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a b s t r a c t

In this article, we consider planar graphs in which each vertex is not incident to some
cycles of given lengths, but all vertices can have different restrictions. This generalizes the
approach based on forbidden cycles which corresponds to the case where all vertices have
the same restrictions on the incident cycles. We prove that a planar graph G is 3-choosable
if it is satisfied one of the following conditions:

(1) G has no cycles of length 4 or 9 and no 6-cycle is adjacent to a 3-cycle. Moreover, for
each vertex x, there exists an integer ix ∈ {5, 7, 8} such that x is not incident to cycles
of length ix.

(2) G has no cycles of length 4, 7, or 9, and for each vertex x, there exists an integer
ix ∈ {5, 6, 8} such that x is not incident to cycles of length ix.

This result generalizes several previously published results (Zhang andWu, 2005 [12], Chen
et al., 2008 [3], Shen and Wang, 2007 [6], Zhang and Wu, 2004 [13], Shen et al., 2011 [7]).

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Only simple graphs are considered in this paper unless otherwise stated. A plane graph is a particular drawing of a planar
graph in the euclidean plane. For a plane graph G, we denote its vertex set, edge set, face set and minimum degree by V (G),
E(G), F(G) and δ(G), respectively. A proper vertex coloring of G is an assignment c of integers (or labels) to the vertices of
G such that c(u) ≠ c(v) if the vertices u and v are adjacent in G. A graph G is L-list colorable if for a given list assignment
L = {L(v) : v ∈ V (G)} there is a proper coloring c of the vertices such that ∀v ∈ V (G), c(v) ∈ L(v). If G is L-list colorable for
every list assignment with |L(v)| ≥ k for all v ∈ V (G), then G is said to be k-choosable.

Thomassen [8] proved that every planar graph is 5-choosable, whereas Voigt [9] proved that there exist planar graphs
which are not 4-choosable. On the other hand, in 1976, Steinberg conjectured that every planar graph without cycles of
lengths 4 and 5 is 3-colorable (see Problem 2.9 [5]). This conjecture remains widely open. In 1990, Erdős suggested the
following relaxation of Steinberg’s conjecture: what is the smallest integer i such that every graph without j-cycles for
4 ≤ j ≤ i is 3-colorable. The best known upper bound is i ≤ 7 [2]. It is natural to ask the same question for choosability:

Problem 1. What is the smallest integer i such that every graph without j-cycles for 4 ≤ j ≤ i is 3-choosable?

Voigt [10] proved that it is not possible to extend Steinberg’s conjecture to list coloring: she gave a planar graph without
4-cycles and 5-cycles which is not 3-choosable; hence i ≥ 6. The best known upper bound is i ≤ 9: this bound is obtained
by using a structural lemma of Borodin [1].
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Lemma 1 ([1]). Let G be a planar graph with minimum degree at least 3. If G does not contain cycles of lengths 4to 9, then G
contains a 10-face incident to ten 3-vertices and adjacent to five 3-faces.

It follows by Erdős et al. [4] that every planar graph without cycles of lengths 4 to 9 is 3-choosable. Zhang and Wu [12]
improved Borodin’s result by proving that:

Lemma 2 ([12]). Let G be a planar graph with minimum degree at least 3. If G does not contain cycles of lengths 4, 5, 6, and 9,
then G contains a 10-face incident to ten 3-vertices and adjacent to five 3-faces.

It implies that every planar graph without cycles of lengths 4, 5, 6, 9 is 3-choosable. Chen et al. [3] proved that every
planar graph without cycles of lengths 4, 6, 7, 9 is 3-choosable. Their result is based on the following lemma:

Lemma 3 ([3]). Let G be a planar graphwithminimumdegree at least 3. If G contains neither cycles of lengths 4, 7, 9, nor 6-cycle
with a chord, then G contains a 10-face incident to ten 3-vertices or an 8-face incident to eight 3-vertices.

Shen and Wang [6] proved that every planar graph without cycles of lengths 4, 6, 8, 9 is 3-choosable by showing that:

Lemma 4 ([6]). Let G be a planar graph with minimum degree at least 3. If G does not contain cycles of lengths 4, 6, 8, and 9,
then G contains a 10-face incident to ten 3-vertices.

Moreover every planar graph without cycles of lengths 4, 5, 7, 9 (resp. 4, 5, 8, 9, and 4, 7, 8, 9) is 3-choosable [13] (resp.
[11,7]).

In this article, we consider planar graphs in which each vertex is not incident to some cycles of given lengths, but all
vertices can have different restrictions. This generalizes the approach based on forbidden cycles which corresponds to the
case where all vertices have the same restrictions on the incident cycles. Let us introduce some notations which will allow
to present our main result.
Some notations. For x ∈ V (G) ∪ F(G), let dG(x), or simply d(x), denote the degree of x in G. A k-vertex, k−-vertex, or k+-vertex
is a vertex of degree k, at most k, or at least k. Similarly, we can define k-face, k−-face, k+-face, etc. We say that two cycles
(or faces) are incident if they share at least one common vertex. Suppose that f and f ′ are two adjacent faces by sharing a
common edge e. We say that f and f ′ are normally adjacent if |V (f ) ∩ V (f ′)| = 2. For a face f ∈ F(G), we use b(f ) to denote
the boundary walk of f and write f = [u1u2 · · · un] if u1, u2, . . . , un are the vertices of b(f ) appearing in a boundary walk of
f . The degree of a face is the number of edge-steps in its boundary walk. Note that each cut-edge is counted twice. A face f
is simple if b(f ) forms a cycle. A triangle is synonymous with a 3-face.

A vertex or edge is called triangular if it is contained in a 3-face. A cycle C or a face f is called nontriangular if it is not
adjacent to any 3-cycles. We say that an i-face f is an i∗-face if f is adjacent to exactly one 3-face and they are normally
adjacent. Moreover, we call such an i∗-face heavy. Similarly, we say that an i-cycle C is an i∗-cycle if C is adjacent to exactly
one 3-cycle and they are normally adjacent. Similarly, we call such an i∗-cycle heavy. Two i∗-cycles (or i∗-faces) are normally
adjacent if these two i-cycles (or i-faces) are normally adjacent. Suppose that v is a 4-vertex incident to two non-adjacent
cycles C1 and C2 (or faces f1 and f2). We say that C1 and C2 (or f1 and f2) are opposite by the vertex v.

An orchid is a simple 6-face incident to six 3-vertices and normally adjacent to a 3-face. A sunflower is a simple 8-face
incident to eight 3-vertices and adjacent to at least seven 5-faces. A lotus is a simple 10-face f incident to ten 3-vertices
and adjacent to five clusters that are mutually disjoint with respect to f , where a cluster is either a 3-face, or a 5-face, or a
6∗-face (see Fig. 1). Here we say that two clusters, i.e., f1, f2, are mutually disjoint with respect to f if b(f ) does not contain
two consecutive edges e1, e2 such that ei ∈ b(fi) for each i = 1, 2. We should point out that none of orchids, sunflowers and
lotus has an external chords in our definition. The following theorem is our main result which implies Lemmas 1–4.

