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Abstract

For any homomorphism V on the space of symmetric functions, we introduce an operation
that creates a q-analog of V . By giving several examples we demonstrate that this quantization
occurs naturally within the theory of symmetric functions. In particular, we show that the Hall–
Littlewood symmetric functions are formed by taking this q-analog of the Schur symmetric
functions and the Macdonald symmetric functions appear by taking the q-analog of the Hall–
Littlewood symmetric functions in the parameter t. This relation is then used to derive recurrences
on the Macdonald q; t-Kostka coe8cients.

R	esum	e

Pour un homomorphisme V sur l’espace des fonctions sym;etriques, nous pr;esentons une
op;eration qui cr;ee un q-analogue de V . En donnant plusieurs exemples nous d;emontrons que
cette quantization se produit naturellement dans la th;eorie de fonctions sym;etriques. En par-
ticulier, nous prouvons que les fonctions sym;etriques de Hall–Littlewood sont constitu;ees en
prenant ce q-analogue des fonctions sym;etriques de Schur et les fonctions sym;etriques de Mac-
donald apparaissent en prenant le q-analogue des fonctions sym;etriques de Hall–Littlewood dans
le param=etre t. Cette relation est alors employ;ee pour d;eriver des r;ecurrence sur les coe8cients
Macdonald q; t-Kostka. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The Hall–Littlewood and Macdonald symmetric functions are two examples of
families of symmetric functions that depend on a parameter q such that setting this
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parameter q equal to 0 yields one class of symmetric functions which is not a product
of generators and setting the parameter q equal to 1 yields a multiplicative basis. There
are other classes of symmetric functions with the same property, and in this article we
will show that practically any of these families are instances of the same q-twisting of
the symmetric function found by setting q=0.
This remarkable fact has lead to a completely elementary proof of the polynomiality

of the q; t-Kostka coe8cients [4] and in this article we use the very same observation
to derive a combinatorial recurrence on these coe8cients as well as algebraic formulas
for operators that add a column to the partition indexing a Macdonald symmetric
function.
The Grst section of this article will introduce some necessary notation and the deG-

nition of this q-analog. In the second section we give several examples where it arises.
Some examples will be nothing more than showing that Ṽ q for some V is a for-
mula that is well known in the literature. Other examples present some completely
new equations, the most important of which will concern the relation of the Hall–
Littlewood symmetric functions to the Macdonald symmetric functions. This section
will show that this single q-analog appears in the creation of several diJerent classes
of Schur positive symmetric functions.
In the third section we derive some formulas related to an operator that adds a

column to the Hall–Littlewood symmetric functions. The q-analog of this operator
adds a column to the Macdonald symmetric functions. In the fourth section, these
equations are used to give a formula for the action of this operator on the Schur basis
giving a combinatorial rule for computing the Macdonald symmetric functions (i.e. a
‘Morris-like’ recurrence for the q; t-Kostka coe8cients).

2. Notation

A partition of n is a sequence of non-negative integers �=(�1¿�2¿�3¿ · · ·) such
that

∑
i �i=n. The length of a partition is the largest index i such that �i is non-

zero, and it will be denoted here by ‘(�). A partition will be drawn as a sequence of
rows of boxes aligned at the left edge with �i cells in the ith row. We will use the
French convention and draw these diagrams with the largest row on the bottom and
the smallest row on the top. The conjugate partition �′ is the sequence whose ith entry
is the number of cells in the ith column of the diagram for �.
The partition will be sometimes be identiGed with its diagram in the sort of language

that is used. For instance, the operations of adding rows or columns to partitions
indexing bases for the symmetric functions are important here. The notation (m; 
) is
used to represent the sequence 
 with a part of size m prepended, which will be a
partition as long as 
16m. The notation 1m|
 will be used to represent the partition
(
1 + 1; 
2 + 1; : : : ; 
m + 1) (as long as ‘(
)6m).
Let � be the space of symmetric functions with the standard bases for this space, h�

homogeneous, e� elementary, m� monomial, f� forgotten, p� power, and s� the Schur
symmetric functions deGned as they are in [M]. The involution ! that sends pk to
(−1)k−1pk relates these bases by !(h�)=e�; !(m�)=f� and !(s�)=s�′ . The standard
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inner product on this space determines the dual bases

〈p�; p
=z
〉=〈h�; m
〉=〈e�; f
〉=〈s�; s
〉=��
; (1)

where z�=
∏
i¿1 i

ni(�)ni(�)! with ni(�) equal to the number of parts of size i in �, and
we have set ���=1 and ��
=0 if � �= 
.

For any element f of �, let f⊥ be the operation that is dual to multiplication by
f with respect to the standard inner product. By deGnition we have that for any dual
bases {a�}� and {b�}�, the action of f⊥ on another symmetric function g is given by
the formula

f⊥g=
∑
�

〈g; fa�〉b�: (2)

‘Plethystic’ notation is a device for expressing the substitution of the monomials of
one expression in a symmetric function. Assume that E is a formal series in a set of
variables x1; x2; : : : with possible special parameters q and t. For k¿1, set pk [E] to be
E with xi replaced by xki and q and t replaced by qk and t k , respectively, that is

pk [E(x1; x2; : : : ; q; t)]=E(xk1 ; x
k
2 ; : : : ; q

k ; t k): (3)

For an arbitrary symmetric function P; P[E] will represent the formal series found by
expanding P in terms of the power symmetric functions and then substituting pk [E]
for pk . More precisely, if the power sum expansion of the symmetric function P is
given by P=

∑
� c�p� then P[E] is given by the formula

P[E]=
∑
�

c�p�1 [E]p�2 [E] · · ·p�‘(�) [E]: (4)

The symmetric functions in the inGnite set of variables x1; x2; x3; : : : will be denoted
by �X . � and �X are isomorphic and in this exposition we will identify the two spaces
when it is convenient. In plethystic notation, the isomorphism that identiGes the two
spaces is given by f 	→f[X ] where X =x1 + x2 + x3 + · · · since under this map pk is
sent to xk1 +x

k
2 +x

k
3 +· · ·. Also use the notation Xn=x1+x2+· · ·+xn to represent when a

symmetric function being evaluated a Gnite set of variables. For sets of variables using
other letters we use a similar convention.
The symbol  =

∑
n¿0 hn will represent a special generating function, and we will

use the plethystic notation for symmetric functions with this expression as well with
the following identities.

