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We present the theoretical study of the process χc0(1P ) → �̄�π decay, by taking into account the π�

and π�̄ final state interactions of the final meson-baryon pair based on the chiral unitary approach. 
We show that the process filters the isospin I = 1 in the π� channel and offers a reaction to test the 
existence of an I = 1 state with strangeness S = −1 and spin-parity J p = 1/2− around the K̄ N threshold 
predicted by some theories and supported by some experiments.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The extraction of baryon resonances from experimental data is 
one of the important aims in Hadron Physics and much progress 
has been done in the latest years [1–3]. The traditional tools to 
learn about these resonances have been the use of pion beams 
[4,5], photon beams [2,6] and also kaon beams [7]. The advent of 
new facilities as BES, CDF, LHCb is also contributing to enlarge the 
list of baryon resonances [8–12]. On the other hand, the theoreti-
cal work goes parallel and many predictions are made. The quark 
models jumped earlier in this arena [13–15], but effective theo-
ries have also contributed their share [16–19]. The quark models 
seem to over predict the number of baryon states, giving rise to 
the problem of the missing resonances. The effective theories give 
rise to some dynamically generated states as a consequence of the 
interaction of two hadrons, which fit some of the existing states, 
and also predict new states, most of them in the heavy sectors of 
charm and beauty. Some of the predictions of these effective the-
ories have been confirmed experimentally. One of the clear cases 
is the existence of two �(1405) states, which were first reported 
in Ref. [20], discussed in detail in Ref. [16] and later on con-
firmed in all theories using the chiral unitary approach [21–33]. 
The experimental confirmation came from the work of Ref. [7]
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and the analysis of Ref. [34], but other experiments have come to 
confirm it too (see the of introduction Ref. [35] for details).1 Al-
ternative, pictures for some N∗ states and the �(1405) involving 
pentaquarks have also been invoked [36,37]. Although not identical 
to the molecular representation, the need for more than standard 
three quarks is also deduced in those works. Another one of these 
successful predictions is the existence of a D state with spin zero 
at 2600 MeV and a width of about 100 MeV from the interac-
tion of ρ (ω) and D∗ [38]. This state is also in agreement with 
the D(2600), with a similar width, discovered after the theoretical 
work in Ref. [39]. The list of predicted states which have found ex-
perimental support is long (see Ref. [40] as an example). Although 
it is premature to judge, the recent narrow pentaquark reported by 
the LHCb Collaboration [12] could maybe correspond to the predic-
tions made of a hidden charm state in Ref. [17] (see [41]).

With this favorable perspective, the purpose of this paper is 
to call the attention to a possible intriguing baryon state of J P =
1/2− , strangeness S = −1 and isospin I = 1 around 1430 MeV, 
predicted in theories using the chiral unitary approach. This state 
shows up in the work of Ref. [20] and becomes a pronounced cusp 
(corresponding to a virtual state) in Ref. [16]. One should note that 
such borderline states are common and one of them, classified as 
a resonance in the PDG, is the a0(980), as found in Refs. [42–48]. 

1 The PDG will introduce officially the two �(1405) states in the next Edition of 
the Book.
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The existence of this state I = 1 has also been claimed from a dif-
ferent perspective in Ref. [49].

One of the experiments that has brought some light on 
this state is the photoproduction of the �(1405) undertaken in 
Refs. [50–53] and analyzed in Ref. [54]. The analyses in the experi-
mental papers and in the theoretical ones differ in the predictions 
with respect to this state, although the two approaches lead to 
I = 1 states. We should note that the analysis of Ref. [54] pre-
serves unitarity in coupled channels, analyticity and all relevant 
properties of the scattering matrices, while some approximations 
are done in Refs. [51–53]. The result of Ref. [54] is that there is 
a state of I = 1, around the K̄ N threshold, similar to the a0(980), 
visible as a strong cusp and in agreement with the findings of 
Refs. [16,20]. It is clear that the extraction of this state is very 
problematic in conventional reactions which mix I = 0 and I = 1, 
and make it difficult to disentangle the I = 1 contribution which, 
however, is of great importance to understand why are there such 
large differences in the shapes of the mass distributions of π+�− , 
π−�+ , π0�0.