Theorem 1. Let G be a plane graph with minimum degree at least 3 and G does not contain 4-cycles and 9-cycles. If G further
satisfies the following structural properties:

(C1) a 5-cycle or 6-cycle is adjacent to at most one 3-cycle;
(C2) a 5∗-cycle is neither adjacent to a 5∗-cycle normally, nor adjacent to an i-cycle with i ∈ {7, 8};
(C3) a 6∗-cycle is neither adjacent to a 6-cycle, nor incident to an i-cycle C with i ∈ {3, 5}, where C is opposite to such a 6∗-cycle

by a 4-vertex;
(C4) a nontriangular 7-cycle is not adjacent to two 5-cycles which are normally adjacent;
(C5) a 7∗-cycle is neither adjacent to a 5-cycle nor a 6∗-cycle.

Then G contains an orchid or a sunflower or a lotus.

We obtain the following Corollaries 1 and 2 by Theorem 1.

Corollary 1. Let G be a planar graph. Suppose G has no cycles of length 4 or 9 and no 6-cycle is adjacent to a 3-cycle. Moreover,
for each vertex x, there exists an integer ix ∈ {5, 7, 8} such that x is not incident to cycles of length ix. Then G is 3-choosable.

Corollary 2. Let G be a planar graph. Suppose G has no cycles of length 4, 7, or 9, and for each vertex x, there exists an integer
ix ∈ {5, 6, 8} such that x is not incident to cycles of length ix. Then G is 3-choosable.
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Fig. 1. (A) Orchid, (B) sunflower, and (C) lotus.

Assuming Theorem 1, we can easily prove Corollaries 1 and 2.
Proofs of Corollaries 1 and 2. Suppose that G1, G2 are plane presentations of the counterexamples to Corollary 1,
Corollary 2with the smallest number of vertices, respectively. Thus, Gi is connected (i = 1, 2). Obviously, for each i ∈ {1, 2},
we observe that δ(Gi) ≥ 3. Otherwise, let ui be a vertex of minimum degree in Gi. By the minimality of Gi, Gi − ui is
3-choosable. Obviously, we can extend any L-coloring such that ∀x ∈ V (G) : |L(x)| ≥ 3 of Gi − ui to Gi and ensure that Gi is
3-choosable. Next, in each case, we will show that each Gi contains either an orchid, or a sunflower, or a lotus. Denote NA,
NB, NC be the set of black vertices of (A)–(C) in Fig. 1, respectively. Since even cycles are 2-choosable, for each j ∈ {A, B, C},
one can easily observe that we can extend any L-coloring such that for all x ∈ V (G) : |L(x)| ≥ 3 of Gi − Nj to Nj and make
sure that Gi is 3-choosable. Thus, G1 and G2 are both 3-choosable, which are contradictions.

SinceGi does not contain 4-cycles and 9-cycles, we only need to verify ifGi satisfies all the structural properties (C1)–(C5),
where i ∈ {1, 2}.
(1) For G1, since each vertex x is not incident to 6-cycles adjacent to a 3-cycle, each 5-cycle or 6-cycle only can be

nontriangular cycles. This implies that there is neither 5∗-face nor 6∗-face in G1. Thus, (C1)–(C3) are satisfied. If one of
(C4) or (C5) is not satisfied, then in both cases there appears a vertex xwhich is incident to an i-cycle for all i ∈ {5, 7, 8},
which contradicts the assumption on G1.

(2) For G2, because it does not contain 7-cycles, we confirm that there is no 6∗-cycle and 7∗-cycle in G2. Thus, we only need
to check properties (C1) and (C2). It is easy to establish a 7-cycle or a 4-cycle if a 5-cycle or 6-cycle is adjacent to at least
two 3-cycles. Thus, (C1) is satisfied. Let us check (C2). Suppose a 5∗-cycle is normally adjacent to another 5∗-cycle or is
adjacent to an i-cycle with i ∈ {7, 8}. Since G2 has no 7-cycles, in both cases there exists a vertex incident to a 5-cycle, a
6-cycle and an 8-cycle, which is a contradiction.
This completes the proofs of Corollaries 1 and 2. �

By Corollary 1, it is easy to deduce Corollary 3:

Corollary 3. Every planar graph G in which every vertex v is not incident to cycles of lengths 4, 6, 9, ix with ix ∈ {5, 7, 8} is
3-choosable.

Thus, by Corollaries 2 and 3, we deduce Corollary 4 which covers five results mentioned before [12,3,6,13,7].

Corollary 4. Every planar graph G without {4, i, j, 9}-cycles with 5 ≤ i < j ≤ 8 and (i, j) ≠ (5, 8) is 3-choosable.

Section 2 is dedicated to the proof of Theorem 1.

2. Proof of Theorem 1

Let G be a counterexample to Theorem 1, i.e., an embedded plane graph G with δ(G) ≥ 3, no cycles of lengths 4 and
9, satisfying the structural properties (C1)–(C5), and containing no orchid, no sunflower, and no lotus (i.e., none of the
configurations depicted by Fig. 1).

2.1. The case G is 2-connected

First, we suppose that G is 2-connected. Thus, every face in G is simple. Besides, the following assertions (O1)–(O7) hold
naturally by the assumption of G.
(O1) A 5-face or a 6-face is adjacent to at most one 3-face;
(O2) A 5∗-face is neither adjacent to a 5∗-face normally, nor adjacent to an i-face with i ∈ {7, 8};
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(O3) A 6∗-face is neither adjacent to a 6-face, nor incident to an i-face f with i ∈ {3, 5}, where f is opposite to such a 6∗-face
by a 4-vertex;

(O4) A nontriangular 7-face is not adjacent to two 5-faces which are normally adjacent (there is no 3-vertex incident to a
nontriangular 7-face and to two 5-faces);

(O5) A 7∗-face is neither adjacent to a 5-face nor a 6∗-face;
(O6) G does not contain 4-faces and 9-faces;
(O7) Each vertex v is incident to at most


d(v)

2


3-faces.

2.1.1. Structural properties of G
In this section, we will show that the following additional properties hold:

Claim 1. For some fixed i ∈ {5, 6, 7, 8}, if an i-face is adjacent to a 3-face, then they are normally adjacent.
Proof. Suppose the claim is false. Let fi = [v1v2 · · · vi] be an i-face and f2 = [v1v2u] be a 3-face such that f1 is adjacent to f2
and |V (f1) ∩ V (f2)| = 3. It means that u is equal to some vj with j ∈ {3, 4, . . . , i}. According to the value of i, one can easily
observe that if u is a vertex vj with 3 ≤ j ≤ i, then G contains either a 2-vertex or a 4-cycle, a contradiction. This completes
the proof of Claim 1. �

Since G does not contain 9-cycles, we obtain the following Claims 2 and 3 easily by Claim 1:

Claim 2. Each 7-face is adjacent to at most one 3-face.

Claim 3. No 8-face is adjacent to a 3-face.

