annotation between different plants, a task which
is much less easily performed with existing annotations that are
derived from various methods and that have a much lower coverage
than our approach. Such comparison between orthologous genes
in different plants allows to assess the limits of orthology-based
function prediction, and to analyze gene function evolution.

To characterize ortholog groups with functional predictions that
differ from expectations based on sequence similarity, orthologs
and paralogs were identified with orthoMCL [31], resulting in
25,347 groups (Table S7). Group members for which no functions
were predicted were removed. To assess the similarity of function
predictions within ortholog groups, the mean functional distance
within each ortholog group (dubbed ‘inner group distance’) was cal-
culated (see Section 4). In case the predicted biological processes
in such a group are different despite high sequence similarity,
this would be indicative of evolutionary divergence by, e.g., neo-
functionalization. To identify such cases, groups with at least four
different organisms (6073) were ranked by their largest inner group
distance and the most divergent groups (n = 100) were selected. In
those groups, biological processes that were significantly overrep-
resented (more present than randomly expected) were obtained. A
variety of biological processes was  found (Supp. Figure S1), indicat-
ing the widespread occurrence of changes in biological processes
proteins are involved in. Most prominent are processes related to
cell development, regulation, and response to chemical stimulus.
For the latter group, biological processes involved are shown in
Fig. 4A. Among the top ranking groups (with highest ‘inner group
distance’) involved in those processes, we chose as example a
phosphatase with existing experimental annotation in Arabidop-
sis, PURPLE ACID PHOSPHATASE 26 (PAP26). PAP26 plays a role in
the phosphate metabolism [32] and phosphate starvation [32] in
Arabidopsis. The majority of the proteins with function predictions
in the orthologous group (five out of seven) are indeed predicted
by Argot2-seeded BMRF to be involved in phosphate metabolism or
the response to phosphate starvation. However, additional function
predictions differ. Populus and soybean proteins are predominantly
annotated with cell death related terms; Arabidopsis with pollina-
tion and pollen germination processes; tomato with DNA repair and
rice with microtubule cytoskeleton organization. This diversity in
function is not reflected by orthology predictions and phylogenetic
relationships of the group members (Fig. 4B and C). Independent
expression data indicates that Arabidopsis PAP26 is expressed in
a housekeeping-like manner, but the expression pattern varies
between paralogs in other species, e.g. soybean, and to a lesser
extent orthologs, e.g. between tomato and soybean (Fig. 4D).  The
different expression patterns give credibility to the variation in
function predictions of Argot2-seeded BMRF. This indicates that
PAP26, although its molecular function presumably is invariant, is
involved in various biological processes in various plant species.
More generally, the analysis of functional divergence presented
here highlights the potential of using our set of predicted gene func-
tions for large scale comparisons between various plant species.

3. Discussion
Finding associations between proteins and biological pro-
cesses is a major challenge in non-model plants. Most exper-
imental studies are aimed towards model organisms; hence
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Fig. 4. Comparison between sequence divergence and functional divergence. (A) Overview of the most frequent GO terms in the top 100 most functionally divergent ortholog
groups  that are represented by “response to chemical stimulus” (Figure S1). (B and C) Phylogenetic relations of Arabidopsis PURPLE ACID PHOSPHATASE 26 orthologs. Trees
contain Arabidopsis (ath), soybean (gma), tomato (sly), Populus (ptr) and rice (osa) PAP26 orthologs. (B) Unrooted phylogenetic tree based on sequence data. The tree was
calculated with 1000 bootstraps. Confidence values are indicated at the branches in percent. (C) Distance tree based on our function predictions. Missing identifiers were not
part  of the co-expression network and are therefore not part of the functional distance tree. (D) Expression ranking of PURPLE ACID PHOSPHATASE 26 orthologs and paralogs
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xperiment-based function annotation is sparse in the remainder of
equenced plant genomes. High-throughput experiments to define
rotein functions are overall less informative than those provided
y low-throughput experiments [33]. Moreover, the experimental
etup in large-scale approaches might restrict the type of function
nnotation that can be obtained. An example is the characterization
f overexpressed rice genes in Arabidopsis [34] to infer function.
ere, the problem is that the biological process of a protein is often
ound to the local environment or a specific condition and a differ-
nt (plant) environment might change the outcome. Another large
cale analysis of gene families in Arabidopsis used prokaryotic gene
nformation to predict function [35]. This semi-manual approach
ielded good results for conserved gene families; however, gene
amilies with low conservation were not covered.

