Bounds on the locating-total domination number of a tree

Xue-gang Chen a, Moo Young Sohn b,∗

a Mathematics, North China Electric Power University, Beijing 102206, China
b Mathematics, Changwon National University, Changwon, 641-773, Republic of Korea

ARTICLE INFO

Article history:
Received 22 February 2010
Received in revised form 21 December 2010
Accepted 23 December 2010
Available online 17 February 2011

Keywords:
Locating-total
Domination number
Tree
Bound

ABSTRACT

In this paper, we continue the study of locating-total domination in graphs, introduced by Haynes et al. [T.W. Haynes, M.A. Henning, J. Howard, Locating and total dominating sets in trees, Discrete Applied Mathematics 154 (8) (2006) 1293–1300]. A total dominating set S in a graph $G = (V, E)$ is a locating-total dominating set of G if, for every pair of distinct vertices u and v in $V - S$, $N_c(u) \cap S \neq N_c(v) \cap S$. The minimum cardinality of a locating-total dominating set is the locating-total domination number $\gamma^T_1(G)$. We show that, for a tree T of order $n \geq 3$ with l leaves and s support vertices, $\frac{n+1}{2} - s \leq \gamma^T_1(T) \leq \frac{n+1}{2}$. Moreover, we constructively characterize the extremal trees achieving these bounds.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The concept of a locating-total domination in graph was introduced in [2,5]. The location of monitoring devices, such as surveillance cameras or fire alarms, to safeguard a system serves as the motivation for this work. The problem of placing monitoring devices in a system in such a way that every site in the system (including the monitors themselves) is adjacent to a monitor site can be modeled by total domination in graphs. Applications where it is also important that, if there is a problem at a facility, its location can be uniquely identified by the set of monitors, can be modeled by a combination of total domination sets and locating sets.

Graph theory terminology not presented here can be found in [3,4]. Let $G = (V, E)$ be a graph with vertex set V and edge set E. For any vertex $v \in G$, the open neighborhood of v is the set $N(v) = \{u \in V | uv \in E\}$, and its closed neighborhood is the set $N[v] = N(v) \cup \{v\}$. We denote the degree of a vertex v in G by $d_G(v)$, or simply by $d(v)$ if the graph G is clear from text. We use $\Delta(G)$ and $\delta(G)$ to denote the maximum degree and minimum degree of the graph G. For any $S \subseteq V$, $N_S(S) = \bigcup_{v \in S} N_G(v)$. Let $G[S]$ denote the graph induced by S. If $v \in S$ and $w \in V - S$, then the vertex w is an external private neighbor of v (with respect to S) if $N(w) \cap S = \{v\}$. Let $PN(v, S) = \{w | w \in V - S, N(v) \cap S = \{v\}\}$. Let C_n and P_n denote the cycle and the path of order n. A vertex of degree 1 is called a leaf and its neighbor is called a support vertex. The eccentricity of a vertex v in a connected graph G is the maximum graph distance between v and any other vertex u of G.

A subset $S \subseteq V$ is a total dominating set if every vertex in V has a neighbor in S. The total domination number of G, denoted by $\gamma_1(G)$, is the minimum cardinality of a total dominating set of G. Total domination was introduced by Cockayne et al. [1]. For a comprehensive survey of domination in graphs and its variations, see [3,4].

A total dominating set S in a graph $G = (V, E)$ is a locating-total dominating set of G if, for every pair of distinct vertices u and v in $V - S$, $N_c(u) \cap S \neq N_c(v) \cap S$. The minimum cardinality of a locating-total dominating set is the locating-total domination number $\gamma^T_1(G)$. We call a locating-total dominating set in G of cardinality $\gamma^T_1(G)$ a $\gamma^T_1(G)$-set.
A total dominating set S in a graph $G = (V, E)$ is a differentiating-total dominating set of G if, for every pair of distinct vertices u and v in V, $N_G[u] \cap S \neq N_G[v] \cap S$. The minimum cardinality of a differentiating-total dominating set is the differentiating-total domination number $\gamma'_t(G)$.