 [X + Y ]= [X ] [Y ]; (5)

 [X ]=
∏
i

1
1− xi ; (6)

 [XY ]=
∑
�

s�[X ]s�[Y ]: (7)
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Operators that have the property that they add a row or a column to the partition
indexing a symmetric function will be known as ‘creation operators’. The creation
operators that will be used repeatedly are those that add a row to the Schur symmetric
functions (due to Bernstein, see [20, p. 69], [15, p. 96]) and the Hall–Littlewood
symmetric functions (due to Jing, see [2,5] or [15, p. 238]). In the third section,
the operator introduced in [18] that adds a column to the partition indexing a Hall–
Littlewood symmetric function will be developed further.
DeGne the following involution on the space Hom(�;�) that is a useful tool for

deriving identities within the theory of symmetric functions. Let V be an element of
Hom(�;�) and P∈�. We deGne the Rip of V by the formula

SVP[X ]=VYP[X − Y ]|Y=X : (8)

It seems to arise naturally when one considers the sorts of operators that will concern
us here (see [18] and [19]).
The degree of a symmetric function P∈� is the highest power of z in P[zX ] and

will be denoted by deg(P). If P[zX ]=zdeg(P)P[X ] then we will say that P is of ho-
mogeneous degree.
Use this involution here to deGne a q-twisting of a symmetric function operator.

Let V once again be an element of Hom(�;�) and let Fq be deGned by FqP[X ]=
P[X (1 − q)]. Our q-analog is deGned when it acts of the symmetric function P∈
� by the formula

Ṽ qP[X ]=VYP[qX + (1− q)Y ]|Y=X = SVFqP[X ]: (9)

It is easily seen that this q-analog has the following fundamental property.

Remark 1. Let V be an element of Hom(�;�) and create the q-twisting of this op-
erator from formula (9), Ṽ q, and act this new operator on a symmetric function P[X ]
to create an expression such as

Ṽ qP[X ] (10)

This q-analog has the property that when q=0, the expression becomes

VP[X ] (11)

and if q=1, then it reduces to the product

V (1)P[X ] (12)

This paper is concerned with generalizations of the standard bases, the
Hall–Littlewood and Macdonald symmetric functions, which depend on additional pa-
rameters q and t. There are two important scalar products on the symmetric func-
tions related to these bases. They are deGned by their values on the power symmetric
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basis.

〈p�; p
〉t=��
z�
‘(�)∏
i=1

1− t�i ; (13)

〈p�; p
〉qt=��
z�
‘(�)∏
i=1

(1− q�i)(1− t�i): (14)

The Macdonald symmetric functions H
[X ; q; t] are deGned by the following three
conditions:

1. 〈H�[X ; q; t]; H
[X ; q; t]〉qt=0 if � �= 
.
2. FtH
[X ; q; t]=

∑
�6
 c�
m�[X ] for suitable coe8cients c�
 and the sum is over all

partitions � that are smaller than 
 in the standard dominance order.
3. 〈H
[X ]; hn[X ]〉= tn(
) where n(
)=

∑
i (i − 1)
i.

The expansion of the H
[X ; q; t] basis in the Schur basis for the symmetric functions
deGnes the coe8cients K�
(q; t), that is H
[X ; q; t]=

∑
��|
| K�
(q; t)s�[X ].

The Hall–Littlewood basis is deGned similarly with respect to the 〈; 〉t scalar product;
simply stated H
[X ; t]=H
[X ; 0; t].
The symmetric functions H
[X ; q; t] and H
[X ; t] are the two families of symme-

tric functions that will interest us the most here. A symmetric function with the
property that when expressed in terms of the Schur basis their coe8cients are poly-
nomials in q and t with non-negative coe8cients will be called Schur positive. The
Macdonald and Hall–Littlewood functions are just two examples of families with this
property.

3. Examples

3.1. Schur symmetric functions I

In [20] an operator attributed to Bernstein that adds a row to the Schur function
is given by Sm=

∑
i¿0 (−1)ihm+ie⊥i . The formula has a very convenient form when

expressed in terms of plethystic notation. Let P[X ] be a symmetric function in the X
variables. DeGne a generating function of operators given by

S(z)P[X ]=P
[
X − 1

z

]
 [zX ]: (15)

Now for any m∈Z, set SmP[X ]=S(z)P[X ]|zm . If m¿
1, then it easily follows that
Sms
[X ]=s(m;
)[X ]. Sm is a creation operator for the Schur basis since we have the
formula

S
1S
2 · · · S
‘(
)1=s
[X ]: (16)



836 M. Zabrocki / Discrete Mathematics 256 (2002) 831–853

Now if we set H (z)= S̃(z)q and Hq
m=H (z)|zm , then this is a q-analog of the operator

Sm and we may calculate that

H (z)P[X ] = S(z)P[qX + (1− q)Y ]|Y=X

= P
[
qX + (1− q)

(
X − 1

z

)]
 [zX ]

= P
[
X − 1− q

z

]
 [zX ]: (17)

Remarkably, this is the formula for the Hall–Littlewood creation operator of Jing [5]
in the notation used by Garsia [2]. These operators have the property that

Theorem 2 (Jing [5]). Let Hq
m= S̃mq. Then

Hq

1H

q

1 · · ·Hq


‘(
)1=H
[X ; q]: (18)

The fact that H
[X ; 0]=s
[X ] and H
[X ; 1]=h
[X ] follows from Remark 1.

