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This complements previous work by Steel and Penny, who computed this mean value for
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1. Introduction

The definition and study of metrics for the comparison of rooted phylogenetic trees is a classical problem in phylogenet-
ics [11, Ch. 30], motivated, among other applications, by the need to compare alternative phylogenetic trees for a given set
of organisms obtained from different datasets or using different reconstruction algorithms [14], and by the desire to assess
phylogenetic tree reconstruction methods [29]. Many metrics for the comparison of rooted phylogenetic trees on the same
set of taxa have been proposed so far, including the Robinson–Foulds, or partition, metric [22,23], the nearest-neighbor inter-
change metric [27], the subtree transfer distance [3], the geodesic distance [16], the triples metric [8] and the transposition
distance [2]. For other applications of metrics in computational biology, see, for instance, [11,12,15,17,18,28,30].

Some of the first metrics for the comparison of rooted phylogenetic trees, defined around 40 years ago, were based on the
comparison of the vectors of lengths of (undirected) paths connecting pairs of taxa in the corresponding trees. These metrics
comprise, for instance, the Euclidean distance between these vectors [9,10], the Manhattan distance between them [29], or
the correlation between them [20]. Similar metrics have also been defined later for unrooted phylogenetic trees [5,21,26].
Let us point out here that, in the rooted case, these path-lengths based metrics were defined only for binary phylogenetic
trees, as they do not satisfy the separation axiom of metrics (distance 0 means isomorphism) for rooted phylogenetic trees
with nodes or arbitrary out-degree. Recently, a metric for rooted phylogenetic trees based on the comparison of path lengths
between leaves that overcomes this drawback, and hence that can be used in a safe and sound way on arbitrary rooted trees,
has been introduced in the literature [7]. On the other hand, a well-known theorem by Smolenskii [24] guarantees that, in
the unrooted case, the metrics defined through the comparison of path-lengths vectors always satisfy the desired separation
axiom.

In contrast with other metrics [6,13,25,26], and despite their tradition and popularity, the statistical properties of these
path-lengths based metrics are mostly unknown. For instance, the diameter of none of these metrics (either in the rooted
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or in the unrooted case) is known yet. Steel and Penny [26] studied the distribution of one of these distances for unrooted
trees: the one defined through the Euclidean distance between path-lengths vectors, which these authors called the path-
difference metric (other published names for this metric are the cladistic difference [9] and, generically, a nodal distance [5,21]).
In particular, in the aforementioned paper, Steel and Penny computed the mean value of the square of this path-difference
metric for fully resolved unrooted trees.

In this paper we compute the mean value of the square of the path-difference metric for fully resolved rooted phyloge-
netic trees with n leaves. Although the raw argument underlying our computation is the same as in Steel and Penny’s paper,
the details in the rooted case are much harder than in the unrooted case, because of the asymmetric role of the root. We
have proved that this mean value grows in O (n3); more specifically, it is

2

(
n

2

)(
4(n − 1) + 2 − 22(n−1)(2(n−1)

n−1

) −
(

22(n−1)(2(n−1)
n−1

))2)
.

This turns out to be the mean value obtained by Steel and Penny for unrooted phylogenetic trees, but with n + 1 leaves.
A similar relationship between combinatorial values for rooted and unrooted phylogenetic trees arises in other problems; for
instance, a simple argument shows that the number of rooted phylogenetic trees with n leaves is the number of unrooted
phylogenetic trees with n + 1 leaves [11, Ch. 3]; also, as we shall see in this paper (Corollary 11), the mean value of
the length of the undirected path between two given leaves in a rooted phylogenetic tree with n leaves is equal to the
corresponding mean value for unrooted phylogenetic trees. But we have not been able to find a clever argument that proves
directly this relationship between the mean values of the squared path-difference metric, or of the path-length between
two leaves, in the rooted and unrooted cases, and thus we have needed to compute them.