Locating-total domination and differentiating-total domination were introduced by Haynes et al. [5]. They established bounds on these parameters in a tree and investigated the ratio of the two parameters in trees. In this paper, we show that, for a tree T of order $n \geq 3$ with l leaves and s support vertices, $\frac{n+1}{2} - s \leq \gamma'_t(G) \leq \frac{n+1}{2}$. Moreover, we constructively characterize the extremal trees achieving these bounds.

2. Lower bound on the locating-total domination number of a tree

For any tree T, let $L(T)$ and $S(T)$ denote the set of leaves and support vertices, respectively. Let ξ_1 be the family of trees that can be obtained from k disjoint copies of P_k by first adding $k - 1$ edges in such a manner that they are incident only with support vertices and the resulting graphs is connected, and then subdividing each new edge exactly once. Let ξ_2 be the family of trees T that can be obtained from any tree T' by attaching at least two leaves to each vertex of T' and, if T' is nontrivial, subdividing each edge of T' exactly once.

Lemma 1 (Haynes et al. [5]). If T is a tree of order $n \geq 2$, then $\gamma'_t(T) \geq \frac{2(n+1)}{5}$, with equality if and only if $T \in \xi_1$.

Lemma 2 (Haynes et al. [5]). If T is a tree of order $n \geq 3$ with l leaves and s support vertices, then $\gamma'_t(T) \geq \frac{n+2l-s+1}{3}$, with equality if and only if $T \in \xi_2$.

In the following, we give a lower bound on the locating-total domination number of a tree. Moreover, we give a characterization of the trees achieving the lower bound. In particular, the characterization of the trees achieving the lower bound is same as the characterization of Lemma 2.

Theorem 3. If T is a tree of order $n \geq 3$ with l leaves and s support vertices, then $\gamma'_t(T) \geq \frac{n+1}{2} - s$, with equality if and only if $T \in \xi_2$.

Proof. Let D be a $\gamma'_t(T)$-set that contains a minimum number of leaves. Then, for every support vertex v, exactly one leaf neighbor of v is not in D. Let P be the set of all external private neighbors of vertices in D. Let $L_1 = L(T) \cap D$, $L_2 = L(T) - L_1$, $A = P - L_2$, $B = V - D - P$, and $C = D - L_1 - S(T)$. Then $D = L_1 \cup S(T) \cup C$ and $V - D = L_2 \cup A \cup B$. Furthermore, $|L_1| = l - s$, $|L_2| = |S(T)| = s$, and $|A| \leq |C|$.

Let T_1, \ldots, T_{n-1} be the components of $T[A \cup B]$. Since $T[A \cup B]$ is a forest, $|E(T[A \cup B])| = |A| + |B| - \omega_1$. Note that each vertex in A is adjacent to at least one vertex in $A \cup B$. So, $|E(T[A \cup B])| = \frac{1}{2} \sum_{v \in T[A \cup B]} d_{T[A \cup B]}(v) \geq \frac{|A|}{2}$. Hence, $\omega_1 \leq \frac{|A|}{2} + |B|$.

Let D_1, \ldots, D_{n-1} be the components of $T[S(T) \cup C]$. Since $T[S(T) \cup C]$ is a forest, $|E(T[S(T) \cup C])| = |S(T)| + |C| - \omega_2$. Note that each vertex in C is adjacent to at least one vertex in $S(T) \cup C$. So, $|E(T[S(T) \cup C])| \geq \frac{|C|}{2}$. Hence, $\omega_2 \leq \frac{|C|}{2} + |S(T)|$.