3.2. Schur symmetric functions II

For any sequence of integers &=(&1; &2; : : : ; &n), let x& represent the monomial x&11 x
&2
2

· · · x&nn . We say that & is a dominant weight if &1¿&2¿ · · ·¿&n.
The symmetric group Sn acts on any polynomial in the Xn variables by permuting

their indices. For any '∈Sn, set (' to be the sign of the permutation. Also set �=
(n−1; n−2; : : : ; 1; 0). Then deGne for any polynomial f in the xi variables a symmetri-
zation operator )n(f)=J (f)=J (1) where

J (f)=
∑
'∈Sn

(''(x�f): (19)

When � is a partition, )n sends x� to the Schur function s�[Xn]. When � is any dominant
weight, set s�(Xn)=)n(x�) to be the resulting Laurent polynomial.
Let + be a sequence of positive integers whose sum is n (a composition) and deGne

the set of ordered pairs Roots+={(i; j) : 16i6+1 + +2 + · · ·+ +r¡j6n for some r}.
Consider the following formal power series given by the formula

H
+(Xn; q)=)n

x
 ∏
(i; j)∈Roots+

(1− qxi=xj)−1

 : (20)

This formal series has an expansion in terms of the Schur functions indexed by all
dominant integral weights. DeGne K�
+(q) as the coe8cient of s�(Xn) in H
+(Xn; q), so
that

H
+(Xn; q)=
∑
�

K�
+(q)s�(Xn); (21)
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where the sum is over all dominant integral weights �. The K�
+(q) are known as the
generalized or parabolic Kostka polynomials. For a more complete exposition of these
polynomials we refer the reader to [16], or [6].
Now consider a composition of the Bernstein Schur function operators S/=S/1S/2

· · · S/‘(/) and deGne Hq
/ = S̃/q. By a calculation similar to (17), one may show that

Hq
/ P[X ]=P[X − (1− q)Z∗] [ZX ]

∏
16j¡i6‘(/)

1− zi=zj

∣∣∣∣∣∣
z
/1
1 z

/2
2 ···z/‘(/)‘(/)

; (22)

where Z∗=
∑‘(/)

i=1 1=zi.
In work with Shimozono [17], we demonstrated that Hq

/ is an operator with in-
teresting properties related to the generalized Kostka coe8cients. In particular, they
can be used as generating functions for the generalized Kostka coe8cients. They are
also operators which act on symmetric functions and can be used to build a family of
symmetric functions.

Theorem 3 (Shimozono and Zabrocki [17]). Let + be a composition of k and 
∈Zk ,
set 
(i)=(
+1+···++i−1 ; : : : ; 
+1+···++i). For any /∈Z‘ set H/= S̃/q where S/=S/1 · · · S/‘(/) ,
then we have

Hq

(1)H

q

(2) · · ·Hq


(‘) =
∑
�

K�
+(q)H
q
� ; (23)

where the sum is over all dominant weights �. In particular, when this operator is
applied to the symmetric function 1, we arrive at a class of symmetric functions and
may set

H
+[X ; q] :=H
q

(1)H

q

(2) · · ·Hq


(k)1=
∑
�

K�
+(q)s�[X ]; (24)

where the sum is over all partitions �.

In addition, these operators also seem to be fundamentally related to the new class
of symmetric functions referred to as ‘atoms’ A(k)� [X ; q] (see [9,10,11]). In particular,
when the partition indexing the operator is a rectangle, it was conjectured that Hq

(‘k+1−‘)
is a creation operator for this class of symmetric functions.
By Remark 1, the coe8cients 〈H
+[X ; q]; s�[X ]〉 =K�
+(q) have the property that

when q=1, they are the Littlewood–Richardson coe8cients c�
(1)
(2)···
(k) and when q=0,
the K�
+(0)=1 if 
=� and 0 otherwise. It is conjectured that the coe8cients K�
+(q)
are polynomials in q with non-negative integer coe8cients.

3.3. Homogeneous creation operator

Multiplication by hk is an operator that adds a row to the homogeneous symmetric
functions. The q-analog of this operator is once again hk and so this is not particularly
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interesting. However, in [19] we gave a formula for an operator that adds a column to
the homogeneous symmetric functions and in [18] we gave a combinatorial description
of the action of this operator on the Schur function basis. Let H1m be a family of
operators with the property that

H1�1H1�2 · · ·H1�‘(�) 1=h�′ [X ]: (25)

The q-twisting of this operator is another example where this q-analog appears natu-
rally to produce a family of Schur positive symmetric functions. It develops that H̃1m

q

is an operator that adds a column to the symmetric functions (q; q)�h�[X=1−q], where
(q; q)k=(1−q)(1−q2) · · · (1−qk) and (q; q)�=(q; q)�1 (q; q)�2 · · · (q; q)�‘(�) . This family
has the property that when q=1 the symmetric functions become h1|�| and when q=0
they become h�.

Theorem 4. Let H1m be an operator with the property that H1mh�[X ]=h1m|�[X ] for
‘=‘(�)6m. Then we have

H̃1�1
qH̃1�2

q · · · H̃1�‘
q1=(q; q)�′h�′

[
X

1− q
]
: (26)

Proof.

H̃1m
q
(
(q; q)�h�

[
X

1− q
])

=(q; q)�HY
1m

(
h�

[
qX + (1− q)Y

1− q
])∣∣∣∣

Y=X
: (27)

Since the summation formula for a homogeneous symmetric function in two sets of
variables is given as hm[X+Y ]=

∑m
i=0 hi[X ]hm−i[Y ], then for a partition �; h�[X+Y ]=∏‘(�)

n=1

∑�n
i=0 hi[X ]h�n−i[Y ]. It follows that (27) reduces to:

= (q; q)�
m∏
n=1

�n∑
i=0

hi

[
qX
1− q

]
h�n−i+1[X ]

= (q; q)�
m∏
n=1

(
�n+1∑
i=0

hi

[
qX
1− q

]
h�n−i+1[X ]− h�n+1

[
qX
1− q

])

=(q; q)�
m∏
n=1

h�n+1

[
X

1− q
]
− q�n+1h�n+1

[
X

1− q
]

=(q; q)�
m∏
n=1

(1− q�n+1)h�n+1

[
X

1− q
]

=(q; q)1m|�h1m|�

[
X

1− q
]
: (28)
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There are elementary proofs that the functions (q; q)�h�[X=1− q] are Schur positive.
Once again we have a case of a Schur positive q-analog arising from a Schur positive
family of symmetric functions h�[X ]. Remark 1 implies that the limit as q goes to 1
of these symmetric functions is h1n [X ] when � is a partition of n and when q=0 we
have that they reduce to h�′ [X ].