Several computational approaches to protein function annota-
ion exist, albeit mostly not targeted to plants, or to model plant
pecies only [36]. An integrated platform such as Phytozome [2]
rovides a consistent set of Gene Ontology annotations for various
lant species and hence overcomes the above-mentioned problem
hat annotations associated with genomes are obtained by various

ethods. However, Phytozome only provides sequence-based pre-

ictions. The recently published MORPH algorithm ranked genes
or their membership of Arabidopsis and tomato pathways, based
n a set of known genes from the target pathway, a collection of
xpression profiles, and interaction and metabolic networks [37].
alized expression studies aggregated by averaging to ten tissue clusters (Table S8).
ble S8. (For interpretation of the references to color in this figure legend, the reader

Approaches such as PlaNet construct networks based on expression
data [24] but such networks do not directly lead to gene function
annotation. Similarly, a recently presented text mining approach
generated networks in Arabidopsis and not gene function anno-
tations [38]. Here we  provide a structured approach to extract
gene function information from networks and combine that with
sequence-based information.

The combination of sequence- and network-based function pre-
diction obtained by seeding BMRF with Argot2, offers a significant
benefit over applying these methods separately. We  validated the
method in rice and demonstrated greatly improved performance
compared to each of the methods separately and compared to
Blast2GO. This performance assessment was  performed using two
complementary indicators, AUC and F-score, which both gave con-
sistent results. Existing annotations provided for the plant genomes
to which we  applied our method have been obtained by vari-
ous, mostly sequence-based approaches. A clear description of the
methods and input data is often lacking, leading to the risk of error
propagation and circular reasoning [3,39]. Our approach has the
benefit of applying a standard method to the various genomes.
Moreover, for many proteins which so far were not associated

with any biological process, we now provide predictions of biolog-
ical processes. Nevertheless, the combination of Argot2 and BMRF
is indirectly constrained by the experimental data in databases
such as UniProt [40] or PFAM [41], and by the proteins covered
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n available networks. It will however be straightforward to inte-
rate newly available datasets such as additional co-expression
etworks or novel gene function annotations in the framework pre-
ented. Depending on availability of novel network or annotation
ata, we indeed plan to update our resource. An additional lim-

tation of our current approach is that the structure of the Gene
ntology is not taken into account in the prediction process. Most
xisting computational methods for gene function prediction suf-
er from this drawback. It is feasible to make a set of GO term
redictions consistent with the GO-structure [42] and we plan
o apply this method to Argot2-seeded BMRF predictions in the
uture.

BMRF output consists of a list of probabilities for each gene to be
ssociated with each biological process. This allows to rank proteins
n order of their likelihood of association with a biological process
f interest. However, it can also be important to have a finite set of
redictions. To provide that, we applied a cut-off to the probabili-
ies, based on Arabidopsis, the only species from which enough data
as available. It is difficult to assess how valid the application of this

ut-off in other plant species is. However, the average number of
redictions per protein that we obtain in each of the species based
n the cut-off that was applied is close to the observed average for
rabidopsis, giving some credibility to this cut-off. For one species,

omato, the number of predicted BP terms per protein is somewhat
igher than the experimentally observed number for Arabidopsis.
ence, argot2-seeded BMRF possibly suffers from overprediction

n this case. This could possibly be caused by the higher density
number of interactions compared to number of proteins) of the
omato network. However, in any case, the probabilities associated
ith the predictions allow narrowing down the prediction results

o the most reliable ones, if so desired.
With the consistent annotation of multiple plant genomes that

e performed, the relation between homology and biological pro-
ess predictions can be analyzed. Ortholog groups with divergent
unctions indicated cases where conclusions based on sequence
imilarity might be inappropriate. Such inappropriate conclusions
ay  be more common than generally acknowledged. Indeed, as

ecently noted in the context of comparing putative orthologs
etween species, relying on sequence similarity alone might iden-
ify an ortholog with the correct molecular function, but will more
ften than not fail to identify an ortholog that participates in the
orrect biological process [43]. In a comparison of gene expres-
ion patterns between different plant species, the number of times
or which the homolog with the most similar pattern of expres-
ion (“expressolog”) was not also the most similar at the sequence
evel, ranged between 15% and 50% [44]. Similarly, about half of a
ollection of Arabidopsis loss-of-function mutants had only low or
oderate phenotypic similarity with mutants of putative orthologs

n tomato, rice or maize [45]. Large scale evolutionary comparisons
etween plant species, for example aimed at identifying patterns

n retention of duplicated genes [46,47] or functional biases in
ingle-copy genes [7], are currently performed based on function
nnotations obtained using sequence similarity. Such studies will
enefit from the gene annotations presented here, which overcome
he limitations of purely sequence-based annotation of gene func-
ions.