The knowledge of the mean value for a metric is useful in the assessment of a comparison through this metric, because
it “provides an indication as to whether or not the measured similarity could have come about by chance” [26]. In the
specific case of path-lengths based metrics for (rooted and unrooted) phylogenetic trees, there exist software packages (see,
for instance, [21]) that estimate this mean value in a given experiment by computing the mean of the distances between
many pairs of randomly generated phylogenetic trees. The explicit computation of this mean value, as a function of the
number of leaves, makes this simulation unnecessary.

2. Preliminaries

2.1. Phylogenetic trees

In this paper, by a phylogenetic tree on a set S of taxa we mean a fully resolved, or binary (that is, with all its internal
nodes of out-degree 2), rooted tree with its leaves bijectively labeled in the set S . To simplify the language, we shall always
identify a leaf of a phylogenetic tree with its label. We shall also use the term phylogenetic tree with n leaves to refer to a
phylogenetic tree on a given set of n taxa, when this set is known or nonrelevant.

We shall represent a path from u to v in a phylogenetic tree T by u � v . Whenever there exists a path u � v , we shall
say that v is a descendant of u and also that u is an ancestor of v . Given a node v of a phylogenetic tree T , the subtree of T
rooted at v is the subgraph of T induced on the set of descendants of v . It is a phylogenetic tree on the set of descendant
leaves of v , and with root this node v .

The lowest common ancestor (LCA) of a pair of nodes u, v of a phylogenetic tree T , in symbols LCAT (u, v), is the unique
common ancestor of them that is a descendant of every other common ancestor of them. The path difference dT (u, v)

between two nodes u and v is the sum of the lengths of the paths LCAT (u, v) � u and LCAT (u, v) � v; equivalently, it is
the length of the only path connecting u and v in the undirected tree associated to T . It is well known (for a proof, see [7])
that the vector of path differences d(T ) = (dT (i, j))1�i< j�n between all pairs of leaves characterizes up to isomorphism a
phylogenetic tree with n leaves: this property is false if we remove the binarity assumption on the trees.

Let Tn be the set of (isomorphism classes of) phylogenetic trees with n leaves. It is well known [11, Ch. 3] that |T1| = 1
and, for every n � 2,

|Tn| = (2n − 3)!! = (2n − 3)(2n − 5) · · ·3 · 1.

An ordered m-forest on a set S is an ordered sequence of m phylogenetic trees (T1, T2, . . . , Tm), each Ti on a set Si of taxa,
such that these sets Si are pairwise disjoint and their union is S . Let Fm,n be the set of (isomorphism classes of) ordered
m-forests on any given set S with |S| = n. The cardinal of Fm,n is computed (although not explicitly) along the proof of
Theorem 3 in [26].

Lemma 1. For every m � 1, |Fm,m| = m! and

|Fm,n| = m(n!)∏n−m−1
l=1 (n + l)

(2(n − m))!! = (2n − m − 1)!m
(n − m)!2n−m

for every n > m.
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Proof. The exponential generating function for the number of rooted phylogenetic trees with n leaves is B(x) = 1−√
1 − 2x.

Then, the exponential generating function for the number of ordered forests consisting of a given number of trees (marked
by the variable y) and a given global number of leaves (marked by the variable y) is

F (x, y) =
∑
m�1

ym B(x)m = 1

1 − yB(x)
− 1.

This implies that the number |Fm,n| of ordered m-forests on a set of n leaves is equal to ∂n

∂xn (B(x)m)|x=0. This derivative can
be easily computed, yielding the values given in the statement. �
2.2. Hypergeometric functions

The (generalized) hypergeometric function p Fq is defined [4] as

p Fq

(
a1, . . . , ap

b1, . . . , bq
; z

)
=

∑
k�0

(a1)k · · · (ap)k

(b1)k · · · (bq)k
· zk

k! ,

where (a)k := a · (a + 1) · · · (a + k − 1).
The following lemmas will be used in the next section.

Lemma 2.

2 F1

(
n − 1, 2 − n
−n

; 1

2

)
= 2n−1

n
.