Claim 4. If two 5-faces are adjacent to each other, then they can only be normally adjacent.
Proof. Suppose that there are two adjacent 5-faces f1 = [v1v2 · · · v5] and f2 = [v1v2uvw] with v1v2 as a common edge. If
|V (f1) ∩ V (f2)| = 2, then Claim 4 follows. Otherwise, by symmetry, we only need to consider the following cases. If w = v5,
then d(v1) = 2 which is impossible. If w = v4, then G contains a 4-cycle v1v2v3v4v1, a contradiction. This implies u ∉ b(f1)
and w ∉ b(f1). If v = v5 or v = v4, then a 4-cycle uv2v1v5u or wv1v5v4w can be easily established, a contradiction, that
completes the proof of Claim 4. �

Claim 5. A nontriangular 5-face cannot be adjacent to a 5∗-face in G.
Proof. Suppose on the contrary that a nontriangular 5-face f1 = [v1v2 · · · v5] is adjacent to a 5∗-face f2 = [v1v2u3u4u5]

by a common edge v1v2. By definition, f1 is not adjacent to any 3-face. By Claim 4, each ui cannot be equal to some vj with
i, j ∈ {3, 4, 5}. By symmetry, we have to handle the following two properties:
• Assume that v1u5u is a 3-face. By Claim 1, u ≠ v2, u3, u4. Moreover, u ≠ v5 by choice of f1. If u = v4 or u = v3,

then G contains a 4-cycle, which is impossible. Thus, u does not belong to b(f1) ∪ b(f2) and G contains a 9-cycle
uv1v5v4v3v2u3u4u5u, a contradiction.

• Assume that u5u4u is a 3-face. Notice that u ≠ v1, v2, u3 by Claim 1. If u = v3 or v4 or v5, then G contains a 4-cycle which
is impossible. Thus, u does not belong to b(f1) ∪ b(f2) and G contains a 9-cycle uu5v1v5v4v3v2u3u4u, a contradiction, that
completes the proof of Claim 5. �

By Claim 4 and assertion (O2), we have:

Claim 6. There is no adjacent two 5∗-faces in G.

Claim 7. No 3-vertex is incident to three 5-faces.
Proof. Assume to the contrary that G contains a 3-vertex u adjacent to three vertices v1, v2, v3 and incident to three
5-faces f1 = [uv1x1x2v2], f2 = [uv2y1y2v3], and f3 = [uv3z1z2v1]. By Claim 4, fi and fj are normally adjacent for each
pair {i, j} ⊂ {1, 2, 3}. It implies that all vertices in (V (f1) ∪ V (f2) ∪ V (f3)) \ {u} are mutually distinct. However, a 9-cycle
v1x1x2v2y1y2v3z1z2v1 is established, contradicting the assumption on G. Thus, we complete the proof of Claim 7. �

Claim 8. Under isomorphism, a 6-face can be adjacent to a 5-face in an unique way as depicted by Fig. 2.

Proof. Assume that a 6-face f1 = [v1v2 · · · v6] is adjacent to a 5-face f2 = [v1v2uvw] with v1v2 as a common edge. We first
suppose that u, w ∉ V (f1). By the absence of 4-cycles in G, we deduce that v ≠ v3 and v ≠ v4. Otherwise, there is a 4-cycle
either wv1v2v3w or uv4v3v2u. So by symmetry, we have that v ∉ {v5, v6}. However, one can easily check that a 9-cycle
v2v3v4v5v6v1wvuv2 is established, which is a contradiction.

Now, w.l.o.g., we may suppose that w ∈ V (f1). The following argument is divided into four cases.
• Assume that w = v6. Then v1 is a 2-vertex, which is a contradiction.
• Assume that w = v5. Obviously, u ≠ v3 and u ≠ v4. Otherwise, either d(v2) = 2 or a 4-cycle v1wuv2v1 is established,

which are both contradictions. So wemay suppose that u ∉ V (f1). If v = v3, then a 4-cyclewv1v2vw is formed. If v = v4,
then a 4-cycle vv3v2uv is formed. A contradiction is always obtained, which implies that v ∉ V (f1) and thus we are done,
see Fig. 2.
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Fig. 2. A 6-face f1 is adjacent to a 5-face f2 .

Fig. 3. A 3-vertex u incident to two 5-faces f1 and f2 and to one 6-face f3 .

• Assume that w = v4. Then a 4-cycle v1v6v5wv1 is constructed, which is impossible.
• Assume that w = v3. Since G is the plane graph, we see that u, v ∉ V (f1). However, v2uvwv2 is a 4-cycle, which is a

contradiction.
This completes the proof of Claim 8. �

Claim 9. No 3-vertex is incident to two 5-faces and one 6-face.

Proof. Suppose the claim is not true. We assume that there exists a 3-vertex u adjacent to three vertices v1, v2, v3 and
incident to two 5-faces f1 = [uv1x1x2v2], f2 = [uv2y1y2v3], and one 6-face f3 = [uv3z1z2z3v1], see Fig. 3.

By Claim 8, z2 = y2 = x1. Hence a 4-cycle z2v1uv3z2 exists which is a contradiction. Thus, we complete the proof of
Claim 9. �

Claim 10. No 3-vertex is incident to one 5-face and two 6-faces.

Proof. Suppose to the contrary that there exists a 3-vertex u adjacent to three vertices v1, v2, v3 and incident to two 6-faces
f1 = [uv3y1y2y3v1], f2 = [uv2z1z2z3v3], and one 5-face f3 = [uv1x1x2v2], see Fig. 4. By Claim 8, we see that f1 and f3 can only
be adjacent to each other in an unique way as depicted by Fig. 2. One can easily observe that x1 = y2 or v2 = y1. Next, we
will make use of contradictions to show that f2 cannot exist in G. We have to deal with the following two cases.
Case 1. x1 = y2.

For simplicity, denote x∗
= x1 = y2. By Claim 8, we see that x2 = z2. It is easy to see that a 5-face x∗v1uv2x2x∗ adjacent

to two 3-cycles x∗y3v1x∗ and v2z1x2v2 is produced. This contradicts (C1).
Case 2. v2 = y1.

Clearly, uv3y1 is a 3-cyclewhich is not a 3-face. For simpleness, let y∗
= v2 = y1. Obviously, {z1, z2, z3}∩{y2, y3, x1, x2} =

∅ since G is a plane graph. However, a 9-cycle y∗z1z2z3v3uv1x1x2y∗ is easily established, which is impossible. This completes
the proof of Claim 10. �

Claim 11. No 6∗-face is adjacent to a 5-face in G.

Proof. Suppose on the contrary that there exists a 6-face f1 = [v1v2 · · · v6] adjacent to a 5-face f2 = [v1v2uvw] by a common
edge v1v2. By Claim 8, f1 and f2 can only be adjacent in an unique way depicted by Fig. 2, which means that w = v5. Note
that f1 is adjacent to a 3-cycle v1v5v6v1 which is not a 3-face. Thus, f1 cannot be adjacent to any other 3-face by (C1), which
means that f1 cannot be a 6∗-face. This completes the proof of Claim 11. �

By (C1), similarly as the proof of Claim 11 we have:

Claim 12. No 5∗-face is adjacent to a 6-face in G.
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Fig. 4. A 3-vertex u incident to one 5-face f3 and two 6-faces f1 and f2 .

Furthermore, (O3) implies the following claim:

Claim 13. There is no adjacent 6∗-faces in G.

By Claims 5, 6, 12, (O2) and (O6), we easily obtain the following claim:

Claim 14. No 5∗-face is adjacent to an i-face in G, where i ∈ {4, . . . , 9}.