3.4. Macdonald’s operators

Macdonald introduced operators Drn (see [15, p. 315]) such that the Macdonald
polynomials P�(X ; q; t) are characterized as eigenfunctions of this family of operators.
What we will show is that the Macdonald operators are the q-twisting of the same
operators with q set equal to 0.
Let Txi be an operator on polynomials with the property TxiP[Xn]=P[X−xi]. Consider

the operator

Drn(t)=
∑

I⊆{1;:::; n}
AI (Xn; t)

∏
i∈I

Txi ; (29)

where AI (Xn; t)= t(
r
2 )
∏
i∈I; j =∈I (txi − xj)=(xi − xj) and the sum is over all subsets I of

size r.
Now deGne Drn(q; t)= ]Drn(t)q, then calculate that

Drn(q; t)P[Xn] =
∑

I⊆{1;:::; n}
|I |=r

AI (Yn; t)
∏
i∈I

TyiP[qXn + (1− q)Yn]|Yn=Xn

=
∑

I⊆{1;:::; n}
|I |=r

AI (Yn; t)P[Xn − (1− q)XI ]: (30)

If we set Tq; xiP[Xn]=P[Xn − (1− q)xi]= T̃xi q, then

Drn(q; t)=
∑

I⊆{1;:::;n}
|I |=r

AI (Xn; t)
∏
i∈I

Tq; xi (31)

and these are the operators Drn as they are deGned in [15]. As was presented in this
reference, set Dn(u; q; t)=

∑n
r=0 u

rDrn(q; t).
Consider again the Bernstein operators, Sm, as they were deGned in equation (15) and

also consider S̃m=!Sm!=(−1)mS(−z)|zm . From these operators create a q; t analog

by applying this parameter deformation twice. Set D̃m=
˜̃̃
Sm

q1=t

and D̃
∗
m=
˜̃Smt1=q .
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A simple calculation yields that

D̃mP[X ]=P
[
X +

(1− q)(1− 1=t)
z

]
 [−zX ]|zm (32)

and

D̃∗
mP[X ]=P

[
X − (1− 1=q)(1− t)

z

]
 [zX ]|zm : (33)

These families of operators were studied in [3] and more extensively in [1] to show
the polynomiality of the q; t-Catalan numbers. In particular, when m=0 it is known
that these operators are related to the operators D1

n and that they have the family
H
[X ; q; t] as eigenfunctions. Theorem 1.2 of [3] was the following result (translated
on the H
[X ; q; t] basis).

Theorem 5 (Garsia et al. [3]). For 
 a partition of n, we have

D̃0H
[X ; q; t]=

(
1− (1− 1=t)

∏
i¿1

t−i(1− q
i)
)
H
[X ; q; t]; (34)

D̃∗
0H
[X ; q; t]=

(
1− (1− t)

∏
i¿1

ti(1− q−
i)
)
H
[X ; q; t]: (35)

3.5. Hall–Littlewood creation operator

Consider now an operator that adds a column to the Hall–Littlewood symmetric
functions H�[X ; t]. One such operator was introduced in [19] where the combinatorial
action on the Schur function basis was discussed and some explicit formulas were
presented. We will discuss some of these operators in more detail in the following
section. For now we present the following theorem.

Theorem 6. Let � be a partition such that ‘=‘(�)6m. Any operator Ht
1m with the

property Ht
1mH
[X ; t]=H1m|�[X ; t] satis<es the equation

H̃ t
1�1
qH̃ t

1�2
q · · · H̃ t

1�‘
q=H�′ [X ; q; t]: (36)

The most elementary proof of this theorem can be seen in [4]. It is selfcontained and
uses nothing more than the identities in the original paper of Macdonald. We present
here a short proof that follows by demonstrating that if the theorem is true for one
such operator Ht

1m , then it is true for all such operators.
Some of the Grst proofs of the polynomiality of the q; t-Kostka coe8cients used

operators of this type to show that the q; t-Kostka polynomials satisGed recurrences
that did not have denominators. Almost any of the operators given by Kirillov and
Noumi [7,8] and Lapointe and Vinet [12,13] are of this type. We need only one
example and the following lemma.



M. Zabrocki / Discrete Mathematics 256 (2002) 831–853 841

Lemma 7. Let � be a partition such that ‘(�)6m. Assume that there exists some
operator Ht

1m such that

Ht
1mH�[X ; t]=H1m|�[X ; t] (37)

and

H̃ t
1m
qH�[X ; q; t]=H1m|�[X ; q; t]: (38)

Then for any operator H ′
1m
t that satis<es Eq. (37) will also satisfy Eq. (38).

Proof. It follows from the deGnition of the Macdonald symmetric functions and the
property that H
[X ; t; q]=!H
′ [X ; q; t] that we have the triangularity relation H
[X (1−
q); q; t]=

∑
�¿
 a�
(q; t)s�[X ]. Since H
[X ; t]=

∑
�¿
 K�
(t)s�[X ], then there exist co-

e8cients b�
(q; t) such that H
[(1− q)X ; q; t]=
∑

�¿
 b�
(q; t)H�[X ; t].
Consider the expansion of H
[X + Y ; q; t]=

∑
/⊆
 H
=/[X ; q; t]H/[Y ; q; t] which may

be seen as a transformation of formula (7:9) on p. 345 of [15].
Since our operator Ht

1m adds a column of size m to H/[X ; t] and H̃ t
1m
q adds a column

to H
[X ; q; t], then H1m|
[X ; q; t] is given by the formula

H̃ t
1m
qH
[X ; q; t] =

∑
�⊆


H
=�[qX ; q; t]Ht
1m H�[(1− q)X ; q; t]

=
∑
�⊆


H
=�[qX ; q; t]
∑
/¿�

b�/(q; t) Ht
1m H/[X ; t]

=
∑
�⊆


H
=�[qX ; q; t]
∑
/¿�

b�/(q; t)H1m|/[X ; t]: (39)

The right-hand side of this expression is independent of the operator that is used to
derive it, therefore absolutely any operator H ′t

1m that has the property that H ′t
1mH
[X ; t]=

H1m|
[X ; t], also has the property that H̃ ′t
1m
q adds a column to the Macdonald symmetric

functions H
[X ; q; t].