In the example of PAP26 homologs, homology captures the
olecular function, but at the biological process level there is

ivergence. Our integrated sequence- and network-based func-
ion annotation method allows to predict such divergent biological
rocesses. Differences in expression between the different PAP26
omologs in different species provide additional evidence for our
unction predictions. More generally, the results on biological pro-
ess divergence are in line with the concept that evolution acts
n particular by “tinkering” with genes, coopting available compo-
ents of a genome for new processes.
t Biology 1 (2014) 73–82 79

The combination of sequence-based and network-based predic-
tions is a huge improvement for sparsely annotated plant genomes.
With the advent of RNA-seq [48] coexpression network-based pro-
tein function prediction can become a preferred method. Combined
with additional analysis, such as genome-wide association stud-
ies (GWAS), potential candidate genes for traits-of-interest could
be identified more reliably. Such candidate genes will be of great
help in applications related to plant breeding. The ability to asso-
ciate unannotated proteins to particular biological processes will
spark experimental work and be essential for the advancement of
understanding of gene function in plant genome evolution.

4. Materials and methods

4.1. Function prediction methods and their integration

BMRF uses network data as input. Each protein is represented
as a node in the network, and connections in the network indi-
cate functional relationships between proteins. A statistical model
(Markov Random Field) describes how involvement of a protein in a
particular BP influences the probability that its neighbors in the net-
work are also involved in that BP. The parameters in the statistical
model describe for each BP how strongly neighbors influence each
other. Parameter values are trained using a Bayesian approach by
performing simultaneous estimation of the model parameters and
prediction of protein functions. This strategy needs a set of known
protein functions as initial labelling of the network. Argot2 is a
purely sequence-based prediction method, using searches of the
UniProt and Pfam databases as input. To combine these two  meth-
ods, two strategies were applied. In the first integration method,
for each biological process, ranks for the different proteins were
obtained from both BMRF and Argot2, by ordering the proteins
based on their score for that process. These ranks were added to
obtain a final ranking, which was  used as the prediction score for
that biological process. In a second integration strategy, initial pre-
dictions were generated with Argot2. These were supplied to BMRF
as training data, meaning that the initial labelling of the nodes in
the network was  based on the Argot2 predictions.

4.2. Sequence and domain data

Sequence data for Arabidopsis, rice, soybean and M.  trun-
catula were obtained from the Phytozome database v8.0
[2]. Poplar sequence data was  downloaded from the JGI
(ftp://ftp.jgi-psf.org/pub/JGI data/Poplar/annotation/v1.1),
annotation version 1.1. Tomato sequence v2.4 and annota-
tion v2.3 data [27] were retrieved from the SGN network
(http://www.solgenomics.net). Arabidopsis Interpro domains
were retrieved from TAIR10 [49]. Domains of transcript isoforms
were merged into one set per gene.

4.3. Function annotation data

Annotations from the Gene Ontology project, version 1.1418 [9],
and from Gramene [50], were used as input for training and cross-
validation. Annotations from Oryzabase version 4 [23] were used
as an independent validation set. Only genes for which no annota-
tion was available in the data from the Gene Ontology project were
used for validation. In all cases, only Biological Process (BP) terms
with evidence codes IDA (inferred from direct assay), IGI (genetic
interaction) and IMP  (mutant phenotype) were used.
4.4. Network data

Co-expression networks based on microarray data for Ara-
bidopsis, rice, G. max, M. truncatula and poplar were obtained

ftp://ftp.jgi-psf.org/pub/JGI_data/Poplar/annotation/v1.1
http://www.solgenomics.net/
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rom PlaNet [24]. For tomato, a recently published microarray-
ased co-expression network [51] was used. The probe ids of
he tomato co-expression network were obtained from Affymetrix
http://www.affymetrix.com) and mapped with BLAST v2.2.26
11] to the tomato protein sequences. Further network data
or Arabidopsis and rice was obtained from FunctionalNet
http://www.functionalnet.org/) [19] and STRING [18]. Arabidopsis
east-two-hybrid data were acquired from literature [52]. The rice-
rabidopsis interspecies network was generated by using BLAST

cut-off on E-value of 1e−4). BMRF requires all proteins to be part
f the input network. Thus, proteins not contained in the input net-
ork were removed. In all cases, the longest isoform of alternatively

pliced variants was used.