Proof. To compute the value of 2 F1

(
n−1, 2−n
−n

; 1
2

)
we shall use Formula 15.1.26 in [1] (see also http://functions.wolfram.

com/07.23.03.0028.01):

2 F1

(
a, 1 − a
c

; 1

2

)
= 21−c√πΓ (c)

Γ (a+c
2 )Γ ( c−a+1

2 )
.

We cannot apply this expression to a = n − 1 and c = −n, because Γ (−n) = ∞. So, instead, we use a standard pass to limit
argument:

2 F1

(
n − 1, 2 − n
−n

; 1

2

)
= lim

ε→0
2 F1

(
n − 1, 2 − n
−n + ε

; 1

2

)
= lim

ε→0

21+n−ε
√

πΓ (−n + ε)

Γ ( ε−1
2 )Γ ( 2−2n+ε

2 )
= 2n−1

n
. �

Lemma 3.

3 F2

(
1 − n, 2 − n, n − 1
−n, −n

; 1

2

)
= 2n−1

n2

(
−1 + (2n − 1)!!

2n−2(n − 1)!
)

.

Proof. The hypergeometric series 3 F2

(
1−n, 2−n, n−1
−n, −n

; 1
2

)
can be written as a function of the hypergeometric function 2 F1 as

follows1:

3 F2

(
1 − n, 2 − n, n − 1
−n, −n

; 1

2

)
= 2 F1

(
n − 1, 2 − n
−n

; 1

2

)
− (n − 1)(n − 2)

2n2 2 F1

(
n, 3 − n

1 − n
; 1

2

)
. (1)

We already know from the previous lemma that 2 F1

(
n−1, 2−n
−n

; 1
2

)
= 2n−1

n . It remains to compute 2 F1

(
n, 3−n

1−n
; 1

2

)
. To do it,

we shall use the following formula2:

2 F1

(
a, 3 − a
c

; 1

2

)
= 23−c√πΓ (c)

(a − 1)(a − 2)

(
c − 2

Γ (a+c
2 − 1)Γ ( c−a+1

2 )
− 2

Γ (a+c−3
2 )Γ ( c−a

2 )

)
.

1 See http://functions.wolfram.com/07.27.03.0118.01.
2 See http://functions.wolfram.com/07.23.03.0030.01.

http://functions.wolfram.com/07.23.03.0028.01
http://functions.wolfram.com/07.27.03.0118.01
http://functions.wolfram.com/07.23.03.0030.01
http://functions.wolfram.com/07.23.03.0028.01
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Again, we cannot apply this formula to a = n − 1 and c = −n, and thus we use a pass to limit argument:

2 F1

(
n, 3 − n

1 − n
; 1

2

)
= lim

ε→0
2 F1

(
n, 3 − n

1 − n + ε
; 1

2

)

= lim
ε→0

22+n−ε
√

πΓ (1 − n + ε)

(n − 1)(n − 2)

(
(−n − 1 − ε)

Γ ( ε−1
2 )Γ (1 − n + ε

2 )
− 2

Γ (ε−2
2 )Γ ( 1+ε−2n

2 )

)

= 22+n√π

(n − 1)(n − 2)

(
lim
ε→0

(−n − 1 − ε)Γ (1 − n + ε)

Γ ( ε−1
2 )Γ (1 − n + ε

2 )
− lim

ε→0

2Γ (1 − n + ε)

Γ ( ε−2
2 )Γ ( 1+ε−2n

2 )

)

= 22+n√π

(n − 1)(n − 2)

(
(n + 1)

4
√

π
− (−1)n+2

(−1/2
n

)
n!

(n − 1)!√π

)

= 22+n√π

(n − 1)(n − 2)

(
(n + 1)

4
− (2n − 1)!!

(n − 1)!2n

)
.

Replacing 2 F1

(
n−1, 2−n
−n

; 1
2

)
and 2 F1

(
n, 3−n

1−n
; 1

2

)
in Eq. (1) by their values given above, we obtain

3 F2

(
1 − n, 2 − n, n − 1
−n, −n

; 1

2

)
= 2n−1

n
− 2n+2

2n2

(
(n + 1)

4
− (2n − 1)!!