To prove the theorem it is necessary to produce at least one operator that satis-
Ges the property of the lemma. Fortunately, this is relatively easy since practically
any in the development in [7,8,12,13] such that one can set q=0 without needing to
take a limit satisGes the properties of Lemma 7 (once transformed to the H
[X ; q; t]
basis).
Consider Expression 3 of [13]. Let DrI (u; q; t) be the Macdonald operator of Eq. (31)

that acts only on the variables xi for i in the set I . A formula for an operator that adds
a column of size m onto the J
[X ; q; t] : =H
[X (1− t); q; t] basis is given by

B(3)
m (q; t)=

∑
|I |=m

m∑
r=0

t−rxI
∏
i∈I
j =∈I

xi − xj=t
xi − xj D

r
I (−t; q; t); (40)
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where xI here represents
∏
i∈I xi. It is easy to demonstrate by acting on an arbitrary

symmetric function that

B(3)
m (q; t)= ]B(3)

m (0; t)q: (41)

Let Ft be an operator that sends the symmetric function H
[X ; q; t] to the symmet-
ric function J
[X ; q; t]. More precisely, for an arbitrary symmetric function P[X ] set
FtP[X ]=P[X (1− t)] and denote the inverse of this operator F−1

t . Since B(3)
m (q; t) adds

a column of size m to the J
[X ; q; t] basis, F−1
t B(3)

m (q; t)Ft is an operator that adds a
column to the H
[X ; q; t] basis.
When q=0 in the operator B(3)

m (q; t) it becomes an operator that adds a column to
the H
[X (1− t); t] basis. That is, we have

B(3)
m (0; t)H
[X (1− t); t]=H1m|
[X (1− t); t]: (42)

Since FtH
[X ; t]=H
[X (1− t); t], this implies F−1
t B(3)

m (0; t)Ft is an operator that adds
a column to the H
[X ; t] basis.
To demonstrate the theorem, it remains to show that the q-twist of F−1

t B(3)
m (0; t)Ft

is exactly the operator F−1
t B(3)

m (q; t)Ft . This follows from the fact that conjugation by
Ft commutes with the q-twisting for any symmetric function operator.

Lemma 8. For V ∈Hom(�;�) we have

F−1
t Ṽ qFt= ](F−1

t VFtq): (43)

Proof. This follows by acting both the left and the right-hand side of this equation on
an arbitrary symmetric function.

This leads us to several other formulas for operators with similar properties. Consider
the following corollary.

Corollary 9. De<ne h�(q)=
∏
s∈� 1 − qa�(s)+l�(s)+1. Let Hq

1m be an operator with the
property Hq

1mH�[X ; q]=H1m|�[X ; q] for ‘=‘(�)6m. Then

H̃ q
1�1
t H̃ q

1�2
t · · · H̃ q

1�‘
t1=!H�[X ; q; t] (44)

and

H̃ q
1�1
qH̃ q

1�2
q · · · H̃ q

1�‘
q=h�′(q)s�′

[
X

1− q
]
: (45)

Proof. This follows from Theorem 6 and the following two identities about Macdon-
ald’s symmetric functions.

H
[X ; t; q]=!H
′ [X ; q; t]; (46)

H
[X ; q; q]=h
(q)s


[
X

1− q
]
: (47)
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In the next two sections we will develop this last example in more detail. The
observation that the Macdonald polynomials are built up from the q-twisting of the
operators that build the Hall–Littlewood symmetric functions allows us to derive several
interesting formulas for these operators.

Remark 10. Unfortunately, the analog of Section 3.2 does not seem to extend to
these operators as a way of generalizing the Maconald symmetric functions. Con-
sider the operator Ht

1� :=H
t
1�1H

t
1�2 : : : H

t
1�‘(�)

. We would hope that a composition of H̃ t
1�
q

are Schur positive if reasonable conditions are placed on �. By calculating examples
we begin to be encouraged by such a conjecture, however for large enough exam-
ples it seems to break down (for example if �(1)=(4); �(2)=(2; 2); �(3)=(1; 1), then
]Ht
1�(1)

q ]Ht
1�(2)

q ]Ht
1�(3)

q1 is not Schur positive).

4. Ribbons and Hall–Littlewood symmetric functions

In [18] we gave a combinatorial formula for the action of an operator that adds
a column to the Hall–Littlewood symmetric functions. We will recall some of the
deGnitions and theorems from that work and use them to derive some useful formulas.
The deGnition of a ribbon is a skew partition that contains no 2 × 2 subdiagrams.

For a non-empty partition �, deGne �rc=(�2 − 1; �3 − 1; : : : ; �‘(�) − 1) (the rc indicates
that � has the Grst row and Grst column removed). If R is a ribbon of size m (denoted
by R |= m) then R will be equal to �=�rc for some partition � with �1 + ‘(�)− 1=m.
Set D(R) equal to the descent set of R, that is the set {i | i+1st cell lies below the

ith cell in R} when the cells are labeled with the integers 1 to n from left to right and
top to bottom. Therefore every ribbon can be identiGed with a subset of {1; : : : ; m−1}.
There is a natural statistic associated with a ribbon. DeGne the major index

of a ribbon to be maj(R)=
∑

i∈D(R) i. Its complementary statistic will be comaj(R)=

( |R|2 )−maj(R).
From formula (15), Sm is an operator that adds a row to the partition indexing a

Schur symmetric function. By conjugating Sm by !, one obtains an operator that adds
a column. DeGne S̃m=!Sm!. In plethystic notation, this operator is given as

S̃mP[X ]=(−1)mP
[
X +

1
z

]
 [−zX ]|zm : (48)

Now for each ribbon of size m, deGne an operator that raises the degree of a sym-
metric function by m. For R=�=�rc set

SR=s⊥�rc S̃�′1 S̃�′2 · · · S̃�′�1 ; (49)

where �′i is the length of the ith column in �. This is a combinatorial operator in the
sense that all calculations can be computed on the Schur basis using the Littlewood-
Richardson rule and the commutation relations S̃aS̃b=−S̃b−1S̃a+1 and S̃aS̃a+1=0 so that
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the operator SR can be thought of as an operator that acts on s� by adding the ribbon
R to the left of �.
The main theorem in [18] was the following result.