2.1.2. Discharging argument
We now use a discharging procedure. First we define a weight function ω on the vertices and faces of G by letting

ω(v) = 2d(v) − 6 if v ∈ V (G) and ω(f ) = d(f ) − 6 if f ∈ F(G). It follows from Euler’s formula |V (G)| − |E(G)| + |F(G)| = 2
and the relation

∑
v∈V (G) d(v) =

∑
f∈F(G) d(f ) = 2|E(G)| that the total sum of weights of the vertices and faces is equal to−

v∈V (G)

(2d(v) − 6) +

−
f∈F(G)

(d(f ) − 6) = −12. (1)

We shall design appropriate discharging rules and redistribute weights accordingly. Once the discharging is finished, a
newweight functionω∗ is produced. The total sum of weights is kept fixedwhen the discharging is in process. Nevertheless,
after the discharging is complete, the new weight function satisfies ω∗(x) ≥ 0 for all x ∈ V (G) ∪ F(G). This leads to the
following obvious contradiction,

−12 =

−
x∈V (G)∪F(G)

ω(x) =

−
x∈V (G)∪F(G)

ω∗(x) ≥ 0

and hence demonstrates that no such counterexample G exists.
Before stating the discharging rules,we first give somenotationswhichwill be used frequently in the following argument.

For x, y ∈ V (G) ∪ F(G), let τ(x → y) denote the amount of weights transferred from x to y. For a vertex v ∈ V (G) and for an
integer i ≥ 5, let m3(v), mi(v), and mi∗(v) denote the number of 3-faces, nontriangular i-faces, and heavy i-faces incident
to v, respectively. Furthermore, we denoteMi(v) = mi(v) + mi∗(v) and call a face f a non-3-face if d(f ) ≠ 3.

For simplicity, we say an edge uv a (b1, b2)-edge if d(u) = b1 and d(v) = b2. Let f1 = [xuvy · · ·] and f2 = [zuvt · · ·] be
two faces adjacent to each other by a common edge uv, where f1 is a 7+-face while f2 is a 5- or 5∗- or 6∗-face. If both zu and
vt are non-triangular edges of f2, then we call uv a good common edge. We further say such uv a good common (b1, b2)-edge
if uv is a (b1, b2)-edge.

The discharging rules are defined as follows (see Fig. 5):

(R1) Each 5+-face sends 1 to each adjacent 3-face.
(R2) Let v be a 4-vertex.

(R2a) If m3(v) = 2, then for each non-3-face f , τ(v → f ) = 1.
(R2b) If m3(v) = 1, then let f1 denote the incident 3-face and f ′ be the opposite face of f1.

(R2b1) If f ′ is a nontriangular 5-face, then v sends 2
3 to each incident face different of f1.

(R2b2) Otherwise, v sends 1 to each incident face which is adjacent to f1.
(R2c) If m3(v) = 0, let f1, f2, f3, and f4 denote the faces of G incident to v in a cyclic order such that the degree of f1 is

the smallest one among all faces incident to v, then we do like this:
(R2c1) ifM5(v) = 0, then v sends 1

2 to each incident face.
(R2c2) if M5(v) = 1, then v sends 2

3 to each of f1, f2, and f4 when f1 is a nontriangular 5-face; or v sends 1 to
each of f2 and f4 when f1 is a 5∗-face.

(R2c3) ifM5(v) = 2, then
(R2c3.1) v sends 2

3 to each nontriangular 5-face and 1
3 to each other incident face whenm5(v) = 2.
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Fig. 5. Some of discharging rules (R1)–(R3).

(R2c3.2) v sends 2
3 to each incident face except the unique 5∗-face whenm5(v) = 1 andm5∗(v) = 1.

(R2c3.3) v sends 1 to each incident face which is not a 5∗-face whenm5∗(v) = 2.
(R2c4) if M5(v) = 3, then v gives 2

3 to each incident nontriangular 5-face.
(R2c5) if M5(v) = 4, then v gives 1

2 to each incident nontriangular 5-face.
(R3) Let v be a 5-vertex and f be a non-3-face incident to v. Then

(R3a) τ(v → f ) =
4
3 ifm3(v) = 2.

(R3b) τ(v → f ) = 1 if m3(v) = 1.
(R3c) if m3(v) = 0, v sends 1 to each incident face different from a 5∗-face when m5∗(v) ≥ 1; or sends 5

6 to each

incident 6∗-face and sends
4− 5

6m6∗ (v)

5−m6∗ (v)
to each other incident face whenm5∗(v) = 0.

(R4) Let f be a 7+-face. If f ′ is adjacent to f by a good common edge e, then
(R4a) τ(f → f ′) =

1
3 if f ′ is a nontriangular 5-face and e is a (3, 3)-edge.

(R4b) τ(f → f ′) =
1
6 if f ′ is a 6∗-face and e is a (3, 3)-edge or a (3, 4)-edge.

(R5) Each 10+-face sends 1 to each adjacent 5∗-face by a good common (3+, 3+)-edge.
(R6) Each 6+-vertex sends 1 to each incident face.

Let us check that ω∗(x) ≥ 0 for all x ∈ V (G) ∪ F(G).
Since δ(G) ≥ 3, d(v) ≥ 3 for each vertex v ∈ V (G). We have to handle the following cases, depending on d(v).

Case 1. d(v) = 3.
It is easy to see that ω∗(v) = ω(v) = 2 × 3 − 6 = 0 by (R1)–(R6).
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Case 2. d(v) = 4.
Clearly,ω(v) = 2 and v is incident to atmost two 3-faces by (O7). Ifm3(v) = 2, thenwe deduce thatω∗(v) = 2−2×1 =

0 by (R2a). If m3(v) = 1 (v is incident to exactly one 3-face), then depending on the opposite face of such a 3-face, v gives
either 2

3 × 3 = 2, or 1 × 2 = 2 by (R2b1) or (R2b2). Hence, ω∗(v) = 0. Finally, we only need to consider the case of
m3(v) = 0. We divide the discussion into five subcases in the light of the value ofM5(v).
Subcase 2.1.M5(v) = 0.

This implies that the degree of each face incident to v is at least 6 by the absence of 4-faces. According to (R2c1),
ω∗(v) ≥ 2 −

1
2 × 4 = 0.

Subcase 2.2.M5(v) = 1.
It is easy to observe that v sends either 2

3 × 3 = 2 if m5(v) = 1, or 1 × 2 = 2 if m5∗(v) = 1 by (R2c2). Thus, v gives
totally at most 2 to incident faces. Hence, ω∗(v) ≥ 2 − 2 = 0.
Subcase 2.3.M5(v) = 2.

Ifm5(v) = 2, then ω∗(v) ≥ 2−
2
3 × 2−

1
3 × 2 = 0 by (R2c3.1). Ifm5(v) = m5∗(v) = 1, then such a nontriangular 5-face

and 5∗-face cannot be adjacent to each other by Claim 5. Thus, applying (R2c3.2),ω∗(v) ≥ 2−
2
3 ×3 = 0. Otherwise, suppose

m5∗(v) = 2. Notice that v is incident to two5∗-faceswhich are opposite to each other by Claim6. Thus,ω∗(v) ≥ 2−1×2 = 0
by (R2c3.3).
Subcase 2.4.M5(v) = 3.