(n − 1)!2n

)
= 2n−1

n2

(
−1 + (2n − 1)!!

2n−2(n − 1)!
)

,

as we claimed. �
Lemma 4. For every real numbers a,b,

4 F3

(
1, a, a + 1/2, b
2, 2a, b + 1/2

;1

)
= (2b − 1)

(a − 1)(b − 1)

(
−1 + 3 F2

(
a − 1, a − 1/2, b − 1

2a − 1, b − 1/2
;1

))
.

Proof. By definition,

4 F3

(
1, a, a + 1/2, b
2, 2a, b + 1/2

;1

)
=

∑
k�0

k!(a)k(a + 1/2)k(b)k

(k + 1)!(2a)k(b + 1/2)k
· 1

k! =
∑
k�1

(a)k−1(a + 1/2)k−1(b)k−1

k!(2a)k−1(b + 1/2)k−1
= (∗).

Taking into account that

(a)k−1 = (a − 1)k

a − 1
, (a + 1/2)k−1 = (a − 1/2)k

a − 1/2
, (b)k−1 = (b − 1)k

b − 1
,

(2a)k−1 = (2a − 1)k

2a − 1
, (b + 1/2)k−1 = (b − 1/2)k

b − 1/2
,

the expression (∗) can be written as

(∗) =
∑
k�1

(a − 1)k(a − 1/2)k(b − 1)k(2a − 1)(b − 1/2)

(a − 1)(a − 1/2)(b − 1)(2a − 1)k(b − 1/2)k
· 1

k!

= (2b − 1)

(a − 1)(b − 1)

(
−1 + 3 F2

(
a − 1, a − 1/2, b − 1

2a − 1, b − 1/2
;1

))

yielding the formula in the statement. �
3. Mean total areas

For every s ∈ Z
+ , the total s-area of a phylogenetic tree T is

D(s)(T ) =
∑

1�i< j�n

dT (i, j)s.

This value (or, rather, its s-th root) measures the total amount of evolutive history captured by the phylogenetic tree. Let

μ
(

D(s))
n =

∑
T ∈Tn

D(s)(T )
|Tn|
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be the mean value of D(s)(T ) for T ∈ Tn under the uniform distribution on Tn . In this section we compute μ(D(1))n and
μ(D(2))n . To simplify the notations, for every s ∈ Z

+ let

S(s)
n =

∑
T ∈Tn

dT (1,2)s.

Lemma 5. For every s ∈ Z
+ and for every 1 � i < j � n,∑

T ∈Tn

dT (i, j)s = S(s)
n .

Proof. Let σi, j be the involutive permutation that interchanges 1 and i, and 2 and j and leaves the other elements fixed
and, for every T ∈ Tn , let Tσi, j be the phylogenetic tree obtained by applying to the leaves in T the permutation σi, j . On the
one hand, it is clear that dT (i, j) = dTσi, j

(1,2), and, on the other hand, since the mapping Tn → Tn defined by T �→ Tσi, j is

bijective, we have the equality of multisets{
dT (1,2)

∣∣ T ∈ Tn
} = {

dTσi, j
(1,2)

∣∣ T ∈ Tn
}
.

Combining these two observations we obtain∑
T ∈Tn

dT (i, j)s =
∑
T ∈Tn

dTσi, j
(1,2)s =

∑
T ∈Tn

dT (1,2)s. �

Corollary 6. For every n � 2 and for every s ∈ Z
+ ,

μ
(

D(s))
n =

(
n

2

)
S(s)

n

(2n − 3)!! .

Proof. Using the previous lemma,

μ
(

D(s))
n =

∑
T ∈Tn

D(s)(T )

|Tn| =
∑

1�i< j�n

∑
T ∈Tn

dT (i, j)s

(2n − 3)!! =
(n

2

)∑
T ∈Tn

dT (1,2)s

(2n − 3)!! . �
For every i = 1, . . . ,n − 1, let ci be the cardinal of the set{

T ∈ Tn
∣∣ dT (1,2) = i

}
.