Let K be a set of ω_1 vertices corresponding to the ω_1 components of $T[A \cup B]$, and let R be a set of ω_2 vertices corresponding to the ω_2 components of $T[S(T) \cup C]$. Say $K = \{k_1, \ldots, k_{\omega_1}\}$ and $R = \{r_1, \ldots, r_{\omega_2}\}$. Let L be the graph of order $\omega_1 + \omega_2$ with $V(L) = K \cup R$. Moreover, $t_{ij} \in E(L)$ if and only if there exist $u \in V(T_i)$ and $v \in V(D_j)$ such that $uv \in E(T_i)$, where $1 \leq i \leq \omega_1$ and $1 \leq j \leq \omega_2$. Since $T[A \cup B] \cup S(T) \cup C$ is a tree, by the construction of F, it follows that F is a tree. By the definition of A and B, each vertex of V is adjacent to exactly one vertex of $S(T) \cup C$ and each vertex of B is adjacent at least two vertices of $S(T) \cup C$. So, $|E(F)| \geq |A| + 2|B|$. Since $|E(F)| = \omega_1 + \omega_2 - 1 \leq \frac{|A|}{2} + |B| + \frac{|C|}{2} + |S(T)| - 1$, it follows that $\frac{|A|}{2} + |B| \leq \frac{|C|}{2} + |S(T)| - 1$.

Hence, $n - |D| = |V - D| = |L_2| + |A| + |B| \leq |S(T)| + \frac{|C|}{2} + |S(T)| - 1 + \frac{|A|}{2} \leq 2|S(T)| + \frac{|C|}{2} - 1 + \frac{|C|}{2} = 2|S(T)| + |C| - 1 = |D| + |S(T)| - 1 - |L_1|$. So, $|D| \geq \frac{n+1}{2} - |S(T)| - 1 - |L_1|$. Hence, $\gamma'_t(T) \geq \frac{n+1}{2} - s$. That is, $\gamma'_t(T) \geq \frac{n+1}{2} - s$.

This bound is sharp if and only if equality is achieved in each of the above inequalities. In particular, $|A| = |C|$, $\gamma(T[A \cup B]) = \frac{|A|}{2}$, and $\gamma(T[S(T) \cup C]) = \frac{|C|}{2}$. Hence, $d_{T[A \cup B]}(u) = 1$ for any $u \in A$ and $d_{T[A \cup B]}(v) = 0$ for any $v \in B$. Similarly, $d_{T[S(T) \cup C]}(u) = 0$ for any $u \in S(T)$ and $d_{T[S(T) \cup C]}(v) = 1$ for any $v \in C$. If $A \neq \emptyset$, then, for any $u \in A \cup C$, $d_{T[A \cup C]}(u) \geq 2$. So, $T[A \cup C]$ contains a cycle, which is a contradiction. So, $A = C = \emptyset$. Furthermore, $S(T)$ and B are two independent sets of T. Since $|A| + 2|B| = |E(F)|$, $d_{T}(u) = 2$ for any $u \in B$. Thus, T can be obtained from a tree T' of order s by adding at least two leaves adjacent to each vertex in T' and subdividing each edge of T' exactly once. Hence, $T \in \xi_2$.

Remark. It is obvious that, if $n > \max\{10s - 5l - 1, l + 2s - 1\}$, then the lower bound is better than the lower bounds in Lemmas 1 and 2.

3. Upper bound on the locating-total domination number of a tree

In [5], Haynes et al. provided an upper bound on the differentiating-total domination number of a tree in terms of its order and number of support vertices.
Lemma 4 (Haynes et al. [5]). If \(T \neq P_4 \) is a tree of order \(n \geq 4 \) with \(s \) support vertices, then \(\gamma^D(T) \leq n - s \).

For any tree \(T \), \(\gamma^L(T) \leq \gamma^D(T) \). As an immediate consequence of Lemma 4, we have the following result.

Corollary 5. If \(T \) is a tree of order \(n \geq 3 \) with \(s \) support vertices, then \(\gamma^L(T) \leq n - s \).