We first notice thatm5∗(v) ≠ 3 since there are no adjacent 5∗-faces in G by Claim 6. If 1 ≤ m5∗(v) ≤ 2, then there exists
at least one nontriangular 5-face adjacent to one 5∗-face, contradicting the Claim 5. Thus, m5∗(v) = 0, and so m5(v) = 3.
According to (R2c4), we have that ω∗(v) ≥ 2 −

2
3 × 3 = 0.

Subcase 2.5.M5(v) = 4.
One can observe that m5∗(v) = 0 by Claims 5 and 6. It implies that v is incident to exactly four nontriangular 5-faces.

Consequently, we have that ω∗(v) ≥ 2 −
1
2 × 4 = 0 by (R2c5).

Case 3. d(v) = 5.
Obviously, ω(v) = 4 and m3(v) ≤ 2 by (O7). It is easy to observe that v sends either 4

3 × 3 = 4 by (R3a) if m3(v) = 2,
or 1 × 4 = 4 by (R3b) if m3(v) = 1. Therefore, ω∗(v) ≥ 4 − 4 = 0 if m3(v) > 0. Now we may assume that m3(v) = 0.
This implies that each face incident to v is a 5+-face combining the fact that G does not contain any 4-faces. By Claim 6,
we have that m5∗(v) ≤ 2. Moreover, each non-3-face adjacent to a 5∗-face must be a 10+-face by Claim 14. So by (R3c),

ω∗(v) ≥ 4 − 1 × 4 = 0 if m5∗(v) ≥ 1; or ω∗(v) ≥ 4 −
5
6m6∗(v) −

4− 5
6m6∗ (v)

5−m6∗ (v)
(5 − m6∗(v)) = 0 ifm5∗(v) = 0.

Case 4. d(v) ≥ 6.
According to (R6), we have that ω∗(v) ≥ (2d(v) − 6) − 1 × d(v) = d(v) − 6 ≥ 0.
Let f ∈ F(G). Then b(f ) is a cycle since G is 2-connected. We write f = [v1v2 · · · vd(f )] and suppose that fi is the face of G

adjacent to f with vivi+1 ∈ b(f ) ∩ b(fi) for i = 1, 2, . . . , d(f ), where (and in the following discussion) all indices are taken
modulo d(f ). We observe that d(f ) ≠ 4 and d(f ) ≠ 9 by (O6). For i ≥ 3, let ni(f ) denote the number of i-vertices incident to
f . Letm5(f ),m5∗(f ), andm6∗(f ) denote the number of nontriangular 5-faces, heavy 5-faces, and heavy 6-faces adjacent to f .
Case 5. d(f ) = 3.

Let f be a 3-face and then ω(f ) = −3. Since δ(G) ≥ 3, f is adjacent to three faces and each adjacent face is neither
a 3-face nor a 4-face by the absence of 4-cycles in G. It implies that f gets 3 × 1 from its adjacent faces by (R1). Thus,
ω∗(f ) ≥ −3 + 1 × 3 = 0.
Case 6. d(f ) = 5.

Let f = [v1 · · · v5] and then ω(f ) = −1. Clearly, f is adjacent to at most one 3-face by (O1).

• We first assume that f is a nontriangular 5-face, which means that there is no 3-face adjacent to f . Thus, f sends nothing
to all its adjacent faces. Moreover, each fi cannot be a 5∗-face by Claim 5. We only have to deal with the following three
possibilities, depending on the value of n3(f ).

Subcase 6.1. n3(f ) = 5.
It means that vi is a 3-vertex for all i = 1, . . . , 5. If there exists a 6-face adjacent to f , then by Claim 8 we see that they

must be adjacent to each other in an unique way as depicted by Fig. 2. It is easy to see that there is one 4+-vertex appeared
on b(f ), which contradicts n3(f ) = 5. Thus, each face adjacent to f is either a nontriangular 5-face or a 7+-face by Claim 5
and the absence of 4-faces. Furthermore, we notice that f is adjacent to at most two nontriangular 5-faces which are not
adjacent by Claim 7. So f is adjacent to at least three 7+-faces such that each 7+-face is adjacent to f by a good common
(3, 3)-edge. Therefore, applying (R4a), we obtain that ω∗(f ) ≥ −1 + 3 ×

1
3 = 0.

Subcase 6.2. n3(f ) = 4.
Let v1 be a 4+-vertex and vj be a 3-vertex for all j = 2, 3, 4, 5. Clearly, v1 gives at least 1

2 to f by (R2), (R3) and (R6).
Moreover, f1 and f5 cannot be any 6-face by Claim 8. If d(f1) = 5 and d(f5) = 5, then d(fj) ∉ {5, 6} with j ∈ {2, 4} according
to Claims 7 and 9. Thus, for j ∈ {2, 4}, fj is a 7+-face by the absence of 4-faces and each fj is adjacent to f by a good common
(3, 3)-edge. By (R4a), we see that τ(f2 → f ) =

1
3 and τ(f4 → f ) =

1
3 . So we obtain that ω∗(f ) ≥ −1+

1
2 +

1
3 × 2 =

1
6 > 0.
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Nowwemay suppose that there exists at least one face of f1 and f5 which is a 7+-face, i.e., d(f1) ≥ 7. Then by (R2), (R3) and
(R6), we see that τ(v1 → f ) ≥

2
3 . Clearly, for each i ∈ {2, 3, 4}, fi is adjacent to f by a good common (3, 3)-edge. According

to Claims 7, 9 and 10, we see that there exists at least one face of f2, f3, f4 which is a 7+-face. Hence,ω∗(f ) ≥ −1+
1
3 +

2
3 = 0

by (R4a).
Subcase 6.3. n3(f ) ≤ 3.

Itmeans that there are at least twovertices of degree at least 4. By (R2), (R3) and (R6),wederive thatω∗(f ) ≥ −1+ 1
2×2 =

0.

• Now, we may suppose that f is a 5∗-face. It implies that f is adjacent to exactly one 3-face. Without loss of generality,
let f1 = [vv1v2] be such a 3-face that it is adjacent to f . By Claim 1, v ≠ vi for all i = 3, 4, 5. Since δ(G) ≥ 3, d(vi) ≥ 3
with i ∈ {1, 2, . . . , 5}. By Claim 14, for each j ∈ {2, 3, 4, 5}, we see that d(fj) ≥ 10 and thus both v3v4 and v4v5 are good
common (3+, 3+)-edges. By (R5), τ(f3 → f ) = 1 and τ(f4 → f ) = 1. Hence, ω∗(f ) ≥ −1 − 1 + 1 × 2 = 0 by (R1).

Case 7. d(f ) = 6.
Let f = [v1 · · · v6] and then ω(f ) = 0. If f is a nontriangular 6-face, then it is easy to deduce that ω∗(f ) = ω(f ) = 0

by (R1)–(R6). Now, we assume that f is a 6∗-face. Without loss of generality, assume f1 = [vv1v2] is a 3-face adjacent to
f . It is obvious that v ∉ b(f ) by Claim 1. Furthermore, f is adjacent to at most one 3-face by (O1). So f only needs to send
1 to the unique 3-face f1. Obviously, for each j ∈ {2, . . . , 6}, d(fj) ∉ {3, 4, 5, 6} by (O1), (O6), Claim 11 and (O3). Note that
v3v5 ∉ E(G) and v3v6 ∉ E(G) by (C1) and the absence of 4-cycles. This implies that each vi has at least one outgoing neighbor
which does not lie on b(f ). Since there is no orchid in G, f is incident to at least one 4+-vertex. It implies that n3(f ) ≤ 5.
Next, in each case, we will show that the total charge obtained by f is at least 1 and thus ω∗(f ) ≥ −1 + 1 = 0.
Subcase 7.1. n3(f ) = 5.