Theorem 11 (Theorem 1.1 of [18]). The operator Hq
1m=

∑
R|=m q

comaj(R)SR has the
property that Hq

1mH
[X ; q]=H1m|
[X ; q] for ‘(
)6m.

Some elegant relations develop with the Rip operation and ribbon operators. Note
that it follows directly from the deGnition that if R is a ribbon of size m and R+ is
a ribbon of size m + 1 with D(R)=D(R+), then SR

+
=SRS̃1. It develops that there is

also a recursive method for adding a cell below the ribbon. If R+ is a ribbon of size
m+ 1 such that D(R+)=D(R) ∪ {m}, then we have the following surprising formula.

Theorem 12 (Theorem 2.2 of [18]). If R |=m and R+ |=m + 1 such that D(R+)=

D(R)∪{m}, then SR+ =SRS1.

This theorem can be used to produce the following plethystic formula for a ribbon
operator.

Proposition 13. Let R |= m, then

SRP[X ] = (−1)m−|D(R)|P[X + Z∗] [−(z1 + ZD(R)c+1)X ]∏
16i¡j6m

(1− zj=zi)|z1z2···zm ; (50)

where we have set Z∗=
∑m

i=1 1=zi and ZD(R)c+1=
∑

i∈[1; m−1]−D(R) zi+1.

Proof. By induction using Theorem 13 and direct calculation.

It follows from Theorems 11 and 12 that Ht
1m may be deGned recursively. Set Ht

11 = S̃1
and

Ht
1m+1 = tmH t

1m S̃1 + H
t
1mS1: (51)

Either from this recursive deGnition or from the previous proposition, one may demon-
strate the following plethystic formula for the Ht

1m operator.

Proposition 14. The operator Ht
1m of Theorem 11 has the following form in plethystic

notation.

Ht
1mP[X ] =−P[X + Z∗] [−z1X ]

m∏
i=2

(1− ti−1 [−ziX ])

∏
16i¡j6m

(1− zj=zi)
∣∣∣∣∣∣
z1z2···zm

: (52)
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Note that because the coe8cient of z1 in the expression

P[X + Z∗]
m∏
i=2

(1− ti−1 [−ziX ])
∏

16i¡j6m

(1− zj=zi) (53)

is zero, we also have the following equivalent expression.

Corollary 15. The operator Ht
1m of Theorem 11 has the following form in plethystic

notation.

Ht
1mP[X ]=P[X + Z∗]

m∏
i=1

(1− ti−1 [−ziX ])
∏

16i¡j6m

(1− zj=zi)
∣∣∣∣∣∣
z1z2···zm

: (54)

In the next section Theorem 6 will be used to develop methods for computing
Macdonald polynomials and the q; t-Kostka coe8cients from these formulas. One may
use some of the properties of the ribbon operators to derive several other formu-
las for operators Ht

1m and hence for H̃ t
1m
q, but this particular formula seems like a

natural extension to the ribbon operator formula for the Hall–Littlewood symmetric
functions.

5. Generalized ribbons and Macdonald symmetric functions

Consider the following generalization of the plethystic formulas presented in the
previous section. Since we know from Theorem 6 that the operator H̃ t

1m
q is an operator

that adds a column to the Macdonald symmetric functions, the q-analog of Eq. (54)
yields the following theorem.

Theorem 16. The following operator adds a column to the Macdonald symmetric
functions H
[X ; q; t] if ‘(
)6m.

Hqt
1mP[X ] = P[X + (1− q)Z∗]

m∏
i=1

(1− ti−1 [−ziX ])

∏
16i¡j6m

(1− zj=zi)
∣∣∣∣∣∣
z1z2···zm

(55)

Proof. This follows from Theorem 6 and Corollary 15. Calculate (55) by using
Eqs. (54) and (9) to show

H̃ t
1m
qP[X ] =HtY

1m P[qX + (1− q)Y ]|Y=X
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= P[qX + (1− q)Y + (1− q)Z∗]
m∏
i=1

(1− ti−1 [−ziY ])

∏
16i¡j6m

(1− zj=zi)
∣∣∣∣∣∣
z1z2···zm

∣∣∣∣∣∣
Y=X

: (56)

We will develop this operator further and show that the combinatorial deGnition of
a ribbon operator can be generalized and used to give a formula analogous to Theorem
11.
Let V ∈Hom(�;�) be an operator that does not involve the parameter q and let

P∈� also not include the parameter q. By setting q=0 in the expression Ṽ qP[X ],

Ṽ qP[X ]|q=0=VYP[qX + (1− q)Y ]|Y=X |q=0=VP[X ]: (57)

We remark that the highest power of q that appears in this expression is the degree of
the symmetric function P. By acting Ṽ q on a Schur function, it can be seen that

Ṽ qs�[X ]=
∑

⊆�

q|
|VY (s
[X − Y ]s�=
[Y ])
∣∣∣∣∣∣
Y=X

: (58)

The coe8cient of q|�| in this expression will be the term

Ṽ qs�[X ]|q|�| =VY s�[X − Y ]|Y=X = SVs�[X ]: (59)

The coe8cients of qk may be interpreted then as a discrete interpolation between V
and SV . DeGne notation for the coe8cient of qk of this expression so that

Ṽ qP[X ]|qk = SV
(k)
P[X ]=

∑
��k

VY (s�[X − Y ](s⊥� P)[Y ])
∣∣∣∣∣
Y=X

: (60)

By linearity, this notation may be extended to any operator V that may now depend
on the parameter q. This yields the following proposition.