In view of these problems we propose here a completely dif-
ferent method, feasible in present experimental facilities. The re-
action proposed is χc0(1P ) → �̄�π . The reaction χc0(1P ) → �̄�

has been measured at BESIII [55] and CLEO [56] and the branch-
ing ratios are of order of 10−3. On the other hand, by looking at 
the PDG we find that the branching ratio for the analogous reac-
tion χc0(1P ) → p̄π p is about three times larger than that of the 
χc0(1P ) → p̄p, without π production. One is then talking about 
branching ratios of the order of 3 ×10−3, easily accessible at BESIII. 
Given the quantum numbers of the χc0(1P ), IG( J P C ) = 0+(0++)

and the fact that the χc0(1P ) is a cc̄ state, blind to SU(3), hence 
behaving like an SU(3) singlet, since the �̄ has isospin I = 1, 
the π� state must have also I = 1, to combine to the I = 0
of the χc0(1P ). This is a good filter of isospin that guarantees 
that the π� will be in I = 1. The I = 1 state shows up more 
strongly in the π� → π� amplitude than in π� → π� [54], so 
the π� final state is the ideal channel within the approach used 
here.

The idea followed here to filter I = 1 has its precedent in the 
studies of J/ψ decay into pp̄ and a meson [57,58]. Indeed since 
J/ψ has I = 0 and p̄ I = 1/2, the combination of p and the meson 
will be in I = 1/2. This idea was used in Ref. [59] to study the 
J/ψ → p̄N∗(1440), in Ref. [60] to study the J/ψ → pp̄ω reaction 
and in Ref. [61] to study the decays J/ψ → pp̄π(η, η′, ω).

We study the reaction and evaluate the π� mass distribution 
and we find that indeed, the filter works well and a clear sig-
nal for this state, with practically no background from the π�

amplitude, is found. We then propose the implementation of this 
reaction which should settle this issue definitely and might result 
in the observation of a new baryon resonance in the light sec-
tor.

The present paper is organized as follows. In Sec. 2, we shall 
discuss the formalism and the main ingredients of the model. In 
Sec. 3, we will present our main results and finally, the conclusions 
will be given in Sec. 4.

2. Formalism

In this section, we will describe the reaction mechanism for the 
process of χc0 → �̄�π .

2.1. The model of χc0 → �̄�π

We will assume a contact interaction for χc0 → �̄�π as a 
primary step [see Fig. 1(a)], and then we shall let the particles un-
dergo final state interaction. This is the method to produce the 
Fig. 1. (Color online.) Diagrams for the χc0 → �̄�π decay: (a) direct �̄�π vertex 
at tree level, (b) final state interaction of π� , (c) final state interaction of π�̄, and 
(d) final state interaction of �̄� .

Table 1
SU(3) isoscalar coefficients for the 〈�̄|M B

〉
matrix elements.

�̄ K̄ N π� π� η� K


D̃ −
√

3
10 0

√
1
5

√
1
5 −

√
3

10

F̃
√

1
6

√
2
3 0 0 −

√
1
6

dynamically generated resonances, in this case, the I = 1 state, 
since they emerge as a consequence of the interaction of pairs of 
hadrons.

When considering the π� final state [see Fig. 1(b)], one must 
take into account that in the first step one can produce other 
meson-baryon pairs that couple to the same π� quantum num-
bers, then reaching the final π� state through re-scattering. This 
forces us to see the possible meson baryon combinations in the 
first step. To this purpose, we must consider that the χc0 is a SU(3) 
singlet, hence, since the �̄ belongs to an SU(3) octet, then the π�

system will also be in an octet state. Since both the π and � be-
long to SU(3) octets, then we have the same situation as in the 
Yukawa coupling and we have two independent representation for 
8(π) ⊗ 8(�) going to 8s and 8a . Technically, we can use an effec-
tive Lagrangian of the type

L ≡ D̃
〈
B̄ {�, B}〉 + F̃

〈
B̄ [B,�]

〉
, (1)

where the symbol 〈 〉 stands for the trace of SU(3) matrices, and 
the matrices corresponding to the octet of mesons and octet of 
baryons are the following,

� =

⎛
⎜⎜⎝

1√
2
π0 + 1√

6
η π+ K +

π− − 1√
2
π0 + 1√

6
η K 0

K − K̄ 0 − 2√
6
η

⎞
⎟⎟⎠ , (2)

B =

⎛
⎜⎜⎝

1√
2
�0 + 1√

6
� �+ p

�− − 1√
2
�0 + 1√

6
� n


− 
0 − 2√
6
�

⎞
⎟⎟⎠ . (3)

By looking at the SU(3) isoscalar factors in the PDG [11], we 
find the weights of Table 1 in the isospin basis for the states. 
The sum of the isoscalar coefficients times D̃ and F̃ gives the 
weights hi , which go into the primary production of each meson 
baryon channel.