It means that there is exactly one 4+-vertex incident to f . If d(v2) ≥ 4, then τ(v2 → f ) ≥ 1 by (R2b2), (R3a), (R3b)
and (R6) since d(f2) ≠ 5. Otherwise, by symmetry, suppose some vi is a 4+-vertex where i ∈ {3, 4}. Denote v∗ be such a
4+-vertex. First, we observe that each adjacent face different from f1 is a 7+-face by the discussion above. If d(v∗) ≥ 5, then
τ(v∗

→ f ) ≥
5
6 by (R3) and (R6). Since v5v6 is a good common (3, 3)-edge, f5 sends 1

6 to f by (R4b). Thus, f gets at least
5
6 +

1
6 = 1 from v∗ and f5. If d(v∗) = 4, then the opposite face of f , which is incident to f by v∗, cannot be a 3-face or a 5-face

by (O3). So v∗ is incident to four 6+-faces and thus v∗ gives 1
2 to f by (R2c1). Consequently, f gets at least 1

2 +
1
6 × 3 = 1 by

(R4b).
Subcase 7.2. 0 ≤ n3(f ) ≤ 4.

It implies that there are at least two 4+-vertices incident to f . It is easy to see that every 5+-vertex sends at least 5
6 to f

by (R3) and (R6). Moreover, every 4-vertex vi sends at least 1
2 to f since the opposite face to f by vi cannot be any 3-face or

5-face by (O3). Hence, f receives at least 1
2 × 2 = 1 from its incident 4+-vertices.

In what follows, for simplicity, let p5(f ), p5∗(f ), and p6∗(f ) denote the number of nontriangular 5-faces, 5∗-faces, and
6∗-faces receiving a charge 1

3 , 1,
1
6 from f , respectively. Clearly, p5(f ) ≤ m5(f ), p5∗(f ) ≤ m5∗(f ) and p6∗(f ) ≤ m6∗(f ).

Case 8. d(f ) = 7.
Then ω(f ) = 1. Letm3(f ) be the number of 3-faces adjacent to f . Clearly,m3(f ) ≤ 1 by Claim 2.

• We first assume that f is a nontriangular 7-face. Note that d(fi) ≥ 5 since G contains no 4-faces. By (O2), m5∗(f ) = 0. By
(O4), p5(f ) ≤ 3. We will divide the argument into four subcases according to the value of p5(f ).

Subcase 8.1. p5(f ) = 3.
Suppose f1, f3, f5 are such three 5-faces that each of them takes a charge 1

3 from f . By (R4a), we see that all common
edges v1v2, v3v4 and v5v6 are good (3, 3)-edges. This implies that d(vi) = 3 with i ∈ {1, . . . , 6}. By Claim 11, one can
easily conclude that none of f2, f4, f6, f7 can be a 6∗-face. Thus, p6∗(f ) ≤ m6∗(f ) = 0. Consequently, we deduce that
ω∗(f ) ≥ 1 −

1
3 × 3 = 0 by (R4a).

Subcase 8.2. p5(f ) = 2.
We may suppose that fi is a 5-face which takes 1

3 from f . It means that d(vi) = d(vi+1) = 3 and vivi+1 is a good common
edge. Thus, fi−1 and fi+1 cannot be any 6∗-face by Claim 11. It follows immediately that p6∗(f ) ≤ 7 − (2 + 3) = 2 since
p5(f ) = 2. Consequently, we have that ω∗(f ) ≥ 1 −

1
3 × 2 −

1
6 × 2 = 0 by (R4).

Subcase 8.3. p5(f ) = 1.
Without loss of generality, let f1 be such a nontriangular 5-face that v1v2 is a good common (3, 3)-edge. This implies that

neither f2 nor f7 can be a 6∗-face. Thus, p6∗(f ) ≤ 7− 3 = 4. Hence, we have ω∗(f ) ≥ 1−
1
3 −

1
6 × 4 = 0 by (R4a) and (R4b).

Subcase 8.4. p5(f ) = 0.
If p6∗(f ) = 0, then according to (R4), we obtain thatω∗(f ) ≥ 1−0 = 1. Otherwise, let f1 be a 6∗-facewhich takes a charge

1
6 from f . By (R4b), f1 must be adjacent to f by a good common (3, 3)-edge or (3, 4)-edge, i.e., d(v1) = 3 and d(v2) ∈ {3, 4}.
It is easy to observe that f7 cannot be any 6∗-face because of Claim 13. Thus, p6∗(f ) ≤ 6 andω∗(f ) ≥ 1−

1
6 ×6 = 0 by (R4b).

• Nowwemay assumem3(f ) = 1, which implies that f is a 7∗-face and it is adjacent to exactly one 3-face. Without loss of
generality, let f1 = [vv1v2] be such a 3-face that f sends 1 to f1. By Claim 1,we notice that v does not lie on b(f ). Moreover,
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for each j ∈ {2, . . . , 7}, we deduce that fj is neither a 5-face nor a 6∗-face by (O5). It implies that f sends nothing to each
fj with j ∈ {2, . . . , 7}. Applying (R1), we deduce that ω∗(f ) ≥ 1 − 1 = 0.

Case 9. d(f ) = 8.
Clearly, ω(f ) = 2 and f cannot be adjacent to any 3-face by Claim 3. So we only need to consider the size of p5(f ) and

p6∗(f ) since they may take charge from f . It is easy to calculate that p5(f ) ≤ 6 by the fact that there is no sunflower in G
(and 2-connectivity of G). We have to consider the following possibilities by the value of p5(f ).
Subcase 9.1. p5(f ) = 6.

It implies that f is incident to at least seven 3-vertices. Thus, the remaining two faces adjacent to f , which are not
nontriangular 5-faces, cannot be any 6∗-faces by Claim 11. So ω∗(f ) ≥ 2 − 6 ×

1
3 = 0 by (R4).

Subcase 9.2. p5(f ) = 5.
One can easily notice that there is at most one of fi with i ∈ {1, . . . , 8} which is a 6∗-face because no 5-face can be

adjacent to a 6∗-face by Claim 11 again. Therefore, ω∗(f ) ≥ 2 − 5 ×
1
3 −

1
6 =

1
6 > 0.