.5. Validation setup

Performance assessment was performed with rice. HMMER
3 (http://hmmer.org/) search against PFAM [41] and BLAST [11]
lignment against UniProt [53] were used to generate the input for
rgot2 [16]. In the context of the validation setup, all rice proteins
ere removed from the UniProt database to avoid Argot2 using

nformation from those proteins.
For comparison, sequence similarity-based annotation was car-

ied out with Blast2GO [21]. Rice protein sequences were queried
gainst the non-redundant part of GenBank (NR) [54], using an E-
alue cut-off of 1e−4. In the context of the validation setup, hits
o monocot proteins in NR were removed from the BLAST results
efore supplying them to Blast2GO.

Prediction runs of different method and network combinations
ere assessed with 100 cross-validation runs. In each run, ran-
omly, a subset (n = 200) of proteins was chosen and the annotation
as removed (masked). For every run, predicted functions were

ompared with the masked ones. Only biological process terms
ith at least three masked proteins were used in the perfor-
ance assessment in order to allow for sufficient statistics. In the

erformance assessment, negative cases consisted of gene-BP asso-
iations which were not annotated as such in the experimental data.

Performance was assessed by the area under the receiver oper-
ting characteristic curve (AUC) and the F-score. The AUC is the
rea under the curve of 1-specificity vs. sensitivity, and is equal to
he probability that a classifier will rank a randomly chosen pos-
tive instance higher than a randomly chosen negative one [20].
pecificity is the fraction of proteins experimentally known not to
erform a given function which are indeed not predicted to do so,
hereas sensitivity (or recall) is the fraction of proteins experimen-

ally known to perform a given function which are indeed predicted
o do so. F-score is based on the precision–recall (precision vs. sen-
itivity) curve. Precision is the fraction of proteins predicted to
erform a given function which are indeed experimentally known
o do so. The F-score is equal to the harmonic mean of precision
nd recall, and the maximum value of the F-score (Fmax-score) was
sed for each biological process.

To obtain a finite set of predictions, functions of a protein were
ssigned by using an F-score-based cut-off. The F-score was cal-
ulated per GO term and its maximum (Fmax-score), calculated
ith Arabidopsis data as previously described [17], was used to

et a cut-off on the posterior probability. The threshold obtained
ith Arabidopsis data was used in the other species, because in

hose species, too few annotations are available to obtain a species-
pecific threshold. All performance measures were calculated with
he R-package ROCR [55] and custom R-scripts.
.6. Application setup

Function annotations predicted for barrel clover, poplar, rice,
oybean and tomato were compared with existing predictions in
t Biology 1 (2014) 73–82

terms of coverage of proteins and number of predicted functions
per protein. Barrel clover, poplar and rice biological process predic-
tions were obtained from the official genome annotations version
Mt3.5v5 [25], v1.1 [26] and v7.0 [28], respectively. Soybean annota-
tion was obtained from Phytozome [2]. Tomato function annotation
data was  extracted from the ITAG annotation v2.3 [27].

To determine the total number of proteins and total number of
GO terms for which annotations were obtained, the annotation of
each protein was  expanded by including the parent GO terms of
all assigned GO terms. For the calculation of the number of anno-
tations per protein, only the leaf-terms of the Gene Ontology were
included.

4.7. Evolutionary and functional distance calculation

Groups of orthologs were predicted with OrthoMCL [31]. To
calculate functional divergence, BMRF posterior probabilities for
each protein were interpreted as vector. The Euclidian distance
for each combination of proteins within a group of orthologs was
calculated. The mean of distances within a group (inner group
distance) was  used to rank groups of orthologs. For the PAP26
example, only groups with existing experimental annotation in
Arabidopsis were taken in to account. The PAP26 tree was  estimated
with RaxML version 7.2.8-ALPHA [56] using the PROTGAMMA-
JJTF substitution model and 1000 bootstraps. Expression data for
PAP26 was  obtained from the AtGenExpress developmental set
[57]; publicly available RNA-seq datasets from tomato (S. lycoper-
sicum cv. Heinz 1706; data SRA049915) were retrieved from the SRA
database (http://www.ncbi.nlm.nih.gov/sra). Reads were mapped
with GSNAP [58] against the tomato reference genome (v. 2.40, Sato
et al. [27]) and the expression was determined with cufflinks [59]
with default parameters. Soybean expression data was obtained
from SoyBase [60]. Rice expression data was obtained from the Rice
Genome Annotation Project (http://rice.plantbiology.msu.edu/). All
expression experiment data were z-score normalized and per-
centile ranked to facilitate comparison. Replicates were merged by
averaging over the expression for each gene.
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