Next, we incorporate the final state interaction of these meson-
baryon pairs, which is depicted in Fig. 1(b) and (c). The amplitude 
M(Mπ�, Mπ�̄) for the transition can be written as,

M(Mπ�, Mπ�̄) = V p

(
hπ� +

∑
hi Gi(Mπ�) ti,π�(Mπ�)
i
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+
∑

i

hi Gi(Mπ�̄) ti,π�̄(Mπ�̄)

)

= V p
(
hπ� + Tπ� + Tπ�̄

)
, (4)

where V p expresses the strength of an amplitude with h = 1, and 
Gi denotes the one-meson-one-baryon loop function, chosen in ac-
cordance with the model for the scattering matrix ti j that will be 
described in the next section. Mπ� and Mπ�̄ are the invariant 
masses of the final states π� and π�̄ , respectively, and hi stands 
for the weights of the transition χc0 → B P �̄ at tree level, which 
are given by,

hK̄ N = −
√

3

10
D̃ +

√
1

6
F̃ ,

hπ� =
√

2

3
F̃ , hπ� =

√
1

5
D̃, hη� =

√
1

5
D̃,

hK
 = −
√

3

10
D̃ −

√
1

6
F̃ . (5)

In Eq. (4), the term with �̄ introduces the sum over M̄ B̄ states 
considered before. Since the poles (consider one channel for sim-
plicity) come from 1 − V G = 0, and are the same for particle and 
antiparticles, the combination V G , and hence tG , entering Eq. (4), 
is the same for particle and antiparticles, and then, Tπ� = Tπ�̄ .

In addition to the above contributions [Fig. 1(a, b, c)], we will 
discuss the effect of ��̄ coupling to pp̄, depicted in the Fig. 1(d). 
This is because the pp̄ has an enhancement close to the threshold 
that is attributed to the resonance X(1835), which is seen in the 
decays of J/ψ → γπ+π−η′ [62,63] and J/ψ → pp̄γ [64]. For the 
latter decay, they see an enhancement in the pp̄ mass distribution 
close to threshold. The ��̄ will couple to pp̄ in coupled channels. 
So, any pole in the pp̄ → pp̄ will also be present in the pp̄ → ��̄

amplitude. By taking into account the ��̄ coupling to pp̄, Eq. (4)
can be rewritten as,

M(Mπ�, Mπ�̄) = V p
(
hπ� + Tπ� + Tπ�̄ + T pp̄

)
, (6)

where,

T pp̄ = a

M��̄ − M X + i 
X
2

(7)

where the M X = 1835 MeV and 
X = 100 MeV are the mass 
and width of the resonance X(1835) [11], and the normaliza-
tion a stands for the amplitude strength. This should not disturb 
much our result, because the ��̄ invariance mass M��̄ > 2M� =
2393 MeV, 560 MeV larger than the mass of X(1835). This is very 
far and should not have any effect. Yet, we are going to show that 
even in an extreme case this will not have any effect on the π�

mass distribution.

2.2. The final state interaction

Based on the chiral Lagrangian for meson-baryon interactions 
and the N/D method, the full set of transition matrix elements 
with the coupled channels in I = 1, K̄ N , π�, π�, η� and K
, can 
be expressed by means of the on shell factorized Bethe Salpeter 
(BS) equation,

t = [1 − V G]−1 V , (8)

where the matrix V is obtained from the lowest order meson 
baryon chiral Lagrangian [65,66],

V ij(I = 1) = −Fij
1

2
(k0 + k′0), (9)
4 f
where the magnitudes k0 and k′0 are the initial and final ener-
gies of the mesons, and the symmetrical coefficients Fij are shown 
in Table 5 of Ref. [22]. The value f = 1.15 fπ with fπ = 93 MeV, 
common to all channels, was used in Ref. [22], leading to a good 
fit to the data. The loop function G stands for a diagonal matrix 
with elements:

Gl = i
∫

d4q

(2π)4

Ml

El(q)

1

k0 + p0 − q0 − El(q) + iε

× 1

q2 − m2
l + iε

=
∫

d3q

(2π)3

Ml

2ωl(q)El(q)

1

k0 + p0 − q0 − El(q) + iε

(10)

where Ml and ml are the baryon and meson masses of the “l” 
channel, and the cut-off |
qmax| = 630 MeV is used as in Ref. [22].