Then, S(s)
n = ∑n

i=2 isci . Our first goal is to find a suitable expression for these coefficients ci .

Proposition 7. ci = (i−1)(2n−i−2)!
(2(n−i))!! .

Proof. Let T ∈ Tn be any tree such that dT (1,2) = i; to simplify the notations, let us denote by x the node LCAT (1,2). Then,
on the one hand, the paths x � 1 and x � 2 have, respectively, j and i − 2 − j intermediate nodes, for some j = 0, . . . , i − 2,
and each such intermediate node is the parent of the root of a rooted subtree of T . Let {i1, . . . , ik} be the union of the
(pairwise disjoint) sets of leaves of these subtrees: notice that i − 2 � k � n − 2, because each subtree has some leaf and
the leaves 1,2 cannot belong to these subtrees. On the other hand, x is the leaf of the phylogenetic tree T0 with leaves
({1, . . . ,n} \ {1,2, i1, . . . , ik}) ∪ {x} obtained by collapsing the subtree of T rooted at x into a single leaf x.

So, the tree T is determined by a subset {i1, . . . , ik} of {1, . . . ,n}, with i − 2 � k � n − 2, a phylogenetic tree T0 on
({1, . . . ,n} \ {1,2, i1, . . . , ik}) ∪ {x} (and hence with n − k − 1 leaves), an ordered (i − 2)-forest (T1, . . . , Ti−2) on {i1, . . . , ik},
and an index j ∈ {0,1, . . . , i − 2}. The tree T is obtained by starting in the leaf x of T0 two new paths (x, v j, . . . , v1,1) and
(x, v j+1, . . . , vi−2,2) of lengths j + 1 and i − j − 1, respectively, and then adding to each intermediate node vl in these
paths an arc with head the root of the tree Tl (cf. Fig. 1).

This shows that ci can be computed as

ci =
n−2∑

k=i−2

(number of ways of choosing the k nodes i1, . . . , ik)

· (number of ordered (i − 2)-forests trees on {i1, . . . , ik}
)

· (number of ways of choosing j between 0 and i − 2)

· (number of phylogenetic trees with n − k − 1 leaves)
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Fig. 1. The structure of a tree T with dT (1,2) = i.

=
n−2∑

k=i−2

(
n − 2

k

)
· |Fi−2,k| · (i − 1) · (2n − 2k − 5)!!

= (i − 1)!
(

n − 2

i − 2

)
(2n − 2i − 1)!!

+ (i − 1)(i − 2)

n−i−1∑
k=0

(
n − 2

k + i − 1

)
(k + i − 1)!∏k

l=1(k + i − 1 + l)

(2(k + 1))!! (2n − 2k − 2i − 3)!!.

Applying the hypergeometric series lookup algorithm given in [19, p. 36], we obtain

n−i−1∑
k=0

(
n − 2

k + i − 1

)
(k + i − 1)!∏k

l=1(k + i − 1 + l)

(2(k + 1))!! (2n − 2k − 2i − 3)!!

= 1

2

(
n − 2

i − 1

)
(i − 1)!(2n − 2i − 3)!! · 4 F3

(
1, i/2, i/2 + 1/2, i − n + 1
2, i, i − n + 3/2

;1

)
,

and hence

ci = (i − 1)!
(

n − 2

i − 2

)
(2n − 2i − 3)!!

·
(

2n − 2i − 1 + 1

2
(i − 2)(n − i)4 F3

(
1, i/2, i/2 + 1/2, i − n + 1
2, i, i − n + 3/2

;1

))
.