Now, we show that, if \(T \) is a tree of order \(n \) with \(l \) leaves, then \(\gamma^L(T) \leq \frac{n + l}{2} \). For the purpose of characterizing the trees attaining this bound, we describe a procedure to build a family \(\Gamma \) of labeled trees. The label of a vertex \(v \) is called its status, denoted by \(\text{sta}(v) \). There are three kinds of status, say \(A \), \(B \), and \(C \), used to label the tree. Let \(\Gamma \) be the family of labeled trees \(T = T_k \) that can be obtained as follows. Let \(T_0 \) be a \(P_6 \) in which two leaves have status \(C \), the two support vertices have status \(A \), and the other vertices have status \(B \). If \(k \geq 1 \), then \(T_k \) can be obtained recursively from \(T_{k-1} \) by one of the following operations.

- **Operation \(\tau_1 \).** For any \(y \in V(T_{k-1}) \), if \(\text{sta}(y) = C \) and \(d_{T_{k-1}}(y) = 1 \), then add a path \(x, w, v, z \) and edge \(xy \). Let \(\text{sta}(x) = \text{sta}(w) = B \), \(\text{sta}(v) = A \) and \(\text{sta}(z) = C \).

- **Operation \(\tau_2 \).** For any \(y \in V(T_{k-1}) \), if \(\text{sta}(y) = B \), then add a path \(x, w, v \) and edge \(xy \). Let \(\text{sta}(x) = B \), \(\text{sta}(w) = A \) and \(\text{sta}(v) = C \).

The two operations are illustrated in the figure above. Suppose that \(T \in \Gamma \), and let \(A(T) = \{ v \in V(T) | \text{sta}(v) = A \} \), \(B(T) = \{ v \in V(T) | \text{sta}(v) = B \} \), and \(C(T) = \{ v \in V(T) | \text{sta}(v) = C \} \).

Lemma 6. If \(T \in \Gamma \), then \(\gamma^L(T) = 2|A(T)| \).

Proof. Let \(R = \{(u, v)| u \in A(T), v \in C(T), uw \in E(T)\} \). Let \(D \) be a \(\gamma^L(T) \)-set. For any \((u, v), (u_1, v_1) \in R\) by the construction for the tree \(T, N_T[u, v] \cap N_T[u_1, v_1] = \emptyset \). In order to total dominate the vertices \(u \) and \(v \), it follows that \(|D \cap N_T[u, v]| \geq 2 \). So, \(|D| \geq 2|A(T)| \). That is, \(\gamma^L(T) \geq 2|A(T)| \). It is obvious that since \(A(T) \cup (N(A(T)) \cap B(T)) \) is a totally dominating set of \(T \), \(\gamma^L(T) \leq |A(T) \cup (N(A(T)) \cap B(T))| = 2|A(T)| \). Hence, \(\gamma^L(T) = 2|A(T)| \).

Theorem 7. If \(T \in \Gamma \), then \(\gamma^L(T) = \frac{n + l}{2} \).

Proof. Since \(A(T) \cup (N(A(T)) \cap B(T)) \) is a locating-total dominating set of \(T \), \(\gamma^L(T) \leq |A(T) \cup (N(A(T)) \cap B(T))| = 2|A(T)| \). By Lemma 6, \(2|A(T)| = \gamma^L(T) \leq \gamma^L(T) \leq 2|A(T)| \). Hence, \(\gamma^L(T) = 2|A(T)| \). Suppose that \(T \) is obtained from \(P_6 \) by applying \(k_1 \tau_1 \) operations and \(k_2 \tau_2 \) operations. Then \(n = 6 + 4k_1 + 3k_2, l = 2 + k_2, \) and \(|A(T)| = 2 + k_1 + k_2 \). Then, \(\gamma^L(T) = 2|A(T)| = \frac{n + l}{2} \).

Lemma 8. Let \(T \in \Gamma \). For any \(g \in C(T) \) and \(f \in N_T[g] \cap A(T) \), there exists a \(\gamma^L(T) \)-set \(D \) such that \(g, f \in D \) and \(\text{PN}(g, D) = \text{PN}(f, D) = \emptyset \).