Finally, the invariant mass distribution χc0(1P ) → �̄ � π reads

d2


dM2
π�dM2

π�̄

= 1

(2π)3

4M2
�

32M3
χc0

∣∣M(Mπ�, Mπ�̄)
∣∣2

, (11)

where Mπ� and Mπ�̄ are the invariant mass of π� and π�̄. For 
a given value of M2

π� , the range of M2
π�̄

is defined as,

(M2
π�̄

)max =
(

E∗
π + E ∗̄

�

)2 −
(√

E∗2
π − m2

π −
√

E∗2
�̄

− m2
�̄

)2

,

(M2
π�̄

)min =
(

E∗
π + E ∗̄

�

)2 −
(√

E∗2
π − m2

π +
√

E∗2
�̄

− m2
�̄

)2

,

(12)

here E∗
π = (M2

π� − M2
� + m2

π )/2Mπ� and E ∗̄
�

= (M2
χc0

− M2
π� −

M2
�̄

)/2Mπ� are the energies of π and �̄ in the Mπ� rest frame.

The invariance mass of ��̄ can be related to the Mπ� and 
Mπ�̄ by

M2
��̄

= M2
χc0

+ m2
π + 2M2

� − M2
π�̄

− M2
π�. (13)

The on shell factorized BS equation of Eqs. (8), (9) can be ob-
tained from the Chew–Mandelstam N/D method [67] by neglect-
ing the left hand cut (which is normally included in the factor N), 
but looking explicitly at the unitarity cut which is included in D , 
and is calculated using a dispersion relation. This is done explic-
itly in Refs. [20,68]. In Ref. [20], the influence of the left hand cut 
in this interaction is found very small. But, even in case where 
this is not necessarily true, the distance of the left hand cut to the 
physical energies renders its contribution in the dispersion relation 
rather energy independent such that it can be accommodated by 
means of a suitable choice of subtraction constants in the disper-
sion relation, which are adjusted to data. The effect of the left hand 
cut can also be addressed within the BS equation as discussed in 
Refs. [20,68,69], or using the inverse amplitude method [70,71]. 
In Eq. (9), the kernel used for the BS equation comes from the 
lowest order chiral Lagrangian [68]. There has been much recent 
work including in the kernel the term from higher order chiral La-
grangian [26–33,72]. However, as shown in Refs. [28,31], the effect 
of higher orders in this interaction is very small, and can also be 
easily accommodated by suitable changes in the subtraction con-
stants (or equivalently cut off) in the dispersion integral leading to 
the G function (see also Ref. [73] for a recent review on this inter-
action and the two states of the �(1405)). Altogether, as shown in 
Ref. [22], by using the lowest order kernel of Eq. (9) and a suitable 
cut off to regularize the loops (G function), an excellent description 
of the low energy K̄ N data and cross sections to coupled channels, 
in a wider range than the one investigated here, was obtained.
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Fig. 2. (Color online.) Module squared of the t K̄ N,K̄ N and tπ�,π� as a function of 
the invariant mass of K̄ N (or π�) system.

Fig. 3. (Color online.) The π� invariant mass distributions for the χc0(1P ) → �̄�π
decay with R = 1.

3. Results and discussion

In this section, we present our results for the process χc0 →
�̄�π . First, we show the module squared of the amplitudes 
|t K̄ N,K̄ N |2 and |tπ�,π� |2 in I = 1 in Fig. 2. The cusp aspects are 
found at the K̄ N threshold, the same as the result of Ref. [54].