If we apply Lemma 4 with a = i/2 and b = i − n + 1, we obtain

ci = (i − 1)!
(

n − 2

i − 2

)
(2n − 2i − 1)!! · 3 F2

(
i/2 − 1, i/2 − 1/2, i − n

i − 1, i − n + 1/2
;1

)
. (2)

The value of 3 F2

(
i/2−1, i/2−1/2, i−n

i−1, i−n+1/2 ;1
)

is computed in [4, Form. (2), p. 9]:

3 F2

(
i/2 − 1, i/2 − 1/2, i − n

i − 1, i − n + 1/2
;1

)
= (i − 2)!Γ (1/2 + i − n)Γ (n − i/2)Γ (3/2 − i/2)

Γ (i/2)(n − 2)!Γ (3/2 + i/2 − n)Γ (1/2)
.

Now, using that

Γ (x) = (x − 1)Γ (x − 1),

we can write

Γ (3/2 − i/2) = (−1)n−i ∏n−i
k=1(2k + i − 3)

2n−i
Γ (3/2 + i/2 − n),

Γ (1/2) = (−1)n−i ∏n−i
k=1(2k − 1)

2n−i
Γ (1/2 + i − n),

Γ (n − i/2) =
∏n−i

k=1(2n − i − 2k)

n−i
Γ (i/2).
2



174 A. Mir, F. Rosselló / J. Math. Anal. Appl. 371 (2010) 168–176
Then, using these formulas, the expression for 3 F2

(
i/2−1, i/2−1/2, i−n

i−1, i−n+1/2 ;1
)

can be simplified, yielding

3 F2

(
i/2 − 1, i/2 − 1/2, i − n

i − 1, i − n + 1/2
;1

)
= (i − 2)!(2n − i − 2)!

(n − 2)!(2n − 2i − 1)!!2n−i
.

Replacing this expression in Eq. (2), we finally obtain

ci = (i − 1)(2n − i − 2)!
(2(n − i))!! ,

as we claimed. �
Proposition 8. S(1)

n = 2n−1(n − 1)! = (2n − 2)!! .

Proof. By Proposition 7 we know that

S(1)
n =

n∑
i=2

i(i − 1)(2n − i − 2)!
(2(n − i))!! =

n−2∑
i=0

(i + 2)(i + 1)(2n − i − 4)!
(2(n − i − 2))!! .

If we compute this sum using again the algorithm given in [19, p. 36], we obtain

S(1)
n = 23−n(2n − 4)!

(n − 2)! 2 F1

(
3, 2 − n

4 − 2n
;2

)
.

Replacing in this equality 2 F1

(
3, 2−n

4−2n
;2

)
by its definition, we obtain

S(1)
n = 22−n

n−2∑
k=0

(k + 1)(k + 2)(2n − k − 4)!
(n − k − 2)! 2k =

n−2∑
k=0

(n − k − 1)(n − k)(n + k − 2)!
k! 2−k.

This sum can be computed using again the algorithm given in [19, p. 36], yielding

S(1)
n = n! 2 F1

(
n − 1, 2 − n
−n

;1/2

)
.

By Lemma 2, we conclude that

S(1)
n = n!2n−1

n
= 2n−1(n − 1)! = (2n − 2)!!,

as we claimed. �
Proposition 9. S(2)

n = 2 · (2n − 1)!! − (2n − 2)!! .

Proof. By Proposition 7, we have

S(2)
n =

n∑
i=2

i2ci =
n∑

i=2

i2(i − 1)(2n − i − 2)!
(2(n − i))!! =

n−2∑
i=0

(i + 2)2(i + 1)(2n − i − 4)!
(2(n − i − 2))!! .

Using again the algorithm given in [19, p. 36], the value of the sum S(2)
n is:

S(2)
n = 24−n(2n − 4)!

(n − 2)! 3 F2

(
3, 3, 2 − n
2, 4 − 2n

;2

)
=

n−2∑
k=0

(k + 2)2(k + 1)(2n − k − 4)!
(n − k − 2)! 2k−n+2

=
n−2∑
k=0

(n − k)2(n − k − 1)(n + k − 2)!
k! 2−k.

Using once again the algorithm given in [19, p. 36], the last sum can be computed as:

S(2)
n = n · n! 3 F2

(
1 − n, 2 − n, n − 1
−n, −n

; 1
)

.