Proof. If \(T = T_0 = P_6 \), it is obvious that the result holds. Without loss of generality, we can assume that \(T \) is obtained from \(P_6 \) by successive operations \(\tau_1 \), \(\ldots \), \(\tau_m \), respectively, where \(\tau^i \in \{ \tau_1, \tau_2 \} \) for \(i = 1, \ldots, m \) and \(m \geq 1 \). The proof is by induction on \(m \). If \(m = 1 \), it is easy to prove that the result holds. Assume that \(m \geq 2 \) and that the statement holds for all trees which are obtained from \(P_6 \) by applying at most \(m - 1 \) \(\tau \) operations.

Suppose that \(T = T_m \) is obtained from \(T_{m-1} \) by operation \(\tau_1 \). For any \(g \in C(T) \) and \(f \in N_T[g] \cap A(T) \), if \(g \in V(T_{m-1}) \), by inductive hypothesis, there exists a \(\gamma^L(T_{m-1}) \)-set \(D' \) such that \(g, f \in D' \) and \(\text{PN}(g, D') = \text{PN}(f, D') = \emptyset \). Let \(D = D' \cup \{w, v\} \). Then \(D \) is a \(\gamma^L(T) \)-set such that \(g, f \in D \) and \(\text{PN}(g, D) = \text{PN}(f, D) = \emptyset \).

Suppose that \(T = T_m \) is obtained from \(T_{m-1} \) by operation \(\tau_2 \). For any \(g \in C(T) \) and \(f \in N_T[g] \cap A(T) \), if \(g \in V(T_{m-1}) \), by inductive hypothesis, there exists a \(\gamma^L(T_{m-1}) \)-set \(D' \) such that \(g, f \in D' \) and \(\text{PN}(g, D') = \text{PN}(f, D') = \emptyset \). Let \(D = D' \cup \{x, w\} \). Then \(D \) is a \(\gamma^L(T) \)-set such that \(g, f \in D \) and \(\text{PN}(g, D) = \text{PN}(f, D) = \emptyset \).

If \(g = v \) and \(f = w \). If \(v \in N(A(T_{m-1})) \), then \(D' = A(T_{m-1}) \cup (N(A(T_{m-1})) \cap B(T_{m-1}))) \) is a \(\gamma^L(T_{m-1}) \)-set. Let \(D = \{x, w\} \cup \{v, w\} \). Then \(D \) is a \(\gamma^L(T) \)-set such that \(v, w \in D \) and \(\text{PN}(v, D) = \text{PN}(w, D) = \emptyset \).

If \(y \in N(C(T_{m-1})) \), then we say \(yu \in E(T_{m-1}) \), \(u \in C(T_{m-1}) \) and \(t \in N_{T_{m-1}}(u) \cap A(T_{m-1}) \). By inductive hypothesis, there exists a \(\gamma^L(T_{m-1}) \)-set \(D' \) such that \(u, t \in D' \) and \(\text{PN}(u, D') = \text{PN}(t, D') = \emptyset \). Let \(D = (D' \setminus \{t\}) \cup \{y, w, v\} \). Then \(D \) is a \(\gamma^L(T) \)-set such that \(w, v, D \in D \) and \(\text{PN}(w, D) = \text{PN}(v, D) = \emptyset \).
Theorem 9. If T is a tree of order $n \geq 3$ with l leaves, then $\gamma(T) \leq \frac{n+l}{2}$.

Proof. We proceed by induction on the order n. If $n \geq 3$, it follows that $\text{diam}(T) \geq 2$. If $\text{diam}(T) = 2$, then $\gamma(T) = n - 1 < \frac{n+l}{2}$. If $\text{diam}(T) = 3$, then $\gamma(T) = n - 2 < \frac{n+l}{2}$. This establishes the base cases.

Assume that every tree T' of order $3 \leq n' \leq n$ and with l' leaves satisfies $\gamma(T') \leq \frac{n'+l'}{2}$. Let T be a tree of order n and diameter at least 4 having l leaves.