Next, we predict the π� invariant mass distribution for the 
χc0(1P ) → �̄�π decay in Fig. 3. We have two parameters D̃
and F̃ . Since we have an arbitrary normalization, we can work with 
R = F̃/D̃ , and include the weight of D̃ into the V p factor. Hence, 
up to an arbitrary normalization, our results depend on the ratio R . 
The idea is to evaluate the mass distributions for different values 
of this ratio, and see if the strong cusp structure remains. In Fig. 3, 
the red solid line stands for the result of our full model, and the 
blue dashed-dotted line shows the contribution of the π�̄ inter-
action [the term Tπ�̄ of the Eq. (4)]. Finally, the green dashed line 
corresponds to the contribution of the tree level and π� interac-
tion [the term hπ� + Tπ� of the Eq. (4)]. Here, we take R = 1. We 
observe a strong cusp structure around the K̄ N threshold when the 
π� interaction is taken into account. We can see that considering 
the interaction of the π�̄ in addition does not practically influence 
the structure seen when one considers the π� interaction alone. 
This is because when we choose the invariant mass of π� around 
the peak in the figure, the π�̄ invariant mass is very different and 
is not affected by this structure around the K̄ N threshold.

We also show the effect of ��̄ coupling to pp̄ on the π� mass 
distribution in Fig. 4. The red solid line stands for the result of 
our full model, the blue dashed-dotted line corresponds to the re-
sult by adding the contribution of ��̄ coupling to pp̄, and green 
dashed line shows the contribution of ��̄ coupling to pp̄ alone. 
The value of normalization has been chosen a = 300 MeV such that 
the effect of this term in the invariant mass distribution is sizable, 
Fig. 4. (Color online.) The π� invariant mass distributions for the χc0(1P ) → �̄�π
decay with R = 1 by taking into account the effects of ��̄ coupling to pp̄, and of 
the ��̄ interaction.

of the order of 25% increase in the mass distribution, in spite of 
the large mass difference between ��̄ and X(1835) commented 
above. As we can see, the shape of the π� mass distribution does 
not change, still showing a clear cusp around K̄ N threshold. Thus, 
we will neglect the effect of ��̄ coupling to pp̄ in the following.

There is another test that we can conduct. It could happen that 
the ��̄ interaction has some sharp structure at threshold. This 
could be as a consequence of an attractive ��̄ interaction which 
barely binds the system or fails shortly to do it. In the first case, we 
would get a bound state, in the second one a strong cusp structure 
on the ��̄ amplitude. We consider this interaction by taking again 
Fig. 1(d), and for the ��̄ scattering matrix we take the amplitude 
that stems from a potential V��̄ ,

t��̄ = 1

V −1
��̄

− G��̄(M��̄)
, (14)

where G��̄ is now given by,

G��̄(M��̄) =
∫

d3q

(2π)3

M2
�

E2(q)

1

M��̄ − 2E(q) + iε
, (15)

which we regularize by a typical cut off |
qmax| = 600 MeV [22]
(changes in |
qmax| can be reabsorbed by changes in V��̄ ).

A pole at threshold requires V −1
��̄

= G��̄(2M�). Then we take,

V −1
��̄

= G��̄(2M�) + αM2
�, (16)

and for α > 0 we have a bound state, while for α < 0 we get the 
cusp structure. In Fig. 5(a) and (b), we plot |t��̄ |2 to show the 
structure that we have created. Indeed, a strong cusp structure 
around the ��̄ threshold is observed for negative α. We take a 
value α = −0.001, which leads to a very pronounced cusp struc-
ture, to do the following exercise, but the same conclusions are 
obtained for any value of α. Then to take into account the contri-
bution of the new structure in the π� mass distribution, we add 
to Eq. (6) the term,

T��̄ = hπ�G��̄(M��̄)t��̄(M��̄), (17)

and Eq. (6) becomes now,

M(Mπ�, Mπ�̄) = V p
(
hπ� + Tπ� + Tπ�̄ + T pp̄ + T��̄

)
. (18)

We plot in Fig. 4 the result of adding this new structure, which is 
shown by the black dotted line. The magenta dashed-dotted-dotted 
line stands for the contribution of this ��̄ interaction alone. As 
we can see, there is a small effect in the π� mass distribution, 
but what is more important, the π� cusp structure has not been 
spoiled. Since the ��̄ will annihilate, the V��̄ potential should 
also contain an imaginary part. For values of ImV��̄ of the order 
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Fig. 5. (Color online.) Module squared of the t��̄ for different values of α: (a) α > 0, 
(b) α < 0. The black vertical lines stand for the threshold of ��̄.

of ReV��̄ , the structures in the ��̄ amplitude are softened and, 
a fortiori, the cusp structure in the π� invariant mass remains 
unchanged.