Subcase 9.3. 0 ≤ p5(f ) ≤ 4.
By (R4), we derive that

ω∗(f ) ≥ 2 −
1
3
p5(f ) −

1
6
p6∗(f )

≥ 2 −
1
3
p5(f ) −

1
6
(8 − p5(f ))

=
2
3

−
1
6
p5(f )

≥
2
3

−
1
6

· 4

= 0.
Next, we will discuss several cases where d(f ) ≥ 10. Let f be such a 10+-face that f ′ is adjacent to f . We call f ′ special if

it takes charge 1 from f . By Fs(f ) denote the set of all special faces adjacent to f . Let Si be a face adjacent to f by an edge ei
for i = 1, 2. If e1 is not incident to e2, then we call S1 and S2 mutually disjoint. According to (R1) and (R5), we see that only
3-face and 5∗-face may take charge 1 from f , respectively. It implies that each special face is either a 3-face or a 5∗-face. We
first observe that:

Observation 1. If f is adjacent to two special faces by two consecutive edges uv and vw of b(f ), then τ(v → f ) ≥ 1.
Proof. Let fuv and fvw denote such two special faces adjacent to f by sharing the common edge uv and vw, respectively. It
suffices to consider the following three cases.
• Assume that fuv and fvw are both 3-faces. By the absence of 4-cycles, we see that d(v) ≥ 4 and thus τ(v → f ) ≥ 1 by

(R2a), (R3a) and (R6).
• Assume that fuv and fvw are both 5∗-faces. By Claim 6, d(v) ≥ 4. So by (R2c3.3), (R3c) and (R6), we derive that

τ(v → f ) = 1.
• Finally, w.l.o.g., we assume that fuv is a 3-face and fvw is a 5∗-face. By (R5), we know that the edge vw is a good common

(3+, 3+)-edge, which implies that d(v) ≥ 4. Applying (R2b2), (R3b) and (R6), we have that τ(v → f ) = 1.
This completes the proof of Observation 1. �

If there exist two special faces which share at least one common vertex v that lies on b(f ), i.e., let fi and fi+1 be such
two special faces that vi+1 ∈ V (fi) ∩ V (fi+1) and vi+1 ∈ V (f ), then we see that τ(vi+1 → f ) ≥ 1 by Observation 1 and f
sends at most 2 × 1 to fi and fi+1. It means that f takes charge 1 from vi+1 and then sends it to fi+1. Thus, we can consider
that fi+1 takes nothing from f . So in what follows, our main focus is on the special faces adjacent to f that are mutually
disjoint. For our convenience, let F∗

s (f ) denote the maximal subset of Fs(f ) such that any two faces in F∗
s (f ) are mutually

disjoint, and let F∗∗
s (f ) = Fs(f )\F∗

s (f ).We refer to faces in F∗
s (f ) and F∗∗

s (f ) as S∗-faces and S∗∗-faces, respectively. Obviously,

|F∗
s (f )| ≤


d(f )
2


. By Observation 1 and arguments above, we can assume that faces in F∗∗

s do not take charge from f .

Observation 2. If fi ∈ F∗
s (f ) then neither of fi−1 nor fi+1 can be a 5- or 6∗-face which takes charge from f by (R4).

Proof. W.l.o.g., suppose that fi ∈ F∗
s (f ) while fi−1 ∉ F∗

s (f ) and fi+1 ∉ F∗
s (f ). In order to prove Observation 2, it suffices to

show that fi−1 gets nothing from f if it is a 5- or 6∗-face.
First suppose that fi is a 3-face. If fi−1 takes a charge 1

3 or 1
6 , then by (R4a) and (R4b), we see that d(vi) = 4 and fi−1 is a

6∗-face. This contradicts (O3). Now we assume that fi is a 5∗-face. If d(vi) = 3, then fi−1 cannot be any nontriangular 5-face
by Claim 5 and any 6∗-face by Claim 11 and thuswe are done. Now suppose that d(vi) ≥ 4. Note that if fi−1 is a nontriangular
5-face, then f sends nothing to it because vi−1vi is not a (3, 3)-edge. If fi−1 is a 6∗-face, then we argue as follows: if vi is a
5+-vertex, then τ(f → fi−1) = 0 since vi−1vi is neither a (3, 3)-edge nor a (3, 4)-edge; if vi is a 4-vertex, then fi is the
opposite face of fi−1 by a 4-vertex vi, which contradicts (O3). This completes the proof of Observation 2. �

Corollary 5. p5(f ) + p6∗(f ) ≤ d(f ) − 2|F∗
s (f )|, where the equality holds only if d(f ) is even and |F∗

s (f )| =
d(f )
2 .
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Case 10. d(f ) = 10.
Then ω(f ) = 4 and |F∗

s (f )| ≤ 5. We divide the argument into the following three subcases according to the value of
|F∗

s (f )|.
Case 10.1. |F∗

s (f )| = 5.
Note that p5(f )+p6∗(f ) = 0 by Corollary 5. By definition, f is adjacent to five S∗-faces that aremutually disjoint. W.l.o.g.,

suppose that f1, f3, f5, f7, f9 are all these S∗-faces. If fj is an S∗-face for some fixed j ∈ {2, 4, 6, 8, 10}, then τ(f → fj) = 1,
while τ(vj → f ) ≥ 1 and τ(vj+1 → f ) ≥ 1 by Observation 1. Therefore, ω∗(f ) ≥ 4 − 1 × 5 − |F∗∗

s (f )| + 2|F∗∗
s (f )| =

−1 + |F∗∗
s (f )| ≥ 0. In what follows, for each j ∈ {2, 4, 6, 8, 10}, we suppose that fj is not an S∗-face. Since G does not

contain lotus, there exists at least one 4+-vertex which lies on b(f ), say v1. If v1 is a 5+-vertex, then v1 sends at least 1 to
f by (R3) and (R6). If v1 is a 4-vertex, then we have two cases: If d(v10) = 3, then f10 is not a nontriangular 5-face since f9
is an S∗-face. So τ(v1 → f ) = 1 by (R2b2), (R2c2) and (R2c3.3); otherwise, d(v10) ≥ 4 and f receives at least 2

3 × 2 =
4
3

from v1 and v10 in total by (R2b1), (R2b2), (R2c2), (R2c3.2), (R2c3.3), (R3) and (R6). Thus, in each case, we always have that
ω∗(f ) ≥ 4 − 1 × 5 + 1 = 0.
Case 10.2. |F∗

s (f )| = 4.
It implies that f is adjacent to exactly four S∗-faces by four common edges which are disjoint each other. Denote Si be

such an S∗-face adjacent to f by a common edge ei, where i = 1, 2, 3, 4. Note that ei cannot be incident to ej for each pair
(i, j) ⊂ {1, . . . , 4}. Thus, it follows that there exist two vertices vj, vk in V (f ) which are not incident to any edge ei with
i ∈ {1, . . . , 4}. W.l.o.g., assume j < k.

First we consider the case that k = j + 1. Namely, vjvk is an edge of b(f ). W.l.o.g., we assume that vjvk = v10v9
such that f1, f3, f5, f7 are S∗-faces and f9 is not. By Observation 2, we assert that none of f2, f4, f6, f8, f10 gets charge from
f if it is a 5- or 6∗-face. It follows that p5(f ) + p6∗(f ) ≤ 1. If p5(f ) + p6∗(f ) = 0 then we are done since ω∗(f ) ≥

4 − 1 × 4 = 0. Otherwise, suppose that f9 is a nontriangular 5-face or a 6∗-face which gets a charge 1
3 or 1

6 from f ,
respectively. It follows that neither f8 nor f10 is an S∗-face. If fj is an S∗-face for some j = 2, 4, 6, then similarly we have
that ω∗(f ) ≥ 4 − 1 × 4 −

1
3 − |F∗∗

s (f )| + 2|F∗∗
s (f )| = |F∗∗

s (f )| −
1
3 ≥

2
3 . So in the following, we assume that fj is not an

S∗-face for each j = 2, 4, 6. By the absence of lotus in G, there exists at least one vertex in V (f ) whose degree is at least 4.
Let v∗ be such a 4+-vertex. W.l.o.g., we have two subcases below, according to the situation of v∗.