If a support vertex, say x, of T is adjacent to two or more leaves, then let T' be the tree obtained from T by removing a leaf y adjacent to x. Then $n' = n - 1$ and $l' = l - 1$. Applying the inductive hypothesis to T', $\gamma(T') \leq \frac{n' + l'}{2} + 1 \leq \frac{n+l}{2}$. Thus, we can assume that every support vertex of T is adjacent to exactly one leaf. We now root T at a vertex of maximum eccentricity. Let v be a support vertex at maximum distance from u, u be the parent of v, and w be the parent of u in the rooted tree. For any vertex $x \in V(T)$, let T_x denote the subtree induced by the vertex x and its descendants in the rooted tree T. We have the following three cases.

Case 1: $d_T(u) \geq 3$. Then either u has a child $b \neq v$ that is a support vertex or every child of u except v is a leaf.

Suppose first that u has a child $b \neq v$ that is a support vertex. Let $T' = T - T_u$. Then $n' = n - 2$ and $l' = l - 1$. Let D' be a $\gamma(T')$-set that contains a minimum number of leaves. Then $u, b \in D'$ and $D' \cup \{v\}$ is a locating-total dominating set of T. Hence, $\gamma(T) \leq \gamma(T') + 1 \leq \frac{n'+l'}{2} + 1 < \frac{n+l}{2}$.

Now assume that every child of u except v is a leaf. Since u is adjacent to exactly one leaf, $d_T(u) = 3$. Let $T' = T - T_u$. Then $n' = n - 4$ and $l' = l - 1$. If $n' = 2$, then it is obvious that $\gamma(T) = 3 < \frac{n+l}{2}$. Suppose that $n' \geq 3$. Let D' be a $\gamma(T')$-set.

Then $D' \cup \{u, v\}$ is a locating-total dominating set of T. Hence, $\gamma(T) \leq \gamma(T') + 2 \leq \frac{n'+l'}{2} + 2 < \frac{n+l}{2}$.

Case 2: $d_T(u) = 2$ and $d_T(w) \geq 3$. Let $T' = T - T_u$. Then $n' = n - 3$ and $l' = l - 1$. Let D' be a $\gamma(T')$-set. Then $D' \cup \{u, v\}$ is a locating-total dominating set of T. Hence, $\gamma(T) \leq \gamma(T') + 2 \leq \frac{n'+l'}{2} + 2 < \frac{n+l}{2}$.

Case 3: $d_T(u) = 2$ and $d_T(w) = 2$. Let $T' = T - T_u$. Then $n' = n - 4$ and $l' = l$. If $n' = 1$, then $T' = P_3$ and $\gamma(T') = 3 < \frac{n+l}{2}$. If $n' = 2$, then $T' = P_3$ and $\gamma(T') = 4 = \frac{n+l}{2}$. Suppose that $n' \geq 3$. Let D' be a $\gamma(T')$-set. Then $D' \cup \{u, v\}$ is a locating-total dominating set of T. Hence, $\gamma(T) \leq \gamma(T') + 2 \leq \frac{n'+l'}{2} + 2 < \frac{n+l}{2}$. □

Theorem 10. If T is a tree of order $n \geq 3$ with l leaves, then $\gamma(T) = \frac{n+l}{2}$ if and only if $T \in \Gamma$.

Proof. If $T \in \Gamma$, by Theorem 7, $\gamma(T) = \frac{n+l}{2}$. Conversely, let T be a tree of order $n \geq 3$ with $\gamma(T) = \frac{n+l}{2}$. Then $\text{diam}(T) \geq 4$. In order to prove that $T \in \Gamma$, we proceed by induction on the order n. If $n \leq 6$, then $T = P_6$. So, $T \in \Gamma$. This establishes the base cases. Assume that every tree T' of order 6 $\leq n' < n$ and with l' leaves satisfies $\gamma(T') = \frac{n'+l'}{2}$ only if $T' \in \Gamma$. Let T be a tree of order $n > 6$ and diameter at least 4 having l leaves, and let $\gamma(T) = \frac{n+l}{2}$.