As we do not know the exact value of the ratio R , we calculate 
the differential decay width of this process with different values of 
R , and this is depicted in Fig. 6. We can see that for a wide range 
of values of R , the strong cusp structure around the K̄ N threshold 
remains. It is interesting to observe that for positive values of R , 
we have a peak, but for negative values of R , the peak is inverted, 
becoming a sharp dip. One must trace that to the isoscalar coeffi-
cients in Table 1, If one takes R negative, then the tπ�,π� ampli-
tude appearing in the Tπ� of Eq. (4) gets multiplied by hπ� , which 
is now negative, while the factor is positive when R is positive.

We also show the results by using the coefficient Fij given in 
Eq. (5) of Ref. [54]. The loop function G in Eq. (8) is obtained with 
the dimensional regularization and the subtraction constants aμ

was also taken from this reference.2 First, we re-plot Fig. 2 with 
the new input, which is shown in Fig. 7. Both the shape of the 
K̄ N → K̄ N and π� → π� amplitude module squared are same. 
The strength of the K̄ N → K̄ N amplitude is not much affected, but 
the one of π� → π� is reduced by about a factor of two if the 
coefficients and the dimensional regularization are used. With the 
new input, we present the differential decay width of this process 
for positive R in Fig. 8. From this figure, we can see that the shapes 
and the cusp position are same as in Fig. 6.

One may wonder why not to make the reaction from J/ψ de-
cay, since the SU(3) symmetry would be the same. The reason is 
that the χc0 has quantum number J P = 0+ . Then it decays into 
�̄ (1/2−) (the negative parity because it is antiparticle), � (1/2+) 
and π (0−). Then the decay can be accommodated with L = 0. 

2 In Ref. [54], only three channels of K̄ N , π� , π� are considered, so we use the 
new coefficients Fi j and dimension regularization G for those three channels, and 
keep the same for the other two channels.
Fig. 6. (Color online.) The π� invariant mass distributions for the χc0(1P ) → �̄�π
decay by including the full contributions with different values of R . (a): R is posi-
tive; (b) R is negative.

Fig. 7. (Color online.) Same as Fig. 2 but with the coefficient Fi j in Eq. (5) of Ref. [54]
and dimensional regularization G for the channels of K̄ N , π� , π�.

Fig. 8. (Color online.) Same as Fig. 6(a) but with the coefficient Fi j in Eq. (5) of 
Ref. [54] and dimensional regularization G for the channels of K̄ N , π� , π�.
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If we start with the J/ψ (1−), we need L = 1 to restore the par-
ity and one has a more complicated structure to couple spins and 
angular momenta. In principle, L = 0 should be also favored with 
respect to L = 1, and this could explain why the width of χc0 to 
pp̄π is bigger than the one of χc0 to pp̄, while in the case of J/ψ , 
the rate of pp̄ decay is bigger than that of pp̄π [11].

There is another aspect that one might like to bring to discus-
sion and this is if the strong cusp can be associated to a resonance. 
Technically, one does not have a pole in the second Riemann sheet, 
but from the theoretical point of view, a state with small binding 
and one barely unbound, reflecting in a strong cusp, are obtained 
with small changes in the parameters of the theory and reflect 
the same physics. It is a question of criterion to adopt a classifica-
tion for such a state. The fact is that the situation is identical to 
the one found for the a0(980) resonance, that both in the theory 
[42–48,54] and in experiment [74] shows a strong cusp structure 
around the K K̄ threshold, and is classified as a standard resonance.

4. Conclusions

In this paper, we have suggested to use the χc0(1P ) → �̄�π
reaction as a test of the existence of an I = 1, S = −1, and J P =
1/2− resonance close to the K̄ N threshold. The state appears in 
all theoretical works using the chiral unitary approach, but it is 
border line, meaning that in some works it appears as a weakly 
bound state, while in others, as a lightly unbound or virtual state, 
but in all cases, it is reflected as a strong cusp around the K̄ N
threshold.

The reaction chosen guarantees that the π� state is produced 
in I = 1, and hence it is a filter of isospin, facilitating the observa-
tion of states in this sector. We have shown that, up to an arbitrary 
normalization, the results depend on the ratio of F̃/D̃ which we 
do not know. But we observed that in a large range of values of 
this ratio, the cusp structure is always observed, as a peak, when 
F̃/D̃ is positive, or as a sharp dip when F̃/D̃ is negative. We have 
also shown that the values estimated are well within the range of 
possible measurements of BESIII, and the implementation of the 
experiment would be most welcome.
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