• If v∗
∈ {v1, . . . , v8}, then by (R2b1), (R2b2), (R2c2), (R2c3.2), (R2c3.3), (R3) and (R6) it follows that τ(v∗

→ f ) ≥
1
3 .

Thus, in each case, we always have that ω∗(f ) ≥ 4 − 1 × 4 −
1
3 +

1
3 = 0.

• Assume that v∗
= v9. Namely, d(v9) ≥ 4. Moreover, we may further assume that f9 is a 6∗-face and d(v9) = 4 and

d(v10) = 3 for otherwise f9 gets nothing from f by (R4a) or (R4b). Thus v9 sends at least 1
2 to f according to (R2c1), (R2c2)

and Claim 11. This yields ω∗(f ) ≥ 4 − 1 × 4 −
1
3 +

1
2 =

1
6 > 0.

Now we suppose that k > j + 1. It means that vkvj ∉ b(f ). In this case, it is easy to deduce that p5(f ) + p6∗(f ) = 0 by
Observation 2. In other words, f only sends charges to its S∗-faces. Therefore, ω∗(f ) ≥ 4 − 1 × 4 = 0 by (R1) and (R5).
Case 10.3. 0 ≤ |F∗

s (f )| ≤ 3.
If |F∗

s (f )| = 3, that by Observation 2 we have that p5(f )+ p6∗(f ) ≤ 10− (3+ 4) = 3. So, ω∗(f ) ≥ 4− 3× 1−
1
3 × 3 = 0

by (R4). If 0 ≤ |F∗
s (f )| ≤ 2, then by Observation 2, we have that p5(f ) + p6∗(f ) ≤ 10 − 2|F∗

s (f )| and therefore,
ω∗(f ) ≥ 4 − |F∗

s (f )| −
1
3 (10 − 2|F∗

s (f )|) =
2
3 −

1
3 |F

∗
s (f )| ≥

2
3 −

1
3 × 2 = 0.

Case 11. d(f ) = 11.
Clearly, ω(f ) = 5 and |F∗

s (f )| ≤ 5. If |F∗
s (f )| = 5, then p5(f ) + p6∗(f ) ≤ 11 − (5 + 6) = 0. So ω∗(f ) ≥ 5 − 1 × 5 = 0.

If 0 ≤ |F∗
s (f )| ≤ 4, then p5(f ) + p6∗(f ) ≤ 11 − 2|F∗

s (f )| by Observation 2. Then ω∗(f ) ≥ 5 − |F∗
s (f )| −

1
3 (11 − 2|F∗

s (f )|) =

4
3 −

1
3 |F

∗
s (f )| ≥ 0.

Case 12. d(f ) ≥ 12.
By Observation 2, we have that p5(f ) + p6∗(f ) ≤ d(f ) − 2|F∗

s (f )|. Moreover, |F∗
s (f )| ≤ ⌊

1
2d(f )⌋. Thus, we have that

ω∗(f ) ≥ (d(f ) − 6) − |F∗

s (f )| −
1
3
(d(f ) − 2|F∗

s (f )|)

=
2
3
d(f ) − 6 −

1
3
|F∗

s (f )|

≥
2
3
d(f ) − 6 −

1
3

·
d(f )
2

=
1
2
d(f ) − 6

≥
1
2

× 12 − 6

= 0.

Therefore, we complete the proof of Theorem 1 if G is 2-connected.
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2.2. The case G is not 2-connected

Suppose now that G is not a 2-connected plane graph andwewill construct a 2-connected plane graph G∗ with δ(G∗) ≥ 3
having neither 4-cycles nor 9-cycles and satisfying structural properties (C1) to (C5). This obviously contradicts the result
just established before.

We remark that the following proof is stimulated by the technique used in [3].
Let B be an end block of Gwith the unique cut-vertex x. Let f be the outside face of G. Notice that dB(x) ≥ 2 and dB(v) ≥ 3

for each v ∈ V (B) \ {x}. Choosing another vertex y of B such that y ≠ x and y lies on the boundary of B. W.l.o.g., assume
that x and y are both belonging to b(f ). Then we take ten copies of B, i.e., Bk with k = 1, . . . , 10. In each copy Bk, the vertices
corresponding to x and y are denoted by xk and yk, respectively. Then one can embed Bk, k = 1, . . . , 10, into f in the following
way: first, let B = B1. Next, for each k = 2, . . . , 10, consecutively embed Bk into f by identifying xk with yk−1. Finally, identify
y10 with a vertex u ∈ V (f ) \ V (B). Then the first resulting graph, denoted by G1.

Obviously, in the processing of constructing G1, we confirm that there are no new adjacent cycles established.
Furthermore, no 4-cycles and 9-cycles are formed. Thus, it is easy to deduce that G1 satisfies the following structural
properties.

(A1) Fewer end blocks than G;
(A2) The minimum degree is at least 3;
(A3) Neither 4-cycles nor 9-cycles;
(A4) A 5-cycle or a 6-cycle is adjacent to at most one 3-cycle;
(A5) A 5∗-cycle is neither adjacent to a 5∗-cycle normally, nor adjacent to an i-cycle with i ∈ {7, 8};
(A6) A 6∗-cycle is not adjacent to a 6-cycle;
(A7) A nontriangular 7-cycle is not adjacent to two 5-cycles which are normally adjacent;
(A8) A 7∗-cycle is neither adjacent to a 5-cycle nor a 6∗-cycle.

Furthermore, we confirm that G1 also satisfies the following two structural properties:

(P1) G1 has neither orchid, nor sunflower, nor lotus;
(P2) A 6∗-cycle is not incident to an i-cycle C with i ∈ {3, 5}, where C is opposite to such a 6∗-cycle by a 4-vertex.

(P1) For some k ∈ {2, . . . , 10}, notice that we just identify some vertex xk with yk−1. It implies that any new cycle, which
is not completely belong to some Bk, must be an 11+-cycles, i.e., C∗

= x1 · · · x10u · · · x1. Thus, any orchid, sunflower, or lotus
cannot be established.

(P2) Assume to the contrary that G1 contains a 6∗-cycle, denoted by C∗

6 , which is incident to a 3-cycle C3 or a 5-cycle C5 by
a 4-vertex v∗. Clearly, v∗ must be equal to u or some vertex xk with k ∈ {2, . . . , 10}. However, dG1(u) = dB10(u)+dG\B1(u) ≥

2+3 = 5 or dG1(xk) = dBk−1(xk)+dBk(xk) ≥ 3+2 = 5 for all k ∈ {2, . . . , 10}. We always get a contradiction to dG1(v
∗) = 4.

Now, if G1 is 2-connected, then we well done. Otherwise, we may repeat the process described above and finally obtain
a desired G∗.

Thus, we complete the proof of Theorem 1. �
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