If a support vertex, say x, of T is adjacent to two or more leaves, then let T' be the tree obtained from T by removing a leaf y adjacent to x. Then $n' = n - 1$ and $l' = l - 1$. Then $\gamma(T) \leq \gamma(T') + 1 \leq \frac{n'+l'}{2} + 1 = \frac{n+l}{2}$. Since $\gamma(T) = \frac{n+l}{2}$, it follows that $\gamma(T') = \frac{n'+l'}{2}$ and $\gamma(T) = \frac{n+l}{2}$. Then $T \in \Gamma$. Since x is a support vertex of T', $x \in A(T')$. By Lemma 8, there exists a $\gamma(T')$-set D' such that $x, z \in D'$ and $\text{PN}(x, D') = \emptyset$, where $z \in N_{T'}(x) \cap C(T')$. Then D' is a locating-total dominating set of T. So, $\gamma(T) = \gamma(T')$, which is a contradiction.

Thus, we can assume that every support vertex of T is adjacent to exactly one leaf. We now root T at a vertex x of maximum eccentricity. Let v be a support vertex at maximum distance from u, u be the parent of v, and w be the parent of u in the rooted tree. For any vertex $x \in V(T)$, let T_x denote the subtree induced by the vertex x and its descendants in the rooted tree T. By a similar proof as Case 1 of Theorem 9, it follows that $d_T(u) = 2$. We have the following two cases.

Case 1: $d_T(u) = 2$ and $d_T(w) \geq 3$. Let $T' = T - T_u$. Then $n' = n - 3$ and $l' = l - 1$. Let D' be a $\gamma(T')$-set. Then $D' \cup \{u, v\}$ is a locating-total dominating set of T. Hence, $\gamma(T) \leq \gamma(T') + 2 \leq \frac{n'+l'}{2} + 2 < \frac{n+l}{2}$.

Since $\gamma(T) = \frac{n+l}{2}$, it follows that $\gamma(T') = \frac{n'+l'}{2}$ and $\gamma(T) = \gamma(T') + 2$. By the inductive hypothesis, $T' \in \Gamma$.

By Lemma 8, if $w \in A(T')$, there exists a $\gamma(T')$-set D' such that $w, y \in D'$ and $\text{PN}(w, D') = \emptyset$, where $y \in N_{T'}(w) \cap C(T')$. Then $(D' - \{y\}) \cup \{u, v\}$ is a locating-total dominating set of T. So, $\gamma(T) \leq \gamma(T') + 1$, which is a contradiction.

If $w \in C(T') - C(T') \cap L(T')$, there exists a $\gamma(T')$-set D' such that $w, y \in D'$ and $\text{PN}(w, D') = \emptyset$, where $y \in N_{T'}(w) \cap A(T')$. Then $(D' - \{y\}) \cup \{u, v\}$ is a locating-total dominating set of T. So, $\gamma(T) \leq \gamma(T') + 1$, which is a contradiction. Hence, $w \in B(T')$. Then T is obtained from T' by using operation t_2. So, $T \in \Gamma$.

Case 2: $d_T(u) = 2$ and $d_T(w) = 2$. Let $T' = T - T_u$, and let $y \in N_{T'}(w) \setminus \{u\}$. Then $n' = n - 4$ and $l' \leq l$. Let D' be a $\gamma(T')$-set. Then $D' \cup \{u, v\}$ is a locating-total dominating set of T. Hence, $\gamma(T) = \gamma(T') + 2 \leq \frac{n'+l'}{2} + 2 \leq \frac{n+l}{2}$.

Since $\gamma(T) = \frac{n+l}{2}$, it follows that $\gamma(T') = \frac{n'+l'}{2}$ and $l' = l$. That is, y is a leaf in T' and $y \in C(T')$. By the inductive hypothesis, $T' \in \Gamma$. Then T is obtained from T' by using operation t_1. So, $T \in \Gamma$. □

Acknowledgements

This work was supported by Changwon National University in 2009–2010. The first author was supported by NSFC Grant (10901051) and the Fundamental Research Funds for the Central Universities (10ML39).
References