Proposition 17. For V ∈Hom(�;�),

Ṽ q=
∑
k¿0

qk SV (k); (61)

where SV (k) is de<ned in Eq. (60).

SR(k) can be developed in detail thereby giving a combinatorial method for calculat-
ing the coe8cient of qi in a Macdonald polynomial.

DeGne a notion of a generalized ribbon operator that starts with a ribbon R |=m with
R=�=�rc and associate with this a sequence v=(v1; v2; : : : ; vm) with vi¿0. Generalize



M. Zabrocki / Discrete Mathematics 256 (2002) 831–853 847

the notion of a ribbon by setting the ‘thickness’ of the ith cell of the ribbon to be
vi + 1 so that when the sequence consists of m zeros this gives the standard ribbon.
Let ‘=‘(�) and say that D(R)={i1¿i2¿ · · ·¿i‘−1} and {1; : : : ; m} − D(R)=

{j1¡j2¡ · · ·¡j�1}. Let ;=�rc − (vi1+1; vi2+1; : : : ; vi‘−1+1) (as vectors) and <′=�′ +
(v1; vj1+1; vj2+1; : : : ; vj�1−1+1) (neither ; nor <′ are necessarily partitions). Then set S(R; v)

=(−1)|�
rc|−|;|s⊥; S̃<′1 S̃<′2 · · · S̃<′�1 . Call S

(R; v) a generalized ribbon operator.
The formulation of these operators leads to a simple construction with a picture:

draw the original ribbon and place vi cells either to the left of the ith cell if i− 1 is a
descent of the ribbon or above the cell if it is not. ; is the sequence representing the
space underneath the diagram and <′ is the sequence representing the heights of the
columns of the diagram. The sign represents the number of cells that are ‘underneath’
the ribbon. We present a couple of examples to give a better picture of these truly
combinatorial constructions.

Example 18. Consider the ribbon R= of size 4 with D(R)={3; 2}. If v=(0; 0; 0; 0),
then S(R; v)=SR. If v is one of (1; 0; 0; 0); (0; 1; 0; 0); (0; 0; 1; 0); (0; 0; 0; 1) then S(R; v)

is equivalent to the following ribbon operators (respectively):

=s⊥11S̃4S̃3 =s⊥11S̃3S̃4 = − s⊥1 S̃3S̃3

= −s⊥01S̃3S̃3 (62)

The second and fourth generalized ribbons are 0. The second because it contains the
operation of adding a column of size 3 on a column of size 4, and the fourth because
a row of size 0 is added on a row of size 1 in the skew part of the operator.

Example 19. Let R= Now let v=(1; 1; 0; 1; 0; 2; 0; 1; 0) This is represented by
the following picture where a dot is placed in each of the cells representing the original
ribbon and there are vi cells either to the left of the ith cell if i − 1∈D(R) or above
if i − 1 =∈D(R) (and the v1 cells always go above the Grst cell in the ribbon).

=s⊥4321S̃6S̃6S̃5S̃5S̃3: (63)

Representing these operators with a diagram of this sort works Gne if i − 1 is a
descent and vi is so large that it creates a negative index in ;. Interpret this to mean
that skewing by a Schur function with a negative index kills the term and the result
is 0.
Note also that some ‘straightening’ using the relation SmSn=−Sn−1Sm+1 may be

necessary.
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Example 20. R is as above, but v=(1; 1; 0; 1; 0; 4; 0; 1; 5). Then R can be represented
by the image

= − s⊥−1;3;2;1S̃6S̃6S̃5S̃7S̃3=s
⊥
−1;3;2;1S̃6S̃6S̃6S̃6S̃3

= s⊥2;1;1;1S̃6S̃6S̃6S̃6S̃3=
(64)

The Gnal image comes from Grst straightening the columns of the generalized ribbon
and then straightening Schur function that one skews by with appropriate sign changes.
Generalized ribbon operators are related to the original notion of a ribbon operator

by the following easily statable theorem.

Theorem 21. Let R be a ribbon of size m and k¿0 an integer.

SR(k)=
∑
v

S(R; v)e⊥v ; (65)

where the sum is over all sequences v having length m and whose sum is k and
the condition that vi¿0 and ev is the elementary symmetric function indexed by the
sequence v. Let

Hqt
1m =

∑
R|=m

∑
v

q|v|tcomaj(R)S(R; v)e⊥v ; (66)

where here the sum is over all sequences v having length m and non-negative entries.
Then Hqt

1mH
[X ; q; t]=H1m|
[X ; q; t] for ‘(
)6m.

This theorem is a combinatorial rule for computing Macdonald symmetric functions.
Before we present the proof, we give an example of how this theorem works.

Example 22. Computation of a Macdonald symmetric function with generalized rib-
bons.

We will use formula (66) to compute H222[X ; q; t]. This is a long and involved
example, but it demonstrates the power of this recurrence since with a reasonable
amount of work one can calculate a Macdonald polynomial of size 6 or higher by
hand.
Start with the formula for H111[X ; q; t]= +(t+t2) +t3 (this may be calculated

by acting Hqt
13 on 1).

The sum in Eq. (66) over v is Gnite because only terms such that |v| is less than
or equal to the degree of the symmetric function that is being acted on are needed. In
this computation quite a few operators are necessary.
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We list all of the relevant operators (those which are non-zero) and place a dot in
the cells that consist of a the core of the operator so that it is easy to read the sequence
v from the picture. The sign associated to each picture of the operator is −1 to the
power of the number of cells under the ribbon.