2
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By Lemma 3, we obtain

S(2)
n = (n − 1)!2n−1

(
−1 + (2n − 1)!!

2n−2(n − 1)!
)

= 2 · (2n − 1)!! − (2n − 2)!!,

as we claimed. �
Applying Corollary 6, we obtain the following total areas.

Corollary 10.

μ
(

D(1)
)

n =
(

n

2

)
· (2n − 2)!!
(2n − 3)!! , μ

(
D(2)

)
n =

(
n

2

)
2(2n − 1)!! − (2n − 2)!!

(2n − 3)!! .

S(1)
n can also be used to compute the mean value of the length of the undirected path between two given leaves in a

phylogenetic tree.

Corollary 11. For every i, j ∈ {1, . . . ,n}, i 	= j, the mean value of dT (i, j) for T ∈ Tn under the uniform distribution is

μ
(
dT (i, j)

)
n = 22(n−1)(2(n−1)

n−1

) .

Proof.

μ(dT (i, j))n =
∑

T ∈Tn
dT (i, j)

|Tn| = S(1)
n

(2n − 3)!! = (2n − 2)!!
(2n − 3)!!

= (2n − 2)!!2
(2n − 3)!!(2n − 2)!! = 22n−2 · (n − 1)!2

(2n − 2)! = 22(n−1)(2(n−1)
n−1

) . �

In the unrooted case, this mean value is proved in [26] to be 22(n−2)/
(2(n−2)

n−2

)
.

4. Mean path-difference distance

The path-difference distance between a pair of phylogenetic trees T , T ′ ∈ Tn is

δ
(
T , T ′) =

√ ∑
1�i< j�n

(
dT (i, j) − dT ′(i, j)

)2
.

Lemma 12. The mean value of δ(T , T ′)2 , with T , T ∈ Tn, under the uniform distribution on Tn, is

μ
(
δ2)

n = 2

(
n

2

)(
4(n − 1) + 2 − 22(n−1)(2(n−1)

n−1

) −
(

22(n−1)(2(n−1)
n−1

))2)
.

Proof. By definition

μ
(
δ2)

n =
∑

T ,T ′∈TN

∑
1�i< j�n(dT (i, j) − dT ′(i, j))2

|TN |2

= 1

|TN |2
( ∑

1�i< j�n

∑
T ,T ′∈TN

(
dT (i, j)2 + dT ′(i, j)2 − 2dT (i, j)dT ′(i, j)

))

= 1

|TN |2
∑

1�i< j�n

(
2|Tn|

∑
T ∈TN

dT (i, j)2 − 2

( ∑
T ∈TN

dT (i, j)

)2)

and then, using Lemma 5,

μ
(
δ2)

n = 2

(
n
)(∑

T ∈Tn
dT (1,2)2

−
(∑

T ∈Tn
dT (1,2)

)2)
= 2

(
n
)(

S(2)
n −

(
S(1)

n
)2)

.

2 |Tn| |Tn| 2 (2n − 3)!! (2n − 3)!!
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If we replace S(1)
n and S(2)

n by their values given in Propositions 8 and 9, we obtain

μ(δ2)n = 2

(
n

2

)(
2(2n − 1)!! − (2n − 2)!!

(2n − 3)!! −
(

(2n − 2)!!
(2n − 3)!!

)2)
= 2

(
n

2

)(
4n − 2 − (2n − 2)!!

(2n − 3)!! −
(

(2n − 2)!!
(2n − 3)!!

)2)
.

Applying finally (see Corollary 11)

(2n − 2)!!
(2n − 3)!! = 22(n−1)(2(n−1)

n−1

) ,

we obtain the expressions in the statement. �
The value of μ(δ2)n obtained by Steel and Penny in the unrooted case was

μ
(
δ2)

n = 2

(
n

2

)(
4(n − 2) + 2 − 22(n−2)(2(n−2)

n−2

) −
(

22(n−2)(2(n−2)
n−2

))2)
.

Using Stirling approximation, both mean values are equivalent to

2

(
n

2

)(
(4 − π)n − √

πn
)
.
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