(67)

(68)

(69)

(70)

To complete this computation, calculate e⊥� on the symmetric function H111[X ; t] for
|�|63. This is given by the following list

e⊥1 H111[X ; t]=(1 + t + t2)(ts2 + s1;1); (71)

e⊥2 H111[X ; t]=(1 + t + t2)s1; (72)

e⊥11H111[X ; t]=(1 + 2 t + 2 t2 + t3)s1; (73)

e⊥3 H111[X ; t]=1; (74)

e⊥21H111[X ; t]=1 + t + t2; (75)

e⊥111H111[X ; t]=1 + 2 t + 2 t2 + t3: (76)

The computation proceeds as follows. The coe8cient of q0 is just the Hall–Littlewood

symmetric function H222[X ; t], calculated by acting on H111

[X ; t]. So the coe8cient of q0 is

s222 + (t + t2)s321 + t3s33 + t3s411 + (t2 + t3 + t4)s42 + (t4 + t5)s51 + t6s6: (77)
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The coe8cient of q1 is the operator when
it acts on the symmetric function (1 + t + t2)(ts2 + s1;1).

(1 + t + t2)(t4s51 + (t2 + t3)s411 + t3s42 + (t + t2)s321
+ t2s33 + ts3111 + s2211): (78)

The coe8cient of q2 comes from two components,

when it acts on the symmetric function e⊥2 H111[X ; q; t], and

when it acts on the symmetric function e⊥11H111[X ; q; t]. The
Grst part is

(t2 + t + 1)(−t3s42 + t3s411 + (t + t2)s3111 − ts222 + s2211t + s21111) (79)

and the second is

(1 + 2 t + 2 t2 + t3)(t3s42 + t2s321 + ts222): (80)

The sum of these two quantities is

(t2 + t + 1)(t4s42 + t3s411 + (t2 + t3)s321 + (t + t2)s3111

+ t2s222 + ts2211 + s21111): (81)

The coe8cient of q3 comes from three diJerent operators acting each on a diJerent
constant. The Grst operator is

when it acts on 1,the second is

when it acts on 1+t+t2, and the third is when it acts on the symmetric
function 2 t + 2 t2 + t3 + 1. These three parts area

t3s33 − t3s321 + t3s3111 − (t + t2)s222 + (t + t2)s21111 + s111111; (82)

(1 + t + t2)(−2 t3s33 + t3s321 + (t2 + 2t)s222 + t2s2211); (83)

(2 t + 2 t2 + t3 + 1)(−ts222 + t3s33): (84)
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The sum of these three quantities is

t6s33 + (t4 + t5)s321 + t3s3111 + t3s222

+ (t2 + t + 1)t2s2211 + (t + t2)s21111 + s111111; (85)

which is the coe8cient of q3 in H222[X ; q; t].
Clearly, an enormous amount of simpliGcation occurs when arriving at a Gnal expres-

sion for H
[X ; q; t]. An eventual goal of a combinatorial recurrence on the q; t-Kostka
coe8cients will be to arrive at a combinatorial interpretation for them in terms of
standard tableaux. Even if this recurrence turns out to be too complicated, these tech-
niques (in particular, Theorems 6 and 11) can certainly be used to derive many other
recurrences for the coe8cients.
Before presenting the proof, we will need a few lemmas that come from the deriva-

tion of the ribbon operator. We state them without proof and refer the reader to [18].

Lemma 23. For any operator V; SVSm=
∑

j¿0 (−1)m−jhjV S̃m−j.

Lemma 24. s⊥� S−m=(s(m;�))⊥.

Proof of Theorem 21. If a¿0 and v is a list, then we denote v with a prepended (resp.
appended) by (a; v) (resp. (v; a)).
Let R+ be a ribbon of size m+ 1 that does not have m as a descent. Also let R be

the ribbon of size m such that D(R)=D(R+). By the deGnition of S(R; v), notice that
S(R

+ ; (v; a))=S(R; v)S̃1+a.
Now let R+ be a ribbon of size m + 1 such that m is a descent. Let R=�=�rc be

the ribbon of size m such that D(R)∪{m}=D(R+) then remark that R+=(�1; �)=(�1−
1; �rc). If S(R; v)=(−1)|v|s⊥; S̃<′ , then S(R+ ; (v; a))=(−1)|v|+as⊥(�1−1−a; ;)S̃(�1 ; <)′ . It follows
from Lemmas 23 and 24 and the commutation relation S̃mS̃n=−S̃n−1S̃m+1 that

S(R+ ;(v; a)) = (−1)|�
rc|−|;|+as⊥; S1+a−�1 S̃(�1 ; <)′

= (−1)|�
rc|−|;|+a∑

j¿0

(−1)1+a−�1−jhjs⊥; S̃1+a−�1−jS̃(�1 ; <)′

= (−1)|�
rc|−|;|+a∑

j¿0

(−1)1+a−jhjs⊥; S̃<′ S̃1+a−j

= (−1)aS(R; v)S1+a: (86)

Use these two relations to give an inductive derivation of the following plethystic
form of the operator S(R; v). By carrying out nearly the exact same calculation (and
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using identical notation for ZD(R)c+1) as given in Proposition 13, derive that

S(R; v)P[X ] = (−1)m−|D(R)|+|v|P[X + Z∗] [−(z1 + ZD(R)c+1)X ]∏
16i¡j6m

(1− zj=zi)|z1+v11 z
1+v2
2 ···z1+vmm

: (87)

Now consider a formula for S̃Rq. Using the same calculation for Theorem 16 and
the equation given in Proposition 13, demonstrate that

S̃Rq = (−1)m−|D(R)|P[X + (1− q)Z∗] [−(z1 + ZD(R)c+1)X ]∏
16i¡j6m

(1− zj=zi)|z1z2···zm : (88)

The coe8cient of qk in this formula is

SR(k) = (−1)m−|D(R)|∑
��k

f�

[−Z∗]e⊥� P[X + Z∗] [−(z1 + ZD(R)c+1)X ]
∏

16i¡j6m

(1− zj=zi)|z1z2···zm

= (−1)m−|D(R)|+k∑
��k

m�[Z∗]e⊥� P[X + Z∗] [−(z1 + ZD(R)c+1)X ]

∏
16i¡j6m

(1− zj=zi)|z1z2···zm : (89)

By expanding m�[Z∗] as
∑

v∼� z
−v we see clearly that this is equivalent to Eq. (65).

The formula stated for the operator Hqt
1m follows from this derivation, Theorem 6 and

Proposition